An Analytic Version of Wiener-Itô Decomposition on Abstract Wiener Spaces

Yuh-Jia Lee and Hsin-Hung Shih*

In memory of Professor Hwai-Chiuan Wang

Abstract. In this paper, we first establish an analogue of Wiener-Itô theorem on finite-dimensional Gaussian spaces through the inverse S-transform, that is, the Gauss transform on Segal-Bargmann spaces. Based on this point of view, on infinite-dimensional abstract Wiener space (H,B), we apply the analyticity of the S-transform, which is an isometry from the L^2 -space onto the Bargmann-Segal-Dwyer space, to study the regularity. Then, by defining the Gauss transform on Bargmann-Segal-Dwyer space and showing the relationship with the S-transform, an analytic version of Wiener-Itô decomposition will be obtained.

1. Introduction

The Wiener-Itô theorem is an important result concerning an orthogonal decomposition of the Hilbert space of square integrable functions on a Gaussian space. It was first proved in 1938 by N. Wiener [19] in terms of homogeneous chaos. It is a natural question to find an explicit description concerning homogeneous chaos. About this decomposition theorem, K. Itô [8] in 1951 provided a different proof from N. Wiener. In that paper, Itô defined multiple Wiener integrals, and shown that there is a one-to-one correspondence between the homogeneous chaoses and multiple Wiener integrals.

In [11], Lee studied the regularity of the heat semigroup generated from the abstract Wiener measure p_t on an abstract Wiener space (AWS, in short) (H, B). It was shown that the convolution $p_t * f$ is infinitely Fréchet differentiable for $f \in L_c^{\alpha}(B, p_t)$ with $\alpha > 1$. Further, Lee [12] applied the results concerning regularity of $p_t * f$ to show that there is one-to-one correspondence between the homogeneous chaoses of order n and the space of the Gauss transforms of n-linear continuous Hilbert-Schmidt operators on the complexification H_c of H. In that paper, Lee did not apply the analyticity of $p_t * f$ to study the regularity.

Received May 8, 2018; Accepted December 10, 2018.

Communicated by Xiang Fang.

2010 Mathematics Subject Classification. Primary: 60B11, 46E20, 46E50; Secondary: 28C20.

Key words and phrases. abstract Wiener space, abstract Wiener measure, Wiener-Itô decomposition, Segal-Bargmann transform, Gauss transform.

This research was supported by the Ministry of Science and Technology of Taiwan.

^{*}Corresponding author.

In infinite-dimensional Gaussian analysis, the semigroup $p_t * f$ plays the role of the S-transform of f, which provides an isometric link between the L^2 -space and the Bargmann-Segal-Dwyer spaces. If H is finite-dimensional, a well-known fact is that the Taylor expansion of an Bargmann analytic function is an orthogonal decomposition with respect to the Gauss measure on the complex Euclidean space. Then the Wiener-Itô decomposition is immediately achieved by taking the inverse S-transform, that is, the Gauss transform.

In this paper, we first study the relationship between the S-transform, the Gauss transform and Hermite polynomials in order to establish the analogue of Wiener-Itô theorem on finite-dimensional Gaussian spaces in Section 2. Our basic idea is to consider the S-transform of an L^2 -function, and then expand it into a Taylor series; finally the analogue of Wiener-Itô decomposition is obtained by taking the Gauss transform. In Section 3, we review some basic properties of AWS. For the S-transform and Gauss transform, we will study in Sections 4 and 5. It is worth noting that every L^2 -function on a general infinite-dimensional AWS can be regarded as an L^2 -limit of a sequence of cylinder functions by taking the conditional expectation (see Lemma 3.4). Based on this point of view, we will apply the results obtained in Section 2 to cylinder functions, and then use Lemma 3.4 to arrive at the desired Wiener-Itô theorem on (H, B) in Section 5. And, by defining the Gauss transform on Bargmann-Segal-Dwyer space and showing the relationship with the S-transform, the Wiener-Itô decomposition will be expressed in terms of the Gauss transform in Theorem 5.3.

Notations. Throughout this paper, we always use boldface to represent multi-indices, and elements in multi-dimensional real or complex Euclidean spaces, or to emphasize elements in the complexification of a real locally convex space. In addition, we list some of shorthand notations that are often used in this paper.

(1) For a real locally convex space V, V_c denotes its complexification. If V is a real Hilbert space endowed with $\|\cdot\|_V$ -norm induced by the inner product $\langle\langle\cdot,\cdot\rangle\rangle_V$, then V_c is a complex Hilbert space with the $\|\cdot\|_{V_c}$ -norm given by $\|\phi_1+\mathrm{i}\phi_2\|_{V_c}^2=\|\phi_1\|_V^2+\|\phi_2\|_V^2$ induced by the inner product defined by $\langle\langle\phi_1+\mathrm{i}\phi_2,\psi_1+\mathrm{i}\psi_2\rangle\rangle_{V_c}=\langle\langle\phi_1,\psi_1\rangle\rangle_V+\langle\langle\phi_2,\psi_2\rangle\rangle_V+\mathrm{i}(\langle\langle\phi_2,\psi_1\rangle\rangle_V-\langle\langle\phi_1,\psi_2\rangle\rangle_V)$ for any ϕ_1,ϕ_2,ψ_1 and ψ_2 in V. In addition, we define $(\cdot,\cdot)_{V_c}$ on $V_c\times V_c$ as a bilinear form given by

$$(\phi_1 + i\phi_2, \psi_1 + i\psi_2)_{V_c} = \langle \langle \phi_1, \psi_1 \rangle \rangle_V - \langle \langle \phi_2, \psi_2 \rangle \rangle_V + i(\langle \langle \phi_2, \psi_1 \rangle \rangle_V + \langle \langle \phi_1, \psi_2 \rangle \rangle_V).$$

If $V = \mathbb{R}^k$, $V_c = \mathbb{C}^k$ endowed with the dot product in this paper.

(2) If T is an n-linear operator on $X \times \cdots \times X$ (n-times) (X = V or V_c), $Tx_1 \cdots x_n$ means $T(x_1, \ldots, x_n)$ for $x_1, \ldots, x_n \in X$, and if $x_1 = \cdots = x_n = x$, we write $Tx \cdots x$ as Tx^n .

Let \mathbb{N}_0 be the set of all nonnegative integers. For any multi-index $\boldsymbol{\alpha} = (n_1, \dots, n_k) \in \mathbb{N}_0^k$ and $\mathbf{z} = (z_1, \dots, z_k) \in \mathbb{C}^k$, define

(3)
$$|\alpha| = n_1 + \cdots + n_k, \; \alpha! = n_1! \cdots n_k!,$$

$$(4) \mathbf{z}^{\boldsymbol{\alpha}} = z_1^{n_1} \cdots z_k^{n_k}.$$

Similarly, we define the differential operator $\left(\frac{\partial}{\partial \mathbf{x}}\right)^{\alpha}$ by

(5)
$$\left(\frac{\partial}{\partial \mathbf{x}}\right)^{\alpha} = \left(\frac{\partial}{\partial x_1}\right)^{n_1} \cdots \left(\frac{\partial}{\partial x_k}\right)^{n_k}$$
 for $\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{R}^k$ or \mathbb{C}^k .

2. Finite-dimensional Gaussian space

Let $\mu_1(du)$ be the standard Gaussian measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ with mean 0 and variance 1. Apply the orthogonalization procedure to the monomials $\{1, u, u^2, \ldots, u^n, \ldots\}$ in $L_c^2(\mathbb{R}, \mu_1)$, in this order, to get Hermite polynomials $\{H_0(u), H_1(u), \ldots, H_n(u), \ldots\}$. Here H_n is a polynomial of degree n with leading coefficient 1, and the generating function of $\{H_n\}$ is given by

(2.1)
$$\sum_{n=0}^{\infty} \frac{H_n(u)}{n!} z^n = e^{uz - \frac{1}{2}z^2}, \quad \forall u \in \mathbb{R}, \ z \in \mathbb{C}.$$

And, by substituting the formula $e^{-\frac{1}{2}z^2} = \int_{-\infty}^{\infty} e^{izv} \mu_1(dv)$, $i = \sqrt{-1}$ and $z \in \mathbb{C}$, into (2.1), we have

(2.2)
$$\sum_{n=0}^{\infty} \frac{H_n(u)}{n!} z^n = \sum_{n=0}^{\infty} \frac{z^n}{n!} \int_{-\infty}^{\infty} (u + iv)^n \mu_1(dv), \quad \forall u, z \in \mathbb{C}.$$

For other related properties, we refer the reader to [17].

