TAIWANESE JOURNAL OF MATHEMATICS

Vol. 24, No. 2, pp. 437 April 2020
DOLI: 10.11650/tjm/190406

On the Existence for an Integral System Including m Equations

Xiaogian Liu and Yutian Lei*
Abstract. In this paper, we study an integral system

ui(z) = K;(x)(Jz[*™ = ufjff)(m), 1=1,2,....m—1,

U (1) = Ko (2) (|27 % u*) (2).

When a € (0,n), p; >0 (: =1,2,...,m), the Serrin-type condition is critical for exis-
tence of positive solutions for some double bounded functions K;(z) (i = 1,2,...,m).
When «a € (0,n), p; <0 (i =1,2,...,m), the system has no positive solution for any
double bounded K;(z) (i = 1,2,...,m). When a > n, p; <0 (i = 1,2,...,m), and
max;{—p;} > a/(a—n), then the system exists positive solutions increasing with the
rate o — n.

1. Introduction

In this paper, we are concerned with an integral system including m equations. First, we

observe a simple fact: the system

Pi+1

u-

u,(m)—/ ﬁ;ﬁ_)ady, i1=1,2,...,m—1,
Re [T —

1.1
(1) _ ui ()
U (x) = —dy, m>1,n>1,

R [T —y["
where u;(z) > 0in R, i =1,2,...,m, o # n, satisfies the following result.
Theorem 1.1. Equation (1.1) with p; # —1 and the norms ||u;||p,+1 (¢ =1,2,...,m) are
invariant under the rescaling transformation

(1.2) ui(x) = pPu(pr), p#0, 0; #0

if and only if

n—+ o

(1.3) Di = (1=1,2,...,m), when m is odd,

n—uoa
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and

bP1r=p3 = "=DPm-1, P2=P4=" " =Pm,

1 1 _ n—«a .
PTES! + P when m 1s even.

(1.4)

Now, 0; =n/(p; + 1).

When m € {1, 2}, is the Euler-Lagrange equation of the extremal function of the
Hardy-Littlewood-Sobolev (HLS) inequality and the reversed HLS inequality (cf. [8}15]).
Papers [7] and |14] classified the regular solutions of with m = 1 and the Sobolev
exponent as the radial form

¢ (n—a)/2
u<x):c<t2+’$—$o\2> , ¢t>0, zg € R".
When m = 2, many papers studied with the Sobolev-type critical condition
including existence result (cf. [3,21]), radial symmetry result (cf. [6]), regularity result
(cf. [9]), integrability result (cf. [10,/11]), and asymptotic behavior (cf. [11,22]).

When m = 3, Liu and Qiao (cf. [17]) gave a sufficient condition of which makes positive
solutions of be radially symmetric. Such a condition is different from .

For general m, if the right hand side of is homogeneous about w;, then (1.3
still ensures the method of moving planes works and the positive solutions are radially
symmetric (cf. [4]). Afterwards, paper [13] generalized it to the system involving the Wolff

potentials. Recently, Lii and Zhou studied an integral system with more general right hand
ul(:z):/ Mdy, 1=1,2,...,m,
R

n |z —y[rm

side terms

u(z) = (u1(x),uz(x),...,un(z)), x€R™

They proved a radial symmetry result (cf. [19]).
When « is positive even number, ([1.1]) is also related to the study of PDEs system

(—A)*2u(z) = up (z), i=1,2,...,m—1,

(1.5)
(—A) 2upy (2) = uf* (2).

Under some mild conditions, (I.1) is equivalent to the PDEs system above (cf. |5]). This
PDEs system is helpful to understand the higher-order conformal PDEs (cf. [2,/16,18}24]).

Next, we consider an integral system with double bounded coefficients

wi) =it [

— n—o
(1.6) w |7 = b

u

dy, 1=1,2,....,m—1,
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where u;(z) > 0, p; # —1, a # n, and K;(x) are double bounded (i = 1,2,...,m), i.e., we
can find ¢; > ¢ > 0 such that

o< Ki(x)<er, 1=1,2,...,m, x € R".

Clearly, is a special case of (e, Ki(x) =1 (i=1,2,...,m)).
This paper is concerned with the positive entire solutions of in Li° (R™). Thus,
there always holds
a>0.

