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A Numerical Method Based on the Jacobi Polynomials to Reconstruct an

Unknown Source Term in a Time Fractional Diffusion-wave Equation

Somayeh Nemati and Afshin Babaei*

Abstract. In this paper, we consider an inverse problem of identifying an unknown time

dependent source function in a time-fractional diffusion-wave equation. First, some

basic properties of the shifted Jacobi polynomials (SJPs) are presented. Then, the

analytical solution of the direct problem is given and used to obtain an approximation

of the unknown source function in a series of SJPs. Due to ill-posedness of this inverse

problem, the Tikhonov regularization method with Morozov’s discrepancy principle

criterion is applied to find a stable solution. After that, an error bound is obtained for

the approximation of the unknown source function. Finally, some numerical examples

are provided to show effectiveness and robustness of the proposed algorithm.

1. Introduction

Partial differential equations of fractional order have been considered highly during the

recent decades [1, 14, 17, 19, 32]. Nonlocality and memory effects are some of the main

features of fractional derivatives. In other words, the next state of a fractional system

depends on its current and all previous states. Hence, many scientific researchers have used

these types of equations to present some mathematical models for phenomena in real world.

These models are valuable in better understanding of the behavior of natural systems. One

of these natural phenomena is anomalous diffusion in fractal media. Anomalous diffusion

is a diffusion process in which the mean square displacement of diffusing particle of the

form

〈∆x2〉 = 2Dtα,

grows faster or slower than that in a Gaussian process [10,13,16]. In this relation α is the

anomalous diffusion exponent. The process is named superdiffusion in the case 1 < α < 2

and subdiffusion in the case 0 < α < 1. High-frequency financial data [20], electrical

conductance in the membranes of cells of biological organisms [4], fractional order model
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of HIV infection [18], optimal multiple control problems [7], hydrologic processes in earth

system dynamics [31] are some other examples of these applications.

In this paper, we consider an inverse source problem which consists a time-fractional

diffusion-wave equation as

(1.1)
∂µu(x, t)

∂tµ
− ∂2u(x, t)

∂x2
= s(x, t), (x, t) ∈ Ω := [0, L]× [0, τ ],

with the initial conditions

(1.2) u(x, 0) = f0(x), ut(x, 0) = f1(x),

and the boundary conditions

(1.3) u(0, t) = u(L, t) = 0,

in which 0 < µ ≤ 2 (it should be noted that the second initial condition, ut(x, 0) = f1(x),

is only for 1 < µ ≤ 2), and s(x, t) is the source term in a separable form as

(1.4) s(x, t) = f(x)g(t)

with unknown factor g(t). The forward problem (1.1)–(1.4) with the known function s(x, t)

has been investigated by many researchers in literature [2, 3, 6, 22, 25]. For solvability of

the inverse problem an additional condition shall be considered as

(1.5) u(x0, t) = q(t),

where x0 is an interior point of the interval (0, L). The existence and uniqueness of solu-

tion for the inverse problem (1.1)–(1.5) have been investigated in [28]. The inverse time

dependent source problems for time fractional diffusion equations, have been concerned

by some authors. They used several approaches to solve these types of problems, such as

the Fourier regularization method [30], the quasi-reversibility regularization method [29],

boundary element method combined with the Tikhonov regularization [27], the conju-

gate gradient method [26], a Tikhonov regularization method based on the superposition

principle and the technique of finite-element interpolation [21]. To our knowledge, in

the field of inverse problems for time fractional diffusion-wave equations, very few works

have been presented. In [9] and [11] authors considered some inverse source problems for

time-fractional mixed parabolic-hyperbolic equations. Also in [15] authors investigated an

inverse problem of determining diffusion coefficient in the diffusion-wave equation. In this

work, we employ a spectral method with Jacobi polynomials as the basis functions. The

main advantage of using Jacobi polynomials is to reduce the considered inverse problem

to a system of linear algebraic equations which can be solved easily using the existing
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well-developed methods. It should be noted that the Jacobi polynomials include a variant

class of orthogonal polynomials by considering different values for Jacobi parameters.