Let $\mu_r(d\mathbf{v}), r > 0$, be the Gaussian measure on $(\mathbb{R}^k, \mathscr{B}(\mathbb{R}^k))$ given by

$$\boldsymbol{\mu}_r(d\mathbf{v}) = (\sqrt{2\pi r})^{-k} e^{-\frac{1}{2r}\mathbf{v}\cdot\mathbf{v}} d\mathbf{v},$$

where $d\mathbf{v}$ denotes k-dimensional Lebesgue measure on \mathbb{R}^k . Note that $(\mathbb{R}^k, \mathscr{B}(\mathbb{R}^k), \boldsymbol{\mu}_1)$ is the product measure space $(\mathbb{R}, \mathscr{B}(\mathbb{R}), \mu_1) \times \cdots \times (\mathbb{R}, \mathscr{B}(\mathbb{R}), \mu_1)$. For any multi-index $\boldsymbol{\alpha} = (n_1, \dots, n_k) \in \mathbb{N}_0^k$ and $\mathbf{u} = (u_1, \dots, u_k) \in \mathbb{R}^k$, set the shorthand notation

$$H_{\boldsymbol{\alpha}}(\mathbf{u}) = H_{n_1}(u_1) \cdots H_{n_k}(u_k).$$

Comparing the coefficients on both sides of (2.2) yields that

(2.3)
$$H_{\alpha}(\mathbf{u}) = \int_{\mathbb{R}^k} (\mathbf{u} + i\mathbf{v})^{\alpha} \, \boldsymbol{\mu}_1(d\mathbf{v}), \quad \forall \, \alpha \in \mathbb{N}_0^k, \, \mathbf{u} \in \mathbb{R}^k,$$

and then, through direct calculation,

(2.4)
$$\int_{\mathbb{R}^k} H_{\alpha}(\mathbf{v}) H_{\beta}(\mathbf{v}) \, \boldsymbol{\mu}_1(d\mathbf{v}) = \delta_{\alpha,\beta} \cdot \boldsymbol{\alpha}!,$$

where $\delta_{\alpha,\beta} = 1$ as $\alpha = \beta$; otherwise, 0.

2.1. The S-transform on
$$L_c^2(\mathbb{R}^k, \boldsymbol{\mu}_1)$$

Let $\phi \in L^2_c(\mathbb{R}^k, \boldsymbol{\mu}_1)$ be arbitrarily given. The S-transform $S\phi$ of ϕ is a complex-valued function on \mathbb{R}^k defined by $S\phi(\mathbf{u}) = \boldsymbol{\mu}_1 * \phi(\mathbf{u})$, $\mathbf{u} \in \mathbb{R}^k$, where $\boldsymbol{\mu}_1 * \phi$ is the convolution of ϕ with $\boldsymbol{\mu}_1$. It is easily seen by checking their characteristic functions that $\boldsymbol{\mu}_1(d\mathbf{v} - \mathbf{u}) = e^{\mathbf{v} \cdot \mathbf{u} - \frac{1}{2}|\mathbf{u}|^2} \boldsymbol{\mu}_1(d\mathbf{v})$ for any $\mathbf{u} \in \mathbb{R}^k$. Then we can immediately extend the definition of the S-transform of ϕ to \mathbb{C}^k , still denoted by $S\phi$, by

$$S\phi(\mathbf{z}) = \int_{\mathbb{R}^k} \phi(\mathbf{v}) e^{(\mathbf{v}, \mathbf{z}) - \frac{1}{2}(\mathbf{z}, \mathbf{z})} \, \boldsymbol{\mu}_1(d\mathbf{v}), \quad \forall \, \mathbf{z} \in \mathbb{C}^k,$$

where (\cdot,\cdot) represents $(\cdot,\cdot)_{\mathbb{C}^k}$. By applying Hartogs' theorem (see [2]), $S\phi(\mathbf{z})$ is a holomorphic function of $\mathbf{z} \in \mathbb{C}^k$; therefore, it enjoys the Taylor series expansion

(2.5)
$$S\phi(\mathbf{z}) = \sum_{\alpha \in \mathbb{N}_n^k} \frac{\mathbf{z}^{\alpha}}{\alpha!} \left(\frac{\partial}{\partial \mathbf{z}}\right)^{\alpha} S\phi(\mathbf{0}), \quad \forall \, \mathbf{z} \in \mathbb{C}^k.$$

For any $\mathbf{u} \in \mathbb{R}^k$ and $\mathbf{z} \in \mathbb{C}^k$, it follows from (2.1) that

$$e^{(\mathbf{u},\mathbf{z})-\frac{1}{2}(\mathbf{z},\mathbf{z})} = \sum_{\boldsymbol{\alpha} \in \mathbb{N}_0^k} \frac{H_{\boldsymbol{\alpha}}(\mathbf{u})}{\boldsymbol{\alpha}!} \mathbf{z}^{\boldsymbol{\alpha}}.$$

Let $\mathbf{z} \in \mathbb{C}^k$ be fixed and consider both sides of the above formula as a function of \mathbf{u} . Observe that $\sum_{\boldsymbol{\alpha} \in \mathbb{N}_0^k} \frac{|\mathbf{z}^{\boldsymbol{\alpha}}|^2}{\boldsymbol{\alpha}!} = e^{|\mathbf{z}|^2}$ is finite. Then, by (2.4),

$$e^{(\cdot,\mathbf{z})-\frac{1}{2}(\mathbf{z},\mathbf{z})} = \sum_{\boldsymbol{lpha} \in \mathbb{N}_0^k} \frac{\mathbf{z}^{\boldsymbol{lpha}}}{\boldsymbol{lpha}!} H_{\boldsymbol{lpha}} \quad \text{in } L_c^2(\mathbb{R}^k, \boldsymbol{\mu}_1),$$

and thus

(2.6)
$$S\phi(\mathbf{z}) = \sum_{\alpha \in \mathbb{N}_0^k} \frac{\mathbf{z}^{\alpha}}{\alpha!} \int_{\mathbb{R}^k} \phi(\mathbf{u}) H_{\alpha}(\mathbf{u}) \, \boldsymbol{\mu}_1(d\mathbf{u}).$$

Compare (2.5) with (2.6) to get that

(2.7)
$$\int_{\mathbb{R}^k} \phi(\mathbf{u}) H_{\alpha}(\mathbf{u}) \, \boldsymbol{\mu}_1(d\mathbf{u}) = \left(\frac{\partial}{\partial \mathbf{z}}\right)^{\alpha} S\phi(\mathbf{0}), \quad \forall \, \boldsymbol{\alpha} \in \mathbb{N}_0^k.$$

2.2. The Segal-Bargmann space of \mathbb{C}^k

A Bargmann analytic function defined on \mathbb{C}^k , introduced in [1], is a holomorphic function, which is square-integrable with respect to the Gaussian measure μ_r , r > 0, on $(\mathbb{C}^k, \mathscr{B}(\mathbb{C}^k))$, $\mu_r(d\mathbf{z})$ being given by

$$\boldsymbol{\mu}_r(d\mathbf{z}) = (\sqrt{2\pi r})^{-k} e^{-\frac{1}{2r}\mathbf{z}\cdot\mathbf{z}} d\mathbf{z},$$

where $d\mathbf{z}$ denotes 2k-dimensional Lebesgue measure on \mathbb{C}^k . Denote the class of Bargmann analytic functions defined above by $\mathcal{K}^r(\mathbb{C}^k)$, called the Segal-Bargmann space of \mathbb{C}^k (see [6]). One notes that $\mathcal{K}^r(\mathbb{C}^k)$ is a complex separable Hilbert space with $\|\cdot\|_{\mathcal{K}^r(\mathbb{C}^k)}$ -norm induced by the inner product $\langle\!\langle \cdot\,,\cdot\,\rangle\!\rangle_{\mathcal{K}^r(\mathbb{C}^k)}$ defined by

$$\langle\!\langle F,G \rangle\!\rangle_{\mathcal{K}^r(\mathbb{C}^k)} = \int_{\mathbb{C}^k} F(\mathbf{z}) \overline{G(\mathbf{z})} \, \boldsymbol{\mu}_r(d\mathbf{z}).$$

For any $F \in \mathcal{K}^r(\mathbb{C}^k)$, it enjoys the Taylor expansion $\sum_{\boldsymbol{\alpha} \in \mathbb{N}_0^k} \frac{\mathbf{z}^{\boldsymbol{\alpha}}}{\boldsymbol{\alpha}!} \left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} F(\mathbf{0})$, and for r = 1/2, we have, through direct calculation, that