In fact, if o <0, for any fixed xg € R™, the following contradiction appears

Pl d d
Um(xo)ZC/ ()nyaZc/ %ZO@
B‘mo‘/Q :’Co |3§'0 - | B‘xo‘/g(ato) |x0 - y|

First, we point out that the Serrin-type condition is critical for existence when the

exponents p; (i = 1,2,...,m) are positive.

Theorem 1.2. Let o € (0,n) and p; > 0 (i = 1,2,...,m). Then (1.6) has positive
solutions for some double bounded functions K;(x) (i =1,2,...,m) if and only if

)
[IXipi>1 and

(1.7) sy max {(1+p1+pipz + -+ pre-Pt),

(I+p2+pop3+---+p2 - DPm-1Pm)s---,

(1+pm + PmP1 +'--+pmp1---pm_2)} <n-—aqQ.

We call (1.7) the Serrin-type condition.
When m = 1, (1.7)) is reduced to p > n/(n—a), where n/(n—«) is the Serrin exponent,

which is critical for existence of positive solution (cf. [12]). When m = 2, (L.7) becomes

a(l+p1) a(l+p2)
p1p2 17 pip2—1

of super-solutions of | with m = 2 (cf. [1]). In particular, when m = 1, o = 2, by the
properties of the Newton potential, the C2(R")-solution of (1.6]) satisfies

pip2 > 1 and max{ } < n—a. It is also the critical condition for existence

—Au(z) = K(z)uP(z), =z €R".

It is related to the argument of the Kazdan-Warner condition appearing in the Nirenberg
problem. In addition, it is associated with the argument of ‘quasi-solutions’ which were
studied by Taliaferro (cf. |23]). When m = a = 2, Serrin-type condition is also the critical

condition for existence of super-solutions of the Lane-Emden system (cf. [20])

—Auy(x) = uy? (x),

—Aus(z) = ul* ().
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Next, we consider the negative exponents case (i.e., p; < 0 (i = 1,2,...,m)). When
m € {1,2}, and are associated with the higher order equations in the lower
dimensions space which appear in the study of conformal geometry (cf. [14,25]), and the
reversed HLS inequality (cf. [8,21]).

The following two theorems are the generalization of the results in [26] and [11].

Theorem 1.3. Let o € (0,n) and p; <0 (i =1,2,...,m). Then (1.6) has no positive
solution as long as either K;(x) and K;i1(x) for some i € {1,2,...,m — 1}, or K, (x)

and Ki(x) are larger than some positive constant.

Theorem 1.4. Let a >n and p; <0 (i =1,2,...,m). If min;{—p;} > a/(a — n), then
(T.6) has a radial solution u;(x) = (1 + |z|>)(@=™/2 (i = 1,2,...,m), for some double
bounded K;(x) (i=1,2,...,m).

A natural problem is whether all positive solutions are increasing with rate o — n.

Theorem 1.5. Let u; (i = 1,2,...,m) be the positive solutions of (1.6 in L3S (R™).

Assume a>n andp; <0 (1 =1,2,...,m). If max;{—p;} > a/(a—n), then min;{—p;} >
af/(a—n). In addition, 3¢ > ca > 0 such that for all i,

(1.8) c2 <ui(x)|z|"" <1 when |z| = o0.

Theorem [1.5] implies the integrability and the asymptotic behavior.

Corollary 1.6. Under the same assumptions of Theorem then u; '(z) € L5(R") for
all s > n/(a—n), where u; (i =1,2,...,m) are positive solutions of (1.6)).

Corollary 1.7. Let u; (i =1,2,...,m) be positive solutions of (1.1)). If the assumptions
of Theorem are true, then

—1 ||=Pi+1

e i) = g5

IH—pl

lm  upy,(z)|z ey

i=1,2,...,m—1.
|z|—o00

= [luy
Remark 1.8. According to [5], (1.1) is equivalent to (1.5) when p; >0 (i = 1,2,...,m).
So Theorems and can be applied to ‘some solutions’ of the system of PDEs (1.5).
Here, ‘some solution’ is the classical solution when « € (0,n) is even. For other real values
of @, ‘some solution’ (u1,usg, ..., uy) is the HY?(R")-weak solutions. Namely, for any

nonnegative function ¢ € C§°(R"), u; satisfies

[ lerm@be = [ ap@owan i=12.m-1,
/n |§’aﬁm(§)%d€ = /n ul* (z)p(z) da.
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2. Proof of Theorem
By and , we have

Pit1 _p;

Tilx) = / W) eactiann / W)

' N - .
R™ |/,L:]j‘ - y|n7°‘ R |gj _ z‘nfa

Similarly,
7P1 ( Z)

_ _ u
Up () = N9m+a fim /IR{ |z _1 z[n—e
n

dz.