This paper is organized as follows: In Section 2, we give some preliminaries and basic

properties of the SJPs. The analytical solution of the direct problem is presented in

Section 3. In Section 4, an approximation of the unknown source function is given by

using the SJPs. Section 5 is devoted to giving an error bound for the approximation of

the unknown source function. In Section 6 numerical examples are provided. Finally,

conclusion is given in Section 7.

2. Some useful preliminaries

In this section, we give some useful definitions and preliminaries which will be used further

in this paper.

The one commonly used definition of fractional calculus is definition of the Caputo

derivative.

Definition 2.1. The Caputo derivative of a function f(t) is defined by

Dµ
t f(t) =


1

Γ(n− µ)

∫ t

0
(t− s)n−µ−1 d

n

dsn
f(s) ds, if n− 1 < µ < n,

f (n)(t), if µ = n,

where Γ(µ) is the gamma function defined as

Γ(µ) =

∫ ∞
0

tµ−1e−t dt.

Definition 2.2. The Jacobi polynomials are defined by

P
(α,β)
i (x) =

(−1)i

2ii!
(1− x)−α(1 + x)−β

dn

dxn

[
(1− x)α(1 + x)β(1− x2)i

]
,

for parameters α, β > −1 and i ≥ 0.

These polynomials are solutions to the Jacobi differential equation as

(1− x2)y′′ + [β − α− (α+ β + 2)x]y′ + i(i+ α+ β + 1)y = 0.

In some special cases, the Jacobi polynomials give some other so-called polynomials. In

the case α = β = 0, the Legendre polynomials are given. For α = β = −1/2, the first kind

Chebyshev polynomials are obtained and we get the second kind Chebyshev polynomials

if α = β = 1/2.

The set of Jacobi polynomials, {P (α,β)
i (x)}∞i=0, represents an orthogonal basis for the

Hilbert space L2[−1, 1] with respect to the weight function

w(α,β)(x) = (1− x)α(1 + x)β,
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in such a way that∫ 1

−1
w(α,β)(x)P

(α,β)
i (x)P

(α,β)
j (x) dx = δij

2α+β+1Γ(i+ α+ 1)Γ(i+ β + 1)

(2i+ α+ β + 1)Γ(i+ α+ β + 1)Γ(i+ 1)
,

where δij is the Kronecker delta.

The well-known SJPs on [0, L] are defined by

P
(α,β)
L,i (x) = P

(α,β)
i

(
2

L
x− 1

)
, i = 0, 1, 2, . . . ,

and have the following explicit analytic form [2]

(2.1) P
(α,β)
L,i (x) =

i∑
k=0

(−1)i−k
Γ(i+ β + 1)Γ(i+ k + α+ β + 1)

Γ(k + β + 1)Γ(i+ α+ β + 1)(i− k)!k!Lk
xk.

Taking into consideration (2.1), it is turned out that for all acceptable values of α and β,

we have the following properties:

P
(α,β)
L,0 (x) = 1, P

(α,β)
L,i (0) = (−1)i

Γ(i+ β + 1)

Γ(β + 1)i!
, P

(α,β)
L,i (L) =

Γ(i+ α+ 1)

Γ(α+ 1)i!
.

Also, the orthogonality property is satisfied for these polynomials as follows∫ L

0
w

(α,β)
L (x)P

(α,β)
L,i (x)P

(α,β)
L,j (x) dx = δijh

(α,β)
L,i ,

where

w
(α,β)
L (x) = w(α,β)

(
2

L
x− 1

)
and h

(α,β)
L,i =

L2α+βΓ(i+ α+ 1)Γ(i+ β + 1)

(2i+ α+ β + 1)Γ(i+ α+ β + 1)Γ(i+ 1)
.