(2.8)
$$\int_{\mathbb{C}^k} \mathbf{z}^{\boldsymbol{\alpha}} \, \overline{\mathbf{z}}^{\boldsymbol{\beta}} \, \boldsymbol{\mu}_{1/2}(d\mathbf{z}) = \delta_{\boldsymbol{\alpha},\boldsymbol{\beta}} \cdot \boldsymbol{\alpha}!, \quad \forall \, \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{N}_0^k.$$

Then it immediately from (2.5), (2.7) and (2.8) that $S\phi \in \mathcal{K}^{1/2}(\mathbb{C}^k)$, where

(2.9)
$$||S\phi||_{\mathcal{K}^{1/2}(\mathbb{C}^k)}^2 = \sum_{\boldsymbol{\alpha} \in \mathbb{N}_0^k} \frac{1}{\boldsymbol{\alpha}!} \left| \int_{\mathbb{R}^k} \phi(\mathbf{u}) H_{\boldsymbol{\alpha}}(\mathbf{u}) \, \boldsymbol{\mu}_1(d\mathbf{u}) \right|^2 < +\infty.$$

For any holomorphic function F on \mathbb{C}^k and $n \in \mathbb{N}$, let $D^n F(\mathbf{0})$ be the function defined by

$$(\mathbf{z}_1,\ldots,\mathbf{z}_n)\in\mathbb{C}^k\times\cdots\times\mathbb{C}^k\mapsto \frac{\partial^n}{\partial\xi_1\cdots\partial\xi_n}\bigg|_{\xi_1=\cdots=\xi_n=0}F(\xi_1\mathbf{z}_1+\cdots+\xi_n\mathbf{z}_n).$$

Then $D^n F(\mathbf{0})$ is a symmetric *n*-linear form (see [7]), and

(2.10)
$$\sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k}, |\boldsymbol{\alpha}| = n} \frac{\mathbf{z}^{\boldsymbol{\alpha}}}{\boldsymbol{\alpha}!} \left(\frac{\partial}{\partial \mathbf{z}} \right)^{\boldsymbol{\alpha}} F(\mathbf{0}) = \frac{1}{n!} D^{n} F(\mathbf{0}) \mathbf{z}^{n}, \quad \forall \, \mathbf{z} \in \mathbb{C}^{k},$$

where \mathbf{z}^n means (z_1, z_2, \dots, z_n) with $z_1 = z_2 = \dots = z_n$. By (2.8) and together with (2.10), we see that for any $F, G \in \mathcal{K}^{1/2}(\mathbb{C}^k)$,

(2.11)
$$\langle\!\langle F, G \rangle\!\rangle_{\mathcal{K}^{1/2}(\mathbb{C}^k)} = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{\boldsymbol{\alpha} \in \mathbb{N}_0^k, |\boldsymbol{\alpha}| = n} \frac{n!}{\boldsymbol{\alpha}!} \left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} F(\mathbf{0}) \left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} G(\mathbf{0})$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \langle\!\langle D^n F(\mathbf{0}), D^n G(\mathbf{0}) \rangle\!\rangle_{\mathcal{HS}},$$

where $\langle \langle \cdot, \cdot \rangle \rangle_{\mathcal{HS}}$ means the Hilbert-Schmidt inner product (see [16] for the definition). In particular, for any $\phi \in L_c^2(\mathbb{R}^k, \boldsymbol{\mu}_1)$,

(2.12)
$$||S\phi||_{\mathcal{K}^{1/2}(\mathbb{C}^k)}^2 = \sum_{n=0}^{\infty} \frac{1}{n!} ||D^n S\phi(\mathbf{0})||_{\mathcal{HS}}^2,$$

where $\|\cdot\|_{\mathcal{HS}}$ denotes the Hilbert-Schmidt operator norm induced by $\langle\!\langle\cdot,\cdot\rangle\!\rangle_{\mathcal{HS}}$.

2.3. The Gauss transform on $\mathcal{K}^{1/2}(\mathbb{C}^k)$

Let $F \in \mathcal{K}^{1/2}(\mathbb{C}^k)$ be given. The Gauss transform $\sigma(F)$ of F is a function on \mathbb{R}^k defined by

$$\sigma(F)(\cdot) = \int_{\mathbb{R}^k} F(\,\cdot + \mathrm{i} \mathbf{v}) \, \boldsymbol{\mu}_1(d\mathbf{v}) \quad \text{(if it exists)}.$$

It follows from (2.3) that for any $\alpha \in \mathbb{N}_0^k$ and $\mathbf{u} \in \mathbb{R}^k$,

(2.13)
$$\sigma(\mathbf{z}^{\alpha})(\mathbf{u}) = \int_{\mathbb{R}^k} (\mathbf{u} + i\mathbf{v})^{\alpha} \mu_1(d\mathbf{v}) = H_{\alpha}(\mathbf{u}),$$

and therefore, by (2.6), $S\sigma(\mathbf{z}^{\alpha}) = \mathbf{z}^{\alpha}$. Now, for any $n \in \mathbb{N}$, set

$$\psi_n \equiv \sigma \left(\sum_{\boldsymbol{\alpha} \in \mathbb{N}_0^k, |\boldsymbol{\alpha}| \le n} \frac{1}{\boldsymbol{\alpha}!} \left(\frac{\partial}{\partial \mathbf{z}} \right)^{\boldsymbol{\alpha}} F(\mathbf{0}) \mathbf{z}^{\boldsymbol{\alpha}} \right) \stackrel{\text{(by (2.13))}}{=} \sum_{\boldsymbol{\alpha} \in \mathbb{N}_0^k, |\boldsymbol{\alpha}| \le n} \frac{1}{\boldsymbol{\alpha}!} \left(\frac{\partial}{\partial \mathbf{z}} \right)^{\boldsymbol{\alpha}} F(\mathbf{0}) \cdot H_{\boldsymbol{\alpha}}.$$

As n tends to infinity, since, by (2.11),

$$\sum_{\boldsymbol{\alpha} \in \mathbb{N}_0^k} \frac{1}{\boldsymbol{\alpha}!} \left| \left(\frac{\partial}{\partial \mathbf{z}} \right)^{\boldsymbol{\alpha}} F(\mathbf{0}) \right|^2 = \|F\|_{\mathcal{K}^{1/2}(\mathbb{C}^k)}^2 < +\infty,$$

it follows by (2.4) that $\psi_n \to \psi$ in $L^2_c(\mathbb{R}^k, \boldsymbol{\mu}_1)$, where

(2.14)
$$\psi = \sum_{n=0}^{\infty} \sum_{\alpha \in \mathbb{N}_{\kappa}^{k}, |\alpha| = n} \frac{1}{\alpha!} \left(\frac{\partial}{\partial \mathbf{z}} \right)^{\alpha} F(\mathbf{0}) \cdot H_{\alpha}.$$

Consequently, by (2.6), $S\psi = F$.

2.4. Wiener-Itô decomposition of $L^2_c(\mathbb{R}^k, \boldsymbol{\mu}_1)$

Let $\phi \in L^2_c(\mathbb{R}^k, \mu_1)$ be given. Combine (2.5) with (2.14) to get that

$$S\left(\sum_{n=0}^{\infty} \sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k}, |\boldsymbol{\alpha}|=n} \frac{1}{\boldsymbol{\alpha}!} \left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} S\phi(\mathbf{0}) \cdot H_{\boldsymbol{\alpha}}\right) = S\phi,$$

which implies that

(2.15)
$$S\left(\phi - \sum_{n=0}^{\infty} \sum_{\boldsymbol{\alpha} \in \mathbb{N}_{\kappa}^{k}, |\boldsymbol{\alpha}| = n} \frac{1}{\boldsymbol{\alpha}!} \left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} S\phi(\mathbf{0}) \cdot H_{\boldsymbol{\alpha}}\right) (\mathbf{z}) = 0, \quad \forall \, \mathbf{z} \in \mathbb{C}^{k}.$$

Then we need the following

Lemma 2.1. The S-transform on $L_c^2(\mathbb{R}^k, \mu_1)$ is injective.