Thus, (1.1)) is invariant under the rescaling transformation (1.2)) if and only if

0; + o =0, ir1, t=1,2,....m—1,
(2‘1) i i+1Pi+1
9m+a:91p1.

In addition,

/ ﬂfﬁ_l(x) _ M9¢(1+pi)n/ u€i+1(2) dz, 1=1,2,...,m.

Thus, the norm |lu;|[p,+1 (¢ = 1,2,...,m) are invariant under the transformation (1.2) if
and only if

(2.2) Oi(pi+1)=mn, (GF=12,...,m).

If (2.1) and (2.2)) hold, inserting 0;p; = n — 6; (which is implied by (2.2)) into (2.1)
yields
0; +0ir1=0n,+01=n—« (i:1,2,...,m).

Combining this with 6; = n/(p; + 1) (which is implied by (2.2))), we can see (1.3 and

(1.4). On the contrary, if (1.3)) and (1.4]) are true, we also see that (2.1)) and ({2.2)) hold.
Theorem [T.1] is proved.

3. Case of p; >0

In this section, we prove Theorem

3.1. Necessity

Theorem 3.1. If (1.7) is not true, then (1.6) has no positive solution as long as K;(x)

(i=1,2,...,m) are larger than some positive constant.

Remark 3.2. Theorem shows that ([1.1)) has no positive super-solution as long as the
Serrin-type condition (1.7]) does not hold.
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Proof of Theorem [3.1 Write

Hy=1+p2+paps+---+p2p3- P,
Hy =1+ p3+pspa+---+psps--pmp1,

H, = 14+ pm +D2mp1 + - +DPmP1" - Pm—2,
Hy =1+p1+pip2+---+pip2- Dm-1-

Without loss of generality, we assume Hi = max; H;.

Suppose has positive solutions u;(z) (i = 1,2,...,m), we will deduce a contra-
diction.

In fact, for |z| > 1,

P2
B /5(0) |z — y| |z |ap |10
Thus,
p1 d
“m(x)zc/ %dyzpfhu)/ —
p— c Pp— c
o |x|p1h1,o—a T |x|hm,0’

Pm
U (y) c c
u 1(»”6)26/ e dy > — =
" By ale) 17— yl" |p[prmfimo=a T g hm-t0”

Ps
U2($)ZC/ %7@)_(@2 ,f — = Z ;
By o) [T =yl |[pafsome — |g|h20

p2
ul(x)ZC/ %dyz }f — = Z .
Bm/z(x) |‘/‘U - y| |x‘p2 2,0 |x| bl

By induction, we can obtain

C
s

(3.1) ui(z) >

| for || >1,i=1,2,...,m,j=0,1,2,...,
x

where

hip=n—a, hij=phoj1—a, j=12,...,

hi,j:pi+1hi+1,j_a7 Z‘:2737"'77/’2_17 j:071727"'7
hmj=p1h1j—0ao, j=01,2,....
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Therefore, for j =1,2,...,

m m J 7—1 m k
hy; = (Hl%) hij1—aH == (H}%) hipo — Z (sz) aH;.
i=1

i=1 k=0 \i=1
When H:il p; = 1, there holds hyj, = h10 — joat; < 0 for some large jo. When
[T%, pi € (0,1), letting j — oo, we get

m J i
1- (Hnilpl)] oaHq
hi; = i | ho— —F————%aH - —F———~ <0.
" <z1;[1p> Y- (IT: pi) o 1— (I p)

We can find some jo such that hy j, < 0.
When [[;", p; > 1, and ﬁ > n — «, there exists suitably large jo such that
=1

m Jo
aHl OéHl
h17‘ = D hl,() — pms + m < 0.
" <z1_[1 > [ (IT%pi) -1 (T~ pi) — 1

The existence of jy in (3.1]) shows that at uq(z) = co. It is impossible.
When

- aH1
(3.2) pi>1 and —————=n—aq,
2-1;[1 (Hi:l pi) -1

we will also deduce a contradiction.