A function f(t) in L2[0, τ ] (the space of all square integrable functions with respect to

the shifted Jacobi weight function w
(α,β)
τ (t)) may be approximated in terms of the SJPs

as

(2.2) f(t) '
N∑
i=0

fiP
(α,β)
τ,i (t) = F Tφτ (t),

where

f = [f0, f1, . . . , fN ]T and φτ (t) =
[
P

(α,β)
τ,0 (t), P

(α,β)
τ,1 (t), . . . , P

(α,β)
τ,N (t)

]T
.

The coefficients fi in (2.2) are given by

fi =
1

h
(α,β)
τ,i

∫ τ

0
w(α,β)
τ (t)f(t)P

(α,β)
τ,i (t) dt, i = 0, 1, 2, . . . .
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Definition 2.3. Two parameter Mittag-Leffler function is defined as [19]

Ea,b(z) =
∞∑
k=0

zk

Γ(b+ ak)
.

Lemma 2.4. For the derivative of the Mittag-Leffler function Ea,b(z), it holds [19]

Dµ
t

(
tak+b−1E

(k)
a,b (λta)

)
= tak+b−µ−1E

(k)
a,b−µ(λta),

where µ is any arbitrary real number and E
(k)
a,b (z) = dk

dzk
Ea,b(z).

3. Analytical solution of the direct problem

Consider the problem (1.1)–(1.3) with the known source function g(t). In this section,

we represent the solution of this direct problem by using the method of separation of

variables [5]. Suppose that the formal solution of (1.1)–(1.3) is of the form

(3.1) u(x, t) =
∞∑
n=1

Gn(t) sin
(nπ
L
x
)
.

Also, let

f(x) =

∞∑
n=1

fn sin
(nπ
L
x
)
,

be the Fourier sine series of f(x), where

fn =
2

L

∫ L

0
f(x) sin

(nπ
L
x
)
dx.

By substituting (3.1) into (1.1), we get

(3.2)
∞∑
n=1

(
∂µGn(t)

∂tµ
+
(nπ
L

)2
Gn(t)

)
sin
(nπ
L
x
)

=
∞∑
n=1

fng(t) sin
(nπ
L
x
)
.

To get the unknown coefficients Gn(t) in (3.2), we consider the following non-homogeneous

equation

(3.3)
∂µGn(t)

∂tµ
+
(nπ
L

)2
Gn(t) = fng(t), n = 1, 2, . . . .

The general solution of (3.3) is as

(3.4) Gn(t) = any0n(t) + bny1n(t) + yn(t),

where

(3.5) yn(t) = fn

∫ t

0
sµ−1Eµ,µ

(
−
(nπ
L

)2
sµ
)
g(t− s) ds,
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and

y0n(t) = 1−
(nπ
L

)2
tµEµ,µ+1

(
−
(nπ
L

)2
tµ
)
,

y1n(t) = t−
(nπ
L

)2
tµ+1Eµ,µ+2

(
−
(nπ
L

)2
tµ
)
.

Also, the coefficients an and bn in (3.4) can be determined according to the initial condi-

tions (1.2). Thus, we get

an =
2

L

∫ L

0
f0(x) sin

(nπ
L
x
)
dx, bn =

2

L

∫ L

0
f1(x) sin

(nπ
L
x
)
dx.

4. Determination of the unknown source function

Suppose that the unknown source function g(t) in (1.4) has an approximation in terms of

the SJPs as follows

(4.1) g(t) ' gN (t) =
N∑
j=0

cjP
(α,β)
τ,j (t) = XTφτ (t),

where the coefficients cj , j = 0, 1, 2, . . . , N are unknown and

X = [c0, c1, . . . , cN ]T .

We substitute (4.1) into (3.5) and obtain

yn(t) ' fn
∫ t

0
sµ−1Eµ,µ

(
−
(nπ
L

)2
sµ
) N∑
j=0

cjP
(α,β)
τ,j (t− s) ds

=
N∑
j=0

cjfn

∫ t

0
sµ−1Eµ,µ

(
−
(nπ
L

)2
sµ
)
P

(α,β)
τ,j (t− s) ds.