Proof. Let $\psi \in L_c^2(\mathbb{R}^k, \boldsymbol{\mu}_1)$. If $S\psi(\mathbf{z}) = 0$ for any $\mathbf{z} \in \mathbb{C}^k$, then $S\psi(i\mathbf{u}) = 0$ for any $\mathbf{u} \in \mathbb{R}^k$. Therefore

$$\int_{\mathbb{R}^k} \psi(\mathbf{v}) e^{\mathbf{i}\mathbf{v}\cdot\mathbf{u}} \, \boldsymbol{\mu}_1(d\mathbf{v}) = 0, \quad \forall \, \mathbf{u} \in \mathbb{R}^k.$$

This implies that $\psi(\mathbf{v})e^{-\frac{1}{2}\mathbf{v}\cdot\mathbf{v}} = 0$ and hence $\psi(\mathbf{v}) = 0$ for almost every $\mathbf{v} \in \mathbb{R}^k$ with respect to Lebesgue measure \mathbf{m}_k on \mathbb{R}^k . Since $\boldsymbol{\mu}_1$ is absolutely continuous with respect to \mathbf{m}_k , $\psi = 0$ almost everywhere on \mathbb{R}^k with respect to $\boldsymbol{\mu}_1$. The proof is complete.

Applying Lemma 2.1 together with (2.3), (2.10) and (2.15), we see that

(2.16)
$$\phi = \sum_{n=0}^{\infty} \sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k}, |\boldsymbol{\alpha}| = n} \frac{1}{\boldsymbol{\alpha}!} \left(\frac{\partial}{\partial \mathbf{z}} \right)^{\boldsymbol{\alpha}} S\phi(\mathbf{0}) \cdot H_{\boldsymbol{\alpha}}$$

$$= \sum_{n=0}^{\infty} \sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k}, |\boldsymbol{\alpha}| = n} \frac{1}{\boldsymbol{\alpha}!} \left(\frac{\partial}{\partial \mathbf{z}} \right)^{\boldsymbol{\alpha}} S\phi(\mathbf{0}) \int_{\mathbb{R}^{k}} (\cdot + i\mathbf{v})^{\boldsymbol{\alpha}} \boldsymbol{\mu}_{1}(d\mathbf{v})$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \int_{\mathbb{R}^{k}} D^{n} S\phi(\mathbf{0}) (\cdot + i\mathbf{v})^{n} \boldsymbol{\mu}_{1}(d\mathbf{v}) \quad \text{in } L_{c}^{2}(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}).$$

As an immediate consequence of the first equality of (2.16), $\{(\boldsymbol{\alpha}!)^{-1/2}H_{\boldsymbol{\alpha}}; \boldsymbol{\alpha} \in \mathbb{N}_0^k\}$ forms a complete orthonormal basis (CONB, in short) of $L_c^2(\mathbb{R}^k, \boldsymbol{\mu}_1)$; therefore, the sum on the right side of (2.9) is exactly equal to $\|\phi\|_{L_c^2(\mathbb{R}^k, \boldsymbol{\mu}_1)}^2$.

Now, we sum up all arguments in this section toghther with (2.9), (2.12), (2.14) and (2.16) to obtain the following

Theorem 2.2. (i) The S-transform S is an isometry from $L_c^2(\mathbb{R}^k, \mu_1)$ onto $\mathcal{K}^{1/2}(\mathbb{C}^k)$.

(ii) (Wiener-Itô Theorem on $L^2_c(\mathbb{R}^k, \boldsymbol{\mu}_1)$) Let $\phi \in L^2_c(\mathbb{R}^k, \boldsymbol{\mu}_1)$ be given. Then

$$\phi = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{\mathbb{R}^k} D^n S\phi(\mathbf{0}) (\cdot + i\mathbf{v})^n \, \boldsymbol{\mu}_1(d\mathbf{v}) \quad in \ L_c^2(\mathbb{R}^k, \boldsymbol{\mu}_1).$$

Moreover,

$$\|\phi\|_{L_c^2(\mathbb{R}^k, \mu_1)}^2 = \sum_{n=0}^{\infty} \frac{1}{n!} \|D^n S\phi(\mathbf{0})\|_{\mathcal{HS}}^2.$$

Corollary 2.3. Let $\lambda > 1$. For $\phi \in L^2_c(\mathbb{R}^k, \mu_1)$, if

$$A_{\lambda}(\phi) \equiv \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} \|D^n S\phi(\mathbf{0})\|_{\mathcal{HS}}^2 < +\infty,$$

then the Wiener-Itô decomposition of ϕ , that is the right-hand series of Theorem 2.2(ii), is defined everywhere in \mathbb{C}^k and converges absolutely and uniformly on bounded subsets of \mathbb{C}^k .

Proof. By using the Cauchy-Schwarz inequality,

$$\sum_{n=0}^{\infty} \frac{1}{n!} \int_{\mathbb{R}^k} |D^n S\phi(\mathbf{0})(\mathbf{z} + i\mathbf{v})^n| \, \boldsymbol{\mu}_1(d\mathbf{v}) \leq \sqrt{A_{\lambda}(\phi)} \int_{\mathbb{R}^k} e^{\frac{1}{2\lambda}(|\mathbf{z}| + |\mathbf{v}|)^2} \, \boldsymbol{\mu}_1(d\mathbf{v}),$$

from which the assertion follows.

3. Abstract Wiener spaces

Let H be a real separable Hilbert space with $|\cdot|$ -norm induced by the inner product $\langle \cdot, \cdot \rangle$, and $||\cdot||$ be an another norm defined on H which is weaker than the $|\cdot|$ -norm and measurable on H. Then the triple (i, H, B) is called an abstract Wiener space (AWS, in short), where B is the completion of H with respect to $||\cdot||$ -norm and i is the canonical embedding of H into B. The AWS was introduced by L. Gross in his celebrated paper [4]. Readers interested in details and other related results concerning AWS may consult [4,5,9].

As H is identified as a dense subspace of B, we also identify B^* , the dual of B, as a dense subspace of the dual H^* of H under the adjoint operator i^* of i by the following way: For any $x \in H$ and $\eta \in B^*$, $\langle x, i^*(\eta) \rangle = (i(x), \eta)$, where (\cdot, \cdot) denotes the B- B^* dual pairing in the subsequent study. Applying the Riesz representation theorem to identify H^* with H, there are continuous inclusion maps $B^* \subset H \subset B$. Then L. Gross [4] proved that B carries a probability measure p_t , known as the abstract Wiener measure with variance parameter t > 0, which is characterized as the unique Borel measure on B such that for any $\eta \in B^*$,

(3.1)
$$\int_{B} e^{i(x,\eta)} p_{t}(dx) = e^{-\frac{t}{2}|\eta|^{2}}.$$

Remark 3.1. If $H = \mathbb{R}^k$, then $B^* = H = B$. For any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^k$, $(\mathbf{u}, \mathbf{v}) = \langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v}$, and p_t is exactly the Gaussian measure μ_t on $(\mathbb{R}^k, \mathscr{B}(\mathbb{R}^k))$ given by

$$p_t(d\mathbf{v}) = (\sqrt{2\pi t})^{-k} e^{-\frac{1}{2t}\mathbf{v}\cdot\mathbf{v}} d\mathbf{v},$$

where $d\mathbf{v}$ denotes k-dimensional Lebesgue measure on \mathbb{R}^k .

From (3.1), it follows that (\cdot, η) , $\eta \in B^*$, is a random variable on $(B, \mathcal{B}(B), p_1)$, distributed by the law of $N(0, |\eta|^2)$. For any $h \in H$, let $\{\eta_n\}$ be a sequence in B^* such that $|\eta_n - h| \to 0$ as $n \to \infty$. Then $\{(\cdot, \eta_n)\}$ forms a Cauchy sequence in $L_c^2(B, p_1)$, the $L^2(B, p_1)$ -limit of which is denoted by $\mathbf{n}(h)$. As $h \in B^*$, $\mathbf{n}(h) = (\cdot, h)$, and for any $h \in H$, $\mathbf{n}(h)$ is independent of the choice of $\{\eta_n\}$ and distributed by the law of $N(0, |h|^2)$. Regard \mathbf{n} as a function from H into $L^2(B, p_1)$. Then it can be further extended to H_c by defining, for any $h_1, h_2 \in H$, $\mathbf{n}(h_1 + \mathrm{i}h_2) = \mathbf{n}(h_1) + \mathrm{i}\mathbf{n}(h_2)$. It is easy to check that \mathbf{n} is linear from H_c into $L_c^2(B, p_1)$, and for any $\mathbf{h}, \mathbf{k} \in H_c$,

(3.2)
$$(\mathbf{h}, \mathbf{k})_{H_c} = \int_B \mathbf{n}(\mathbf{h})(x)\mathbf{n}(\mathbf{k})(x) p_1(dx).$$