In fact, fori =1,2,...,m —1,

ul'h (y) c -
ui(x Z/ Ldyz / uf“’l y) dy,
)2 oo o= Y Qa5 Rya g0 "

c
U ( 2/ ul (y) dy.
2 Gl B S Y

(3.3)

Therefore,
¢ pi
u? (z) de > ———— / wy)dy | o, i=1,2,...,m—1,
/BR,«)) 42 ( .

Pm
c
wbr(r)de > ——— / ul* (y) dy )
/BRm) A R ( 5

Thus,
P2
WP (z)dr > —— / ub®(y) dy
[ @z ( [ )
¢ c Do p2p3
D4
(3-4) = Rp2(n—a)—n (Rps(nfa)fn) </BR(0) ug' (y) dy)

c H?;lpi
Z“'ZR</ ng(y)dy> :
BRr(0)
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where
H := (p2+pap3+ -+ pap3- - pmp1)(n — &) = n(l + p2 + paps + -+ + paps -+ - pm)

m
= (Hm - 1) n— (p2 + pap3 + -+ pap3 - Pmp1)e
=1

- (iﬁlpi_gn_ <H1+iﬁlpi_1> o

By (3.2), H = 0. Letting R — oo in (3.4), we have ugs € LP2(R™). By an analogous
argument of (3.4]), from (3.3]) we also get

[T pi
/ ub?(z)dz > ¢ (/ ub?(y) dy) .
Br(0)\Br/2(0) Br(0)

Letting R — oo and noting us € LP?2(R™), we have

This leads to ug(z) = 0. It is impossible. Theorem (3.1 is complete. O

3.2. Sufficiency

Fori=1,2,...,m, set
1
3.5 Ui(x) = —————5
( ) l(‘r) (1 4 ‘x|2)9i,
where
H.
(3.6) 0; = A

2(I[Zpi = 1)

Noting p;H; > [~ pi — 1 and

m m
(3.7 pH - (sz‘—1> =Hp, pil;— (Hpi—1> =Hi1, 1=23,...,m,
-1 i=1

from ([1.7)) we deduce that
(3.8) a<20pi<n, i=1,2,...,m.

When |z| is bounded, it is not difficult to see that Lg is also bounded, where

P1
LO :_/ Ul (y) dy
R

n |z —ylnme
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Therefore, there exists a double bounded function Kj(z) such that U, (x) = Ki(x)Lo.
Thus, we only consider the case of |z| > 1.
Clearly, for R > 0,

4
Lo=> L,
=1

where

I ,:/ Ut (y) dy I, _:/ Ut (y) dy
Br(0) [t —y|"™’ By 2 () |z — y[n—e’

Ly / Ulwdy / Ut (y) dy
Baja (O\(BR(O)UB,, j2(z)) [T — 4" R\ By, (0) |7 — y|" ¢

When |z| > 1, there exists a double bounded function K(z) such that
Ly = K(z)(1 + |z|*)e/2,

When |y — x| < |z|/2, |z|/2 < |y| < 3|z|/2. By (3.5, there exists a double bounded
function K (x) such that

I K(z) / dy K (x)
9= — .
(1 + |z|2)02p1 Bl o) [z =y (1 [zf2)0rr—o/2

In view of Byj4((0) \ Bsjz)/2(0) C Bajz)(0) \ (Br(0) U Bjg|j2(2)) C Bay,((0) \ Br(0), by
(3.5)), there exist constants C' > ¢ > 0 such that

c / _dy Ls < ¢ / —
12" By (0)\Baja (0 Y1200 T 7 T 2| Sy o0\BR(0) (Y2

Therefore, by (3.8]), we can find a double bounded function K (x) such that

P ()
P [epyhmer

When |y| > 2|z|, |z —y| > |y|/2. By (3.5) and (3.8]), there exists a double bounded
function K (z) such that

dy K(z)
Li = K(x) / _ |
R\ By (0) [y[nmet20ipr (1 4 |p|2)0p1—a/2

Combining the estimates of L; (I = 1,2,3,4) and noting (3.8)), we can find a double
bounded function K (z) such that