Let us define

rn,j(t, s) = sµ−1Eµ,µ

(
−
(nπ
L

)2
sµ
)
P

(α,β)
τ,j−1(t− s),

then we have

(4.2) yn(t) '
N+1∑
j=1

cj−1fn

∫ t

0
rn,j(t, s) ds.

Using the additional condition (1.5) and equations (3.1) and (3.4), we get

(4.3)
∞∑
n=1

[any0n(t) + bny1n(t) + yn(t)] sin
(nπ
L
x0

)
= q(t).
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Substituting (4.2) into (4.3) yields

∞∑
n=1

N+1∑
j=1

cj−1fn

∫ t

0
rn,j(t, s) ds

 sin
(nπ
L
x0

)

' q(t)−
∞∑
n=1

[any0n(t) + bny1n(t)] sin
(nπ
L
x0

)
.

(4.4)

By collocating the equation (4.4) at N + 1 points t = ti and replacing the infinite upper

bound of the first summation with a finite positive integer number k > 1 we obtain

k∑
n=1

N+1∑
j=1

cj−1fn

∫ ti

0
rn,j(ti, s) ds sin

(nπ
L
x0

)

' q(ti)−
k∑

n=1

[any0n(ti) + bny1n(ti)] sin
(nπ
L
x0

)
,

(4.5)

where

ti =
i

N + 2
τ, i = 1, 2, . . . , N + 1.

Gauss-Legendre integration formula is used in order to compute the integral part of the

equation (4.5), so we have

N+1∑
j=1

cj−1

k∑
n=1

fn
ti
2

m∑
l=1

wlrn,j

(
ti,
ti
2

(1 + sl)

)
sin
(nπ
L
x0

)

= q(ti)−
k∑

n=1

[any0n(ti) + bny1n(ti)] sin
(nπ
L
x0

)
, i = 1, 2, . . . , N + 1,

(4.6)

where sl are zeros of the Legendre polynomial of degree m and wl are the corresponding

weights. Finally, by considering

B =


q(t1)−

∑k
n=1[any0n(t1) + bny1n(t1)] sin

(
nπ
L x0

)
q(t2)−

∑k
n=1[any0n(t2) + bny1n(t2)] sin

(
nπ
L x0

)
...

q(tN+1)−
∑k

n=1[any0n(tN+1) + bny1n(tN+1)] sin
(
nπ
L x0

)

 ,

and

A = [aij ](N+1)×(N+1)

with

aij =
k∑

n=1

fn
ti
2

m∑
l=1

wlrn,j

(
ti,
ti
2

(1 + sl)

)
sin
(nπ
L
x0

)
, i, j = 1, 2, . . . N + 1,
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the equation (4.6) can be rewritten as

(4.7) AX = B.

By solving this system, the approximate values of the unknown coefficients are obtained

and therefore an approximation of the unknown source function, g(t), is given. In our im-

plementation, we have solved this system using the Mathematica function “LinearSolve”.

The elements of the vector B in the system (4.7) come from the overspecified condi-

tions (1.5). This condition is obtained from practical measurements that are inherently

contaminated with random noise. On the other hand, due to the ill-posedness of this

inverse problem, (4.7) is ill-conditioned. Hence, some special regularization methods are

required to obtain an accurate approximation. Here, the Tikhonov regularization method

is applied for finding the solution of this system. By this technique, we have a minimization

problem [24] as

min
X∈Rs

‖AX −B‖2 + γ‖X‖2,

where γ > 0 is a regularization parameter. Different methods are presented by authors in

the literature to determine the regularization parameter. We use the discrepancy principle

[8, 12]. In this principle, we have

X = A−1Bδ and Xγ = (ATA+ γI)−1ATBδ,

where Bδ is perturbed vector and AT is the transpose of the matrix A. The regularization

parameter defined by discrepancy principle is

(4.8) γ = sup{γ > 0 | ‖AXγ −Bδ‖ ≤ τδ},

where τ > 1 is a constant. For more details refer to [8]. In this work, we use the procedure

described in [12] to choose an appropriate regularization parameter. The algorithm starts

with some very small γ and increases it by multiplying with some constant, when the

condition in the supremum of (4.8) is still valid. It repeats the step until the condition is

no longer valid [12,23].