Example 3.2. Let \mathcal{C} denote the Banach space, consisting of all real-valued continuous functions x(t) in the unit interval [0,1] with x(0)=0, endowed with the supremum norm $|\cdot|_{\infty}$. Let \mathcal{C}' be the Cameron-Martin space which is a Hilbert space, consisting of all absolutely continuous functions $x \in \mathcal{C}$ with a square integrable derivative \dot{x} , with the norm $|\cdot|_0$ induced by the inner product $\langle \cdot, \cdot \rangle_0$ defined by $\langle x, y \rangle_0 = \int_0^1 \dot{x}(t)\dot{y}(t) dt$ for any $x, y \in \mathcal{C}'$. The space \mathcal{C}' is usually called the Cameron-Martin space and it is well-known that $(i, \mathcal{C}', \mathcal{C})$ forms an AWS (see [4, 9]). The triple $(i, \mathcal{C}', \mathcal{C})$ is known as the classical Wiener space. As \mathcal{C}' is a dense subspace of \mathcal{C} , we identify the dual space \mathcal{C}^* of \mathcal{C} as a dense subspace of the dual space $(\mathcal{C}')^*$ of \mathcal{C}' under the adjoint operator i^* of i. Then \mathcal{C}^* is regarded as the set of all $y \in \mathcal{C}'$ satisfying the properties that \dot{y} is right continuous and of bounded variation with $\dot{y}(1) = 0$. Moreover, for any $x \in \mathcal{C}$ and $y \in \mathcal{C}^*$,

$$(x,y) = -\int_0^1 x(t) \, d\dot{y}(t),$$

where (\cdot,\cdot) is the \mathcal{C} - \mathcal{C}^* pairing. Let μ be the associated abstract Wiener measure. Then a standard Brownian motion B(t) can be represented by $B(t;x)=x(t)=(x,\alpha_t)$ for any $x\in\mathcal{C}$ and $0\leq t\leq 1$, where $\alpha_t(s)=\min\{t,s\}$. Moreover, apply the integration by parts formula to see that for any $y\in\mathcal{C}^*$ and $x\in\mathcal{C}$, $(x,y)=\int_0^1\dot{y}(t)\,dB(t;x)$, where the right-hand integral is a Riemann-Stieltjes integral. From this equality it immediately follows that the random variable $\mathbf{n}(y)$ is the Wiener integral $\int_0^1\dot{y}(t)\,dB(t)$. For the further details, we refer the reader to [9,14].

Example 3.3. Let $\mathbf{A} = -\left(\frac{d}{du}\right)^2 + 1 + u^2$ be a densely defined self-adjoint operator on $L^2(\mathbb{R}, du)$ with respect to the Lebesgue measure du, and $\{h_n; n \in \mathbb{N}_0\}$ be a CONB for $L^2(\mathbb{R}, du)$, consisting of all Hermite functions on \mathbb{R} , formed by the eigenfunctions of \mathbf{A} with corresponding eigenvalues 2n+2, $n \in \mathbb{N}_0$, where $h_n(u) = (\sqrt{\sqrt{\pi}n!})^{-1}H_n(\sqrt{2}u)e^{-\frac{1}{2}u^2}$. Let \mathcal{S} be the Schwartz space of real-valued, rapidly decreasing, and infinitely differentiable functions on \mathbb{R} with its dual \mathcal{S}' , the spaces of tempered distributions. For each $p \in \mathbb{R}$, let \mathcal{S}_p denote the space of all functions f in \mathcal{S}' having $|f|_p^2 \equiv \sum_{n=0}^{\infty} (2n+2)^{2p} |(f,h_n)|^2 < +\infty$, where (\cdot,\cdot) always denotes the \mathcal{S}' - \mathcal{S} pairing. Then \mathcal{S}_p , $p \in \mathbb{R}$, forms a real Hilbert space with the inner product $\langle \cdot, \cdot \rangle_p$ induced by $|\cdot|_p$. The dual space \mathcal{S}'_p , $p \in \mathbb{R}$, is unitarily equivalent to \mathcal{S}_{-p} . Then we have the continuous inclusions:

$$\mathcal{S} \subset \mathcal{S}_q \subset \mathcal{S}_p \subset L^2(\mathbb{R}, du) = \mathcal{S}_0 \subset \mathcal{S}_{-p} \subset \mathcal{S}_{-q} \subset \mathcal{S}',$$

where $0 . One notes that <math>\mathcal{S}$ is the projective limit of $\{\mathcal{S}_p; p > 0\}$. In fact, \mathcal{S} is a nuclear space, and thus \mathcal{S}' is the inductive limit of $\{\mathcal{S}_{-p}; p > 0\}$. The well-known Minlos theorem (see [3]) guarantees the existence of the white noise measure μ on $(\mathcal{S}', \mathcal{B}(\mathcal{S}'))$, the characteristic functional of which is given by

$$\int_{\mathcal{S}'} e^{\mathrm{i}(x,\eta)} \, \mu(dx) = e^{-\frac{1}{2}|\eta|_0^2} \quad \text{for all } \eta \in \mathcal{S}.$$

For p > 1/2, it is easy to see that $(i, \mathcal{S}_0, \mathcal{S}_{-p})$ forms an AWS (see [10,15]), the measurable support of μ is contained in \mathcal{S}_{-p} and μ coincides with the associated abstract Wiener measure. The probability space $(\mathcal{S}', \mathcal{B}(\mathcal{S}'), \mu)$ is known as the white noise space, and the Brownian motion $B = \{B(t); t \in \mathbb{R}\}$ on $(\mathcal{S}', \mathcal{B}(\mathcal{S}'), \mu)$ can be represented by

$$B(t;x) = \begin{cases} \mathbf{n}(\mathbf{1}_{[0,t]})(x) & \text{if } t \ge 0, \\ -\mathbf{n}(\mathbf{1}_{[t,0]})(x) & \text{if } t < 0, x \in \mathcal{S}', \end{cases}$$

where $\mathbf{1}_A$ means the indicator function of the set A. Moreover, for any $\eta \in \mathcal{S}_0$, $\mathbf{n}(h)$ is exactly the Wiener integral $\int_{-\infty}^{\infty} \eta(t) dB(t)$.

Next, assume that H is infinite-dimensional, and $\{e_j \in B^*; j \in \mathbb{N}\}$ is a CONB of H. Then, for any $\mathbf{h} \in H_c$, we have

$$\mathbf{n}(\mathbf{h}) = \sum_{j=1}^{\infty} \langle \mathbf{h}, e_j \rangle \mathbf{n}(e_j) \text{ in } L_c^2(B, p_1).$$

Let \mathscr{B}_k be the σ -field generated by the random variables (\cdot, e_j) for j = 1, 2, ..., k. Then $\{\mathscr{B}_k; k \in \mathbb{N}\}$ is a filtration. It is worth noting that the σ -field $\mathscr{B}_{\infty} \equiv \bigvee_{k=1}^{\infty} \mathscr{B}_k$ coincides with $\mathscr{B}(B)$ (see [9]). The following lemma plays an important role, which will enable us to extend the results of Section 2 from finite dimensions to infinite dimensions.

Lemma 3.4. For any $f \in L_c^2(B, p_1)$, $\mathbb{E}[f|\mathscr{B}_k]$ converges to f in $L_c^2(B, p_1)$ as $k \to \infty$, where $\mathbb{E}[\varphi|\mathscr{B}_k]$ means the conditional expectation of φ relative to \mathscr{B}_k .