P ()
DAt [epyhmer
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By (3.6) and (3.7)), the result above implies
Um(l') = K1 (w)Lo

for some double bounded function Kj(x) when |z| > 1.
Similarly, we also obtain

Ul (y) dy
|z —y[r—o’

Uie) = Kita) [

for some double bounded functions K;(x). So we find a class of solutions of forms as (/3.5

with (3.6).
In addition, if a stronger condition (than (1.7))

i it=1,2,... >
mln{pz,z ) 4y 7m} N —

holds true, then there exists another class of solutions. In fact, we can choose ; = (n—a)/2
instead of (3.6]), which implies
(3.9) min{20;p;} > n.
(2
Now, set Ls = Lo — L1 — Ly. Thus,

P1 P1
/ % (y){y <L5</ Ui (y){y_
R\ By, (0) [ — Y[ R\ Br(0) [T — Y[~

By (3.9), it follows that

< <ILy< ¢
(Lt [P =al2 = 72 = (1 [a2)0r-e)/2

Combining with the estimates of L; and Lo and noting (3.9)), we can find a double bounded
function K (x) such that
K(z)

Lo = :
ERCEAEUIERE

In view of §; = (n — «) /2,
Um(l}) = K1 ((L‘)LO

for some double bounded function Kj(x) when |z| > 1.

Similarly, we also obtain

Ui (v) dy

Ui(z) = Ki(x) e o — g

for some double bounded functions K;(x).
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4. Case of p; <0

Proof of Theorem [L.3] The idea comes from [26]. Without loss of generality, we assume
K () > ¢ and Kq(z) > ¢ for some constant ¢ > 0.
By Lemma 3.11.3 in [27], for all » > 0,

/T dm_/n/r va—yI"O‘Q(y)dy

(4.1) ’B|
gc/ e (0) dy = el B (0)

where ¢ > 0 is independent of . Applying the Hélder inequality, we get

1B,(0)| = /B o uzln/(m—l)(z:)uzl?l/(l—m)(m) dx

p1/(p1—1) 1/(1=p1)
< (/ uy () dx) (/ ul* () dw) :
7‘(0) T( )

Inserting (4.1)) into this result, we obtain
|Br(0)] < c/ ul (z) dx.
r(0)
Multiplying by r*~" yields

p1
r¢ < cro‘_"/ ul (z) dx < c/ ulT(_xo)t dx < cup(0),
+(0) B.(0) 17|

where ¢ > 0 is independent of r. Letting r — oo, we can see u,,(0) = co. It is impossible.
O

Proof of Theorem [1.4. For 6; # 0, set U;(z) = (1—{—|x|2)9i/_2, (i=1,2,...,m). When |z] <

41
2R for some large R > 0, U;(x) is proportional to [zn % dy for i =1,2,...,m—1,

and U,,(x) is proportional to fRn |£L )a dy. Thus we only consider the case of |x| > 2R.

Clearly,

U}h‘ UPz‘ Upi
/ z(zi)_ady:/ Z(i)ady+/ (n)ady
rn |7 =yl B1(0 |95 -yl By (0)\B1(0) \x —yl

Upz
(4.2) N / (n) _dy
R”\BQ‘ [0 |117— ‘

=10+ I+ Is.

First, there exists C' > 0 such that

(4.3) Clz|o™" < I < Clz|*™.
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When y € R™\ By, (0), 3|yl < |e — y| < [y|. Therefore,

o > a+pz i d <3 <C >~ Ta+pi9¢ @
2|x| r 2|z| r
In order to ensure I3 < oo, #; should satisfy
(4.4) a+ p;f; < 0.
Thus,
(4.5) O~ YHa|0HPili < I3 < Clz|*tPi% 2| > 2R.

When y € Byy(0), |z —y| < 3|z|. When 3|z|/2 < |y| < 2|z|, [v—y[ > |z|/2. Therefore,
2 2

C—1|x|a—n/ =] n+p1 i d < IZ < C|:E|a n/ = T”+pi9i ﬁ

3|z|/2 r 1 r

Clearly, (4.4]) implies n + p;0; < 0. Therefore,

Cfllx‘aeriGi << C‘x|afn'
Combining this with (4.3)), (4.5) and (4.2), and noting (4.4)), we get

Upz
C | g/ |(|‘Z)ady < Clz[*™, |z| > 2R
n y
fori=1,2,...,m. Take
0; = o —n.