5. Error bound

In this section, we are concerned with the error bound for the approximation of the

unknown source term obtained by presented method in the previous section.

Suppose that g(t) is a sufficiently smooth function on [0, τ ] and pN (t) is the interpolat-

ing polynomial to g at points ti, where ti, i = 0, 1, . . . , N , are the roots of the N+1-degree

shifted first-kind Chebyshev polynomial in [0, τ ], then we have

g(t)− pN (t) =
g(N+1)(η)

(N + 1)!

N∏
i=0

(t− ti), η ∈ [0, τ ].
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So, we get

(5.1) |g(t)− pN (t)| ≤ MN (τ)N+1

22N+1(N + 1)!
,

with MN = max0≤t≤τ |g(N+1)(t)|.
Now, we use (5.1) to obtain the following result.

Theorem 5.1. Suppose that the unknown source function g(t) in equation (1.1) is a

real (N + 1)-times continuously differentiable function on the bounded interval [0, τ ] and

gN (t) =
∑N

i=0 ciP
(α,β)
τ,i (t) be the SJPs expansion of g. Let gN (t) =

∑N
i=0 ciP

(α,β)
τ,i (t)

be the approximate solution obtained by the method proposed in Section 4 and MN =

max0≤t≤τ |g(N+1)(t)|, then, there exist real numbers Kα,β
τ and κα,βτ such that

(5.2) ‖g(t)− gN (t)‖2 ≤ Kα,β
τ

MN (τ)N+1

22N+1(N + 1)!
+ κα,βτ ‖C − C‖2,

where

C = [c0, c1, . . . , cN ]T , C = [c0, c1, . . . , cN ]T ,

and the norm on the right-hand side is the usual Euclidian norm for vectors.

Proof. Let RN [t] be the space of all real-valued polynomials of degree ≤ N . Using the

definition, gN (t) and gN (t) are in RN [t]. Also, gN (t) is the best approximation of g(t) in

RN [t]. We have

(5.3) ‖g(t)− gN (t)‖2 ≤ ‖g(t)− gN (t)‖2 + ‖gN (t)− gN (t)‖2.

Taking (5.1) into consideration, we obtain

‖g(t)− gN (t)‖2 =

(∫ τ

0
w(α,β)
τ (t)|g(t)− gN (t)|2 dt

)1/2

≤

(∫ τ

0
w(α,β)
τ (t)

[
MN (τ)N+1

22N+1(N + 1)!

]2

dt

)1/2

=
MN (τ)N+1

22N+1(N + 1)!

(∫ τ

0
w(α,β)
τ (t) dt

)1/2

=
√

2α+βτB(α+ 1, β + 1)
MN (τ)N+1

22N+1(N + 1)!
,

(5.4)

where B(a, b) is the Beta function defined by

B(a, b) =

∫ 1

0
sa−1(1− s)b−1 ds.
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Furthermore, we get

‖gN (t)− gN (t)‖2 =

∫ τ

0
w(α,β)
τ (t)

[
N∑
i=0

(ci − ci)P (α,β)
τ,i (t)

]2

dt

1/2

≤

(∫ τ

0
w(α,β)
τ (t)

[
N∑
i=0

|ci − ci|2
][

N∑
i=0

|P (α,β)
τ,i (t)|2

]
dt

)1/2

=

(
N∑
i=0

|ci − ci|2
)1/2( N∑

i=0

∫ τ

0
w(α,β)
τ (t)|P (α,β)

τ,i (t)|2 dt

)1/2

= ‖C − C‖2

(
N∑
i=0

h
(α,β)
τ,i

)1/2

.