Proof. Let $\varepsilon > 0$ be given. By applying the Carathéodory-Hahn extension theorem (see [18]), there exists a simple function $f_{\varepsilon} = \sum_{j=1}^{m} a_{j} \mathbf{1}_{E_{j}}$, a_{j} 's $\in \mathbb{C}$, such that E_{j} 's $\in \bigcup_{k=1}^{\infty} \mathscr{B}_{k}$ and $||f - f_{\varepsilon}||_{L_{c}^{2}(B,p_{1})} < \varepsilon/2$. Let $N \in \mathbb{N}$ such that E_{j} 's $\in \mathscr{B}_{N}$. Then, for any $k \geq N$, $f_{\varepsilon} \in \mathscr{B}_{k}$ and

$$\begin{split} \|f - \mathbb{E}[f|\mathscr{B}_{k}]\|_{L_{c}^{2}(B,p_{1})}^{2} &\leq 2\left(\|f - f_{\varepsilon}\|_{L_{c}^{2}(B,p_{1})}^{2} + \|f_{\varepsilon} - \mathbb{E}[f|\mathscr{B}_{k}]\|_{L_{c}^{2}(B,p_{1})}^{2}\right) \\ &= 2\left(\|f - f_{\varepsilon}\|_{L_{c}^{2}(B,p_{1})}^{2} + \|\mathbb{E}[f_{\varepsilon} - f|\mathscr{B}_{k}]\|_{L_{c}^{2}(B,p_{1})}^{2}\right) \\ &\leq 4\|f - f_{\varepsilon}\|_{L_{c}^{2}(B,p_{1})}^{2} < \varepsilon, \end{split}$$

where the last inequality is obtained by Jensen's inequality. The proof is complete. \Box

4. The S-transform on
$$L_c^2(B, p_1)$$

In this and next section, (i, H, B) denotes a fixed but arbitrary AWS as given in Section 3, where H is always assumed to be infinitely dimensional. Roughly speaking, our basic idea of deducing the relevant formulas in an infinite-dimensional space is to consider the

cylinder functions in the beginning; then apply the results obtained in Section 2 to these functions, and finally use Lemma 3.4 to arrive at the results by taking the limits. For example, the arguments in (4.2) and the procedure from (5.1) to (5.4) is a typical process of our basic idea.

Let $f \in L_c^2(B, p_1)$ be given. Define the S-transform $S_{\infty}f$ of f be a function by $S_{\infty}f(h) = p_1 * f(h)$, $h \in H$, where $p_1 * f$ is the convolution of f with p_1 . For any $h \in H$, define $p_1(h, E) = p_1(E - h)$, $E \in \mathcal{B}(B)$. It is well-known (see [9]) that $p_1(dx) = p_1(-dx)$ and $p_1(h, \cdot)$ is absolutely continuous with respect to p_1 , the associated Radon-Nikodym derivative being given by $e^{\mathbf{n}(h) - \frac{1}{2}|h|^2}$. Then, for any $h \in H$,

$$S_{\infty}f(h) = \int_{B} f(x+h) \, p_{1}(dx) = \int_{B} f(x)e^{\mathbf{n}(h)(x) - \frac{1}{2}|h|^{2}} \, p_{1}(dx).$$

And, there is a natural extension of $S_{\infty}f$ to H_c , still denoted by $S_{\infty}f$, given by

$$S_{\infty}f(\mathbf{h}) = \int_{B} f(x)e^{\mathbf{n}(\mathbf{h})(x) - \frac{1}{2}(\mathbf{h}, \mathbf{h})_{H_c}} p_1(dx), \quad \mathbf{h} \in H_c.$$

In fact, if $\mathbf{h} \in H_c$, say $\mathbf{h} = h_1 + \mathrm{i} h_2 \in H_c$ with $h_1, h_2 \in H$, then

$$|S_{\infty}f(\mathbf{h})| \le \int_{B} |f(x)| \, e^{\mathbf{n}(h_1)(x) - \frac{1}{2}(|h_1|^2 - |h_2|^2)} \, p_1(dx) \le ||f||_{L^2_c(B,p_1)} \cdot e^{\frac{1}{2}|\mathbf{h}|^2},$$

which implies that $S_{\infty}f$ is locally bounded in H_c . In addition, for any $\mathbf{h}, \mathbf{k} \in H_c$, it is easily seen that the function $z \in \mathbb{C} \mapsto S_{\infty}f(\mathbf{h}+z\mathbf{k})$ is holomorphic. Then $S_{\infty}f(\mathbf{h})$ is an analytic function of $\mathbf{h} \in H_c$ (see [7]); therefore, $S_{\infty}f$ is Fréchet differentiable in H_c , and $D^nS_{\infty}f(\mathbf{0})$, $n \in \mathbb{N}$, is a continuous symmetric n-linear form, where D is the Fréchet derivative of $S_{\infty}f$. Moreover, $S_{\infty}f$ enjoys the Taylor expansion:

$$S_{\infty}f(\mathbf{h}) = \sum_{n=0}^{\infty} \frac{1}{n!} D^n S_{\infty}f(\mathbf{0}) \mathbf{h}^n, \quad \forall \, \mathbf{h} \in H_c.$$

Let $\{e_j \in B^*; j = 1, 2, \ldots\}$ be a CONB of H. For any $k \in \mathbb{N}$, let S_k be the S-transform on $L^2_c(\mathbb{R}^k, \boldsymbol{\mu}_1)$. Denote $\mathbb{E}[f|\mathscr{B}_k]$ by f_k , where \mathscr{B}_k is a Borel σ -subfield of $\mathscr{B}(B)$ defined as in the previous section. A well-known fact is that f_k can be represented as $\phi_k(\mathbf{n}(e_1), \ldots, \mathbf{n}(e_k))$, where $\phi_k \in L^2_c(\mathbb{R}^k, \boldsymbol{\mu}_1)$. Here one notes that

$$p_1(\{(\mathbf{n}(e_1),\ldots,\mathbf{n}(e_k))\in E\}) = \boldsymbol{\mu}_1(E), \quad \forall E\in \mathscr{B}(\mathbb{R}^k).$$

For any $k \in \mathbb{N}$ and $x, y \in B$, define $P_k(x + iy) = \sum_{j=1}^k ((x, e_j) + i(y, e_j))e_j \in B^*$, and

$$\mathbf{z}_{x+\mathrm{i}y,k} = (\mathbf{n}(e_1)(x+\mathrm{i}y), \dots, \mathbf{n}(e_k)(x+\mathrm{i}y)) \in \mathbb{C}^k.$$

Lemma 4.1. Let f and ϕ_k be given as above. Then, for any $\mathbf{h} \in H_c$, we have

$$D^n S_k \phi_k(\mathbf{0}) \mathbf{z}_{\mathbf{h},k}^n = D^n S_{\infty} f(0) (P_k(\mathbf{h}))^n.$$

Proof. Observe that

$$(4.1) D^{n}S_{k}\phi_{k}(\mathbf{0})\mathbf{z}_{\mathbf{h},k}^{n} = \frac{d^{n}}{d\xi^{n}} \bigg|_{\xi=0} S_{k}\phi_{k}(\xi\mathbf{z}_{\mathbf{h},k})$$

$$= \frac{d^{n}}{d\xi^{n}} \bigg|_{\xi=0} \int_{\mathbb{R}^{k}} \phi_{k}(\mathbf{v})e^{\xi(\mathbf{v},\mathbf{z}_{\mathbf{h},k})_{\mathbb{C}^{k}} - \frac{1}{2}\xi^{2}(\mathbf{z}_{\mathbf{h},k},\mathbf{z}_{\mathbf{h},k})_{\mathbb{C}^{k}}} \boldsymbol{\mu}_{1}(d\mathbf{v})$$

$$= \frac{d^{n}}{d\xi^{n}} \bigg|_{\xi=0} \int_{B} f_{k}(x)e^{\mathbf{n}(\xi P_{k}(\mathbf{h}))(x) - \frac{1}{2}(\xi P_{k}(\mathbf{h}),\xi P_{k}(\mathbf{h}))_{H_{c}}} p_{1}(dx).$$

Since $e^{\mathbf{n}(\xi P_k(\mathbf{h}))(x) - \frac{1}{2}(\xi P_k(\mathbf{h}), \xi P_k(\mathbf{h}))_{H_c}}$ is \mathscr{B}_k -measurable, (4.1) can be transformed into

$$\frac{d^n}{d\xi^n} \bigg|_{\xi=0} \int_B \mathbb{E}[f \cdot e^{\mathbf{n}(\xi P_k(\mathbf{h})) - \frac{1}{2}(\xi P_k(\mathbf{h}), \xi P_k(\mathbf{h}))_{H_c}} | \mathcal{B}_k](x) \, p_1(dx)$$

$$= \frac{d^n}{d\xi^n} \bigg|_{\xi=0} \int_B f(x) e^{\mathbf{n}(\xi P_k(\mathbf{h}))(x) - \frac{1}{2}(\xi P_k(\mathbf{h}), \xi P_k(\mathbf{h}))_{H_c}} \, p_1(dx) = D^n S_{\infty} f(0) (P_k(\mathbf{h}))^n.$$

The proof is complete.

Applying Lemma 4.1, the explicit formula of $D^n S_{\infty} f(0)$ can be obtained as follows.