There holds

Upz Upz
Ci %dy<Uz 1()SC %dy7 (222737,771)
46 R |2 — Y R |2 =y
40 Py U ()
C | o SUn(@)<C | =t dy
e |7 =y R |2 =y
Setting
vt 1
Ki(x) = Uz / |Z+1|n_ady] . (i=1,2,...,m—1)
Rn | T —

-1
Ut (y) dy]

n | —yn e
Yy

Konlo) = Un(o) | [

we can see that U;(z) = (1 + |z[?)(@=)/2 (i = 1,2,...,m) solve (L.6)), and (4.6) implies
K;(z) are double bounded. O
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Proof of Theorem [L.5. Without loss of generality, we assume —p; = max;{—p;}. Thus
the condition of Theorem [L.5] leads to

(4.7) a+pi(a—n)<O0.

Clearly, for |z| > 1,

Pi+1
(4.8) ui(x) > c/ M dy > cz|*™, i=1,2,...,m—1,
Bi(0) |7 —y["
p1
(4.9) Um () > c/ 11117(21)_ dy > c|z|*™".
Bi(0) [T —y["m
On the other hand,
p1 p1
wne) = Fon(o) [y ) | R
Br(0) [T — Y Baja| O\, 0y 1%~ Y
ui (y)

R™\ By, (0) |¥ — Y

For large R > 0,

P1

Bgr(0) [T =y

When y € By),(0), |z — y| < 3|z|. Therefore, by (4.8) and (4.7),

dy < Clz|*™™, |z| > 1.

dr

2lz|
Jy < C’.’B‘a_n/ pn—p1(n—a) — < Clz*™, x| > 1.
1

When |y| > 2|z, |z — y| < $|y. Therefore, by [E8) and (@),

o0 dr
J3 < C ,ra-l—l)l(a—n) — < C|x|06+291(a—n) < C” |gj| > 1.
2[a] "

Combining the estimates of Ji, Jo, J3 with (4.9), we get
(4.10) 0<Ct <up(x)|z|" <0, |z|>1.

When [y| > 2|z], [ —y| > 3|yl By (4.8) and (€.10),

Pm

m o o d
o0 > um_l(x) > C/ ui(y)_ dy > C/ ra+pm(a n) l
2|z|

r

This implies

(4.11) — Dm >
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Replacing (4.7)) by (4.11) and by the same estimates of Ji, Ja, J3, we also obtain from
(L10) that

0<C ! <up (@) *<C, |z|>1.
By induction, we can see that for i =1,2,...,m,

—p; > ~%  and 0<Ct < w(x)|z|" < C.

Theorem is proved. O

Proof of Corollary [L.6] Theorem shows that there exists R > 0 such that |u;(z)| <

clx|*™, |x| > R. Therefore,

/ u; *(x) dx = / w; *(x) dx + / u; *(x) dx
n Br(0) R™\ Br(0)

<c+ C/OO pr—sla—n) @
< i "

Therefore, u; ' € L*(R") as long as s > n/(a — n). O

Proof of Corollary [1.7 Theorem shows min;{—p;} > a/(a —n) > n/(ac —n). By
Corollary

(4.12) u;t € LTPIR™), i=1,2,...,m.
When y € Br(0) for R > 0, &% — 1| < 2 for large |z|. By (4.12), we can use the

Lebesgue dominated convergence theorem to obtain
. . T n—«
lim lim i -1
R—00|z|—00 JBR(0)

When |y| < 2|z|, |z — y| < 3|z|. Therefore, by (4.12)),

uﬁ’l (y)dy = 0.

|z — gy

. ‘ |z
lim lim T
R0 [2|=00. ) B, (0\BRr(0) |T = ¥l

When |y| > 2|z|, |z — y| < 2|y|. Therefore, by (L.8),

uf (y) dy = 0.

n—«
lim 2]

o0
m d
—uf' (y)dy < c li |x|n—a/ Latpi(a—n) 4T
|| =00 R"\BQW(O) |l‘ _ y| 2

|z|—o0 |z| r

= ¢ lim |z"TPrem) =,
|z|—o0

Combining these estimates, we have

lim wp (a) |~ = [lup [ )
|z|—o0
Similarly, we can also get
Hm wioy ()| = |ju; |20, i=2,3,...,m. O

|z| =00
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