(5.5)

Therefore, from (5.3)–(5.5) it is seen that (5.2) is valid with

Kα,β
τ =

√
2α+βτB(α+ 1, β + 1), κα,βτ =

√√√√ N∑
i=0

h
(α,β)
τ,i .

6. Numerical examples

In this section, three numerical examples are carried out to illustrate the applicability

and accuracy of the proposed method. To simulate the data for the inverse problem some

random noises are added to the additional data resulted from the function q(t) in the

overspecified condition (1.5). Suppose that δ indicates a relative noise level in the data

functions. Then, for generating noisy data, we use the formula

qδ(ti) = q(ti)(1 + δ × rand(i)),

where rand(i) is a random number uniformly distributed in [−1, 1].

Example 6.1. Consider the equation (1.1) with g(t) = πt
(
πtµ + csc(πµ)/Γ(−1 − µ)

)
,

f(x) = sin(πx) and zero initial and boundary conditions. By this assumptions, the prob-

lem (1.1)–(1.3) has the solution u(x, t) = tµ+1 sin(πx). Also, suppose that x∗ = 0.5.

We have used the proposed method to approximate the function g(t). Table 6.1 dis-

plays the condition number (CN) of the matrix A in (4.7) and the L2 norm of the error in

computing the unknown source function g(t) for different values of N and µ = 1.5 when

there is no noise in data and we do not use the regularization scheme. The results confirm

the accuracy of the numerical approach in the absence of noise. Also, this table shows
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that the growth order of condition number A with respect to N is more than 2.

α = β = 0 α = β = 0.5 α = β = −0.5

N Error CN Error CN Error CN

2 3.07× 10−1 18.3016 2.07× 10−1 12.2834 5.51× 10−1 35.2218

4 1.23× 10−2 198.817 7.34× 10−3 108.280 2.50× 10−2 465.121

6 3.31× 10−3 1513.71 1.92× 10−3 720.530 7.12× 10−3 3985.56

8 1.77× 10−3 9729.93 1.11× 10−3 4206.87 3.68× 10−3 27870.0

Table 6.1: L2-norm errors and condition numbers for Example 6.1 when µ = 1.5.

Figure 6.1 shows the behaviour of numerical approximations to g(t) with regularization

and without regularization for α = β = 0 and various noise levels δ = 1%, 5%, 10%, 15%.

Finally, the approximate values of g(t) obtained based on various parameters of Jacobi

polynomials are compared in Figure 6.2.
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Figure 6.1: Plot of the function g(t) (Green) and the numerical results for it when µ =

1.5, α = β = 0 and N = 16 for Example 6.1: without regularization (Red) and with

regularization (Blue).
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Figure 6.2: The exact and numerical values of the source function g(t) in Example 6.1

when µ = 1.5 and N = 14, for different values of the parameters α and β: α = β = 0.5

(Red), α = β = 0 (Brown), α = β = −0.5 (Blue), α = 0.5, β = −0.5 (Purple).

Example 6.2. In this example, we observe the following inverse problem:

∂µu(x, t)

∂tµ
=
∂2u(x, t)

∂x2
+ g(t) sin(πx), (x, t) ∈ Ω = [0, 1]× [0, 1],

u(x, 0) = sin(πx), 0 < x < 1,

ut(x, 0) = sin(πx), 0 < x < 1,

u(0, t) = 0, u(1, t) = 0, 0 < t < 1,

u(x∗, t) = sin(πx∗)et, 0 < t < 1.

This problem has the exact solution u(x, t) = sin(πx)et and

g(t) = et
(

1 + π2 − Γ(2− µ, t)
Γ(2− µ)

)
,

in which Γ(a, t) is the incomplete gamma function defined by

Γ(a, t) =

∫ ∞
t

sa−1e−s ds.