Proposition 4.2. For any $f \in L_c^2(B, p_1)$ and $\mathbf{h}_1, \dots, \mathbf{h}_n \in H_c$,

$$D^n S_{\infty} f(0) \mathbf{h}_1, \cdots \mathbf{h}_n = \int_B f(x) \left\{ \int_B \prod_{i=1}^n (\mathbf{n}(\mathbf{h}_j)(x) + i\mathbf{n}(\mathbf{h}_j)(y)) \, p_1(dy) \right\} p_1(dx).$$

Proof. First, we consider the case that $\mathbf{h}_1 = \cdots = \mathbf{h}_n = h \in H \setminus \{0\}$. By Lemma 4.1 and applying (2.3), (2.7) and (2.10), one can see that

$$D^{n}S_{\infty}f(0)h^{n} = \lim_{k \to \infty} D^{n}S_{\infty}f(0)(P_{k}(h))^{n}$$

$$= \lim_{k \to \infty} D^{n}S_{k}\phi_{k}(\mathbf{0})\mathbf{z}_{h,k}^{n}$$

$$= \lim_{k \to \infty} n! \sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k}, |\boldsymbol{\alpha}| = n} \frac{\mathbf{z}_{h,k}^{\boldsymbol{\alpha}}}{\boldsymbol{\alpha}!} \left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} S_{k}\phi_{k}(\mathbf{0})$$

$$= \lim_{k \to \infty} n! \sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k}, |\boldsymbol{\alpha}| = n} \frac{\mathbf{z}_{h,k}^{\boldsymbol{\alpha}}}{\boldsymbol{\alpha}!} \int_{\mathbb{R}^{k}} \phi_{k}(\mathbf{u}) H_{\boldsymbol{\alpha}}(\mathbf{u}) \, \boldsymbol{\mu}_{1}(d\mathbf{u})$$

$$= \lim_{k \to \infty} \int_{\mathbb{R}^{k}} \phi_{k}(\mathbf{u}) \left\{ \int_{\mathbb{R}^{k}} (\mathbf{z}_{h,k}, \mathbf{u} + i\mathbf{v})_{\mathbb{C}^{k}}^{n} \, \boldsymbol{\mu}_{1}(d\mathbf{v}) \right\} \, \boldsymbol{\mu}_{1}(d\mathbf{u})$$

$$= \lim_{k \to \infty} \int_{B} f_{k}(x) \left\{ \int_{B} (x + iy, P_{k}(h))^{n} \, p_{1}(dy) \right\} \, p_{1}(dx)$$

$$= \lim_{k \to \infty} \int_{B} f(x) \left\{ \int_{B} (x + iy, P_{k}(h))^{n} \, p_{1}(dy) \right\} \, p_{1}(dx),$$

where $T_{h,k} \equiv \int_B (\cdot + iy, P_k(h))^n p_1(dy)$ is obviously \mathscr{B}_k -measurable. Note that

$$T_{h,k} = |P_k(h)|^n H_n((\cdot, P_k(h)/|P_k(h)|)) \sim N(0, n!|P_k(h)|^{2n}).$$

Let
$$T_h(x) = \int_B (\mathbf{n}(h)(x) + i\mathbf{n}(h)(y))^n p_1(dy), x \in B$$
. Then

$$T_h = |h|^n H_n(\mathbf{n}(h/|h|)) \sim N(0, n!|h|^{2n}).$$

As $k \to \infty$, since $|P_k(h)| \to |h|$ and $(\cdot, P_k(h)/|P_k(h)|) \to \mathbf{n}(h/|h|)$ in $L^2(B, p_1)$, $T_{h,k}$ converges in probability to T_h , and moreover $||T_{h,k}||^2_{L^2(B,p_1)}$ converges to $||T_h||^2_{L^2(B,p_1)}$. By the dominated convergence theorem, $T_{h,k} \to T_h$ in $L^2(B,p_1)$. Then it follows from (4.2) that

(4.3)
$$D^{n}S_{\infty}f(0)h^{n} = \int_{B} f(x) \left\{ \int_{B} (\mathbf{n}(h)(x) + i\mathbf{n}(h)(y))^{n} p_{1}(dy) \right\} p_{1}(dx).$$

By the uniqueness of analytic continuation, the formula (4.3) still holds by replacing h by h_1+zh_2 , $h_1, h_2 \in H$ and $z \in \mathbb{C}$, especially by $\mathbf{h} \in H_c$. Finally, by applying the polarization formula (see Appendices of [15]), we complete the proof.

Remark 4.3. In order to study the regularity of heat semigroup generated from p_t , Lee [11] has already achieved the same formula as in Proposition 4.2 even for $f \in L_c^{\alpha}(B, p_t)$ with $\alpha > 1$. In the course of derivation, Lee proved it by using induction and more sophisticated calculation than the above proof.

5. Wiener-Itô theorem on abstract Wiener spaces

In this section, we would like to establish an analytic version of Wiener-Itô orthogonal decomposition of $L_c^2(B, p_1)$. Let $\{e_j \in B^*; j = 1, 2, ...\}$ be a CONB of H. For any $f \in L_c^2(B, p_1)$, f_k , ϕ_k are defined as in Section 4. First, we observe by Theorem 2.2(ii) and Lemma 4.1 that for any $k \in \mathbb{N}$,

$$f_{k}(x) = \phi_{k}(\mathbf{u}_{x,k})$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \int_{\mathbb{R}^{k}} D^{n} S_{k} \phi_{k}(\mathbf{0}) (\mathbf{u}_{x,k} + i\mathbf{v})^{n} \boldsymbol{\mu}_{1}(d\mathbf{v})$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \int_{B} D^{n} S_{k} \phi_{k}(\mathbf{0}) (\mathbf{u}_{x,k} + i\mathbf{u}_{y,k})^{n} p_{1}(dy)$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \int_{B} D^{n} S_{k} \phi_{k}(\mathbf{0}) \mathbf{z}_{P_{k}(x+iy),k}^{n} p_{1}(dy)$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \int_{B} D^{n} S_{\infty} f(0) (P_{k}(x+iy))^{n} p_{1}(dy) \quad \text{in } L_{c}^{2}(B, p_{1}).$$

And, for any $x \in B$, it follows by (2.3) and Lemma 4.1 that

$$\int_{B} D^{n} S_{\infty} f(0) (P_{k}(x + iy))^{n} p_{1}(dy)$$

$$= \sum_{1 \leq i_{1}, \dots, i_{n} \leq k} D^{n} S_{\infty} f(0) e_{i_{1}} \cdots e_{i_{n}} \int_{B} \prod_{j=1}^{n} (x + iy, e_{i_{j}}) p_{1}(dy)$$

$$= n! \sum_{\substack{\ell \\ n_{1} + \dots + n_{\ell} = n}} \sum_{\substack{1 \leq j_{1} < \dots < j_{\ell} \leq k \\ n_{1} + \dots + n_{\ell} = n}} \frac{D^{n} S_{\infty} f(0) e_{j_{1}}^{n_{1}} \cdots e_{j_{\ell}}^{n_{\ell}}}{n_{1}! \cdots n_{\ell}!} H_{(n_{1}, \dots, n_{\ell})}(Q_{j_{1}, \dots, j_{\ell}}(x)),$$

where

$$Q_{j_1,\dots,j_\ell}(x) = ((x,e_{j_1}),\dots,(x,e_{j_\ell})), \quad x \in B.$$

Since, by (2.4) and (3.2),

(5.3)
$$\left\{ (\boldsymbol{\alpha}!)^{-1/2} H_{\boldsymbol{\alpha}}(Q_{j_1,\dots,j_{\ell}}(\cdot)); 1 \leq j_1 < \dots < j_{\ell}, \boldsymbol{\alpha} \in \mathbb{N}^{\ell}, \forall \, \ell \in \mathbb{N} \right\}$$

is an orthonormal set in $L_c^2(B, p_1)$, we combine (5.1) and (5.2) to obtain that

$$||f_k||_{L_c^2(B,p_1)}^2 = \sum_{n=0}^{\infty} \sum_{\ell} \sum_{\substack{1 \le j_1 < \dots < j_\ell \le k \\ n_1 + \dots + n_\ell = n}} \frac{|D^n S_{\infty} f(0) e_{j_1}^{n_1} \cdots e_{j_\ell}^{n_\ell}|^2}{n_1! \cdots n_\ell!}$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{1 \le i_1, \dots, i_n \le k} |D^n S_{\infty} f(0) e_{i_1} \cdots e_{i_n}|^2.$$

Letting $k \to \infty$, it follows by Lemma 3.4 that

(5.4)
$$||f||_{L_{c}^{2}(B,p_{1})}^{2} = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{1 \leq i_{1},\dots,i_{n} \in \mathbb{N}} |D^{n} S_{\infty} f(0) e_{i_{1}} \cdots e_{i_{n}}|^{2}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} ||D^{n} S_{\infty} f(0)||_{\mathcal{HS}}^{2} < +\infty.$$

Then the following are immediate consequences by Proposition 4.2 and (5.1)–(5.4).