Let x∗ = 0.4. We have applied the proposed method to this problem with different

values of N and also with different noise levels. Figure 6.3 shows the instability of the
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numerical approximations to g(t) for different noise levels, when no regularization scheme

is applied to the algorithm. Figure 6.4 indicates the relative errors of the estimations to

g(t) according to various parameters of Jacobi polynomials when the noise level is 10% or

20%. Finally, the numerical approximations of the source term related to several values

of the fractional order µ are depicted in Figure 6.5.
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Figure 6.3: Plot of the function g(t) (Green) and the numerical results for it when µ =

1.7, α = β = 0 and N = 10 for Example 6.2: without regularization (Red) and with

regularization (Blue).
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Figure 6.4: The relative errors of the estimated source function g(t) in Example 6.2 when

µ = 1.7 and N = 12, for different values of the parameters α and β.
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Figure 6.5: The numerical approximations to g(t) for several values of µ in Example 6.2

obtained from the proposed method with the parameters α = β = −0.5, N = 10 and

δ = 0.05.

Example 6.3. Let us consider the equation (1.1) with L = τ = 1, f(x) = sin(πx),

g(t) = t−µEµ,1−µ(−tµ) + π2Eµ,1(−tµ)−
(
t−µ/Γ(1− µ)

)
, and the initial functions f0(x) =

sin(πx) and f1(x) = 0. Figure 6.6 displays the estimations of the unknown source term

obtained based on Jacobi polynomials with the various values of α and β. Figure 6.7

shows the behaviour of numerical approximations to g(t) with regularization and without

regularization, for several percentage of noise levels. Also, Figure 6.8 indicates the relative

errors of the estimations to g(t) for numerous values of N when the noise level is 10%.
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Figure 6.6: The estimated source function g(t) in Example 6.3 when µ = 1.3, N = 16 and

x∗ = 0.7, for different values of the parameters α and β.
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Figure 6.7: Plot of the function g(t) (Green) and the numerical results for it when x∗ = 0.5,

µ = 1.5, α = 0.5, β = −0.5 and N = 14 for Example 6.3: without regularization (Red)

and with regularization (Blue).
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Figure 6.8: The relative errors of the estimated source function g(t) in Example 6.3 when

µ = 1.7, x∗ = 0.3 and α = β = 0.5, for different values of N .

From the numerical experiments for Examples 6.1, 6.2 and 6.3, specially Figures 6.1,

6.3 and 6.7, it can be observed that the approximations to g(t) without regularization

have some oscillations. It illustrates ill-posedness of this type of time fractional inverse

problems even in the presence of small noise in input data. Hence, to find stable solution
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for the problem, combining the presented spectral method based on Jacobi polynomials

with the proposed regularization technique, is a useful idea. The numerical results verify

that the obtained solutions are stable and accurate even up to 15% or 20% noise in the

additional condition.

7. Conclusion

In this article, we applied a numerical method based on the Jacobi polynomials to find the

unknown source function in a time-fractional diffusion-wave equation. First, the analytical

solution of the direct problem has been reviewed, then we have proposed a method to find

an approximation of the unknown source function by considering this function in the form

of a linear combination of the shifted Jacobi polynomials. A system of linear equations

was constructed to obtain the coefficients of this combination. Since this inverse problem

is generally ill-posed, the Tikhonov regularization technique with Morozov’s discrepancy

principle was applied to find a stable solution of this system. This proposed method is

quite different essentially from those methods in literature, as it approximates the unknown

source function spectrally in terms of a series of the shifted Jacobi polynomials. As it was

mentioned, Legendre polynomials and Chebyshev polynomials of the first and second kind

can be viewed as special cases of the Jacobi polynomials. The main characteristic behind

this approach is to reduce such inverse problems to those of solving systems of algebraic

equations in the unknown expansion coefficients of the unknown source function. An

error bound has been given for the approximation of the unknown source function. The

numerical results show that the proposed method in this paper is a reliable method to

find an approximation of the unknown source function.
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