Theorem 5.1. (i) $\{(\boldsymbol{\alpha}!)^{-1/2}H_{\boldsymbol{\alpha}}(Q_{j_1,\dots,j_{\ell}}(\cdot)); 1 \leq j_1 < \dots < j_{\ell}, \boldsymbol{\alpha} \in \mathbb{N}^{\ell}, \forall \ell \in \mathbb{N}\}$ is a CONB of $L_c^2(B, p_1)$.

(ii) Let $f \in L_c^2(B, p_1)$ be given. Then

$$f = \sum_{n=0}^{\infty} \sum_{\ell} \sum_{\substack{1 \le j_1 < \dots < j_\ell \le k \\ n_1 + \dots + n_\ell = n}} \frac{D^n S_{\infty} f(0) e_{j_1}^{n_1} \cdots e_{j_\ell}^{n_\ell}}{n_1! \cdots n_\ell!} H_{(n_1, \dots, n_\ell)}(Q_{j_1, \dots, j_\ell}(\cdot)) \quad in \ L_c^2(B, p_1).$$

Moreover,

(iii)
$$||f||_{L^2(B,p_1)}^2 = \sum_{n=0}^{\infty} \frac{1}{n!} ||D^n S_{\infty} f(0)||_{\mathcal{HS}}^2$$
.

Recall that, for r > 0, denote by $\mathcal{F}^r(H_c)$, the class of analytic functionals on H_c with $\|\cdot\|_{\mathcal{F}^r(H_c)}$ -norm satisfying

$$||F||_{\mathcal{F}^r(H_c)}^2 = \sum_{n=0}^{\infty} \frac{r^n}{n!} ||D^n F(0)||_{\mathcal{HS}^n(H_c)}^2 < +\infty,$$

called the Bargmann-Segal-Dwyer space. Members of $\mathcal{F}^r(H_c)$ are called Bargmann-Segal analytic functionals. We refer the interested reader to [13] and the references cited therein. If $H_c = \mathbb{C}^k$, we remark that $\mathcal{F}^r(\mathbb{C}^k) = \mathcal{K}^{r/2}(\mathbb{C}^k)$ given as in Subsection 2.2. Consequently, it follows by Theorem 5.1(iii) that $S_{\infty}f \in \mathcal{F}^1(H_c)$ with $\|S_{\infty}f\|_{\mathcal{F}^1(H_c)} = \|f\|_{L^2_c(B,p_1)}$.

In order to express the right-hand side of Theorem 5.1(ii) as an integral form shown in (2.16), we need to introduce the Gauss transform Λ on $\mathcal{F}^1(H_c)$ as follows. For any $F \in \mathcal{F}^1(H_c)$, if F has an extension to B_c , the Gauss transform $\Lambda(F)$ of F is defined as a function on B such that for any $x \in B$,

$$\Lambda(F)(x) = \int_B F(x + iy) \, p_1(dy) \quad \text{(if it exists)}.$$

Let $\mathcal{L}^n(B_c)$ be the space of *n*-linear continuous operators from $B_c \times \cdots \times B_c$ (*n*-times) into \mathbb{C} , and $\mathcal{L}^n_{(2)}(H_c)$ the space of *n*-linear Hilbert-Schmidt operators from $B_c \times \cdots \times B_c$ (*n*-times) into \mathbb{C} . Then, by applying Kuo's theorem (see Corollary 4.4, p. 85, in [9]), the restriction of $T \in \mathcal{L}^n(B_c)$ to $H_c \times \cdots \times H_c$ is a member of $\mathcal{L}^n_{(2)}(H_c)$. For $T \in \mathcal{L}^n(B_c)$, let f_T be a function on H_c given by $f_T(\mathbf{x}) = T\mathbf{x}^n$, $\mathbf{x} \in B_c$. Then f_T is obviously an analytic function on B_c ; moreover, $D^n f_T(0) = n! \cdot \operatorname{sym}(T)$ and $D^m f_T(0) = 0$, if $m \neq n$. Hence $f_T \in \mathcal{F}^1(H_c)$ and

$$\Lambda(f_T)(x) = \int_B \operatorname{sym}(T)(x + iy)^n p_1(dy), \quad x \in B,$$

where sym(T) denotes the symmetrization of T, and the existence of the right-hand integral is guaranteed by the Fernique theorem (see [9]). It is easy to check that $\Lambda(f_T) \in L_c^2(B, p_1)$. Moreover, we can apply Proposition 4.2 to see that for any $\mathbf{h}_1, \ldots, \mathbf{h}_m \in H_c$,

$$D^m S_{\infty} \Lambda(f_T)(0) \mathbf{h}_1, \cdots \mathbf{h}_m = \int_B \Lambda(f_T)(x) \left\{ \int_B \prod_{j=1}^m (\mathbf{n}(\mathbf{h}_j)(x) + i\mathbf{n}(\mathbf{h}_j)(y)) p_1(dy) \right\} p_1(dx).$$

In fact, we have the following

Proposition 5.2. Let $T \in \mathcal{L}^n(B_c)$ be arbitrarily given. Then, for any $m \in \mathbb{N}$, $D^m f_T(0) = m! \cdot \text{sym}(T)$, if m = n; 0, if $m \neq n$, and for any $\mathbf{h}_1, \ldots, \mathbf{h}_m \in H_c$,

$$D^m f_T(0)\mathbf{h}_1 \cdots \mathbf{h}_m = \int_B \Lambda(f_T)(x) \left\{ \int_B \prod_{i=1}^m (\mathbf{n}(\mathbf{h}_j)(x) + i\mathbf{n}(\mathbf{h}_j)(y)) p_1(dy) \right\} p_1(dx).$$

Proof. It suffices to show that $S_{\infty}\Lambda(f_T)(\mathbf{h}) = \operatorname{sym}(T)\mathbf{h}^n$ for any $\mathbf{h} \in H_c$. Observe that

$$S_{\infty}\Lambda(f_T)(\mathbf{h}) = \int_B \int_B \operatorname{sym}(T)(\mathbf{h} + x + iy)^n p_1(dy) p_1(dx).$$

Define a function g from \mathbb{C}^2 into \mathbb{C} by

$$g(\alpha, \beta) = \int_{B} \int_{B} \operatorname{sym}(T) (\mathbf{h} + \alpha x + \beta y)^{n} p_{1}(dy) p_{1}(dx)$$
$$= n! \sum_{n_{1} + n_{2} + n_{3} = n} \frac{\alpha^{n_{2}} \beta^{n_{3}}}{n_{1}! n_{2}! n_{3}!} \int_{B} \int_{B} \operatorname{sym}(T) \mathbf{h}^{n_{1}} x^{n_{2}} y^{n_{3}} p_{1}(dy) p_{1}(dx).$$

Then g is holomorphic on \mathbb{C}^2 . For any $\alpha, \beta \in \mathbb{R}$,

$$g(\alpha, \beta) = \int_{B} \int_{B} \operatorname{sym}(T)(\mathbf{h} + x + y)^{n} p_{\alpha^{2}}(dy) p_{\beta^{2}}(dx)$$

$$= \int_{B} \operatorname{sym}(T)(\mathbf{h} + x)^{n} p_{\alpha^{2} + \beta^{2}}(dx)$$

$$= \int_{B} \operatorname{sym}(T)(\mathbf{h} + \sqrt{\alpha^{2} + \beta^{2}} x)^{n} p_{1}(dx)$$

$$= n! \sum_{n_{1} + n_{2} = n} \frac{(\sqrt{\alpha^{2} + \beta^{2}})^{n_{2}}}{n_{1}! n_{2}!} \int_{B} \operatorname{sym}(T) \mathbf{h}^{n_{1}} x^{n_{2}} p_{1}(dx)$$

$$= n! \sum_{n_{1} + (2n'_{2}) = n} \frac{(\alpha^{2} + \beta^{2})^{n'_{2}}}{n_{1}! (2n'_{2})!} \int_{B} \operatorname{sym}(T) \mathbf{h}^{n_{1}} x^{2n'_{2}} p_{1}(dx),$$

where $\int_B \operatorname{sym}(T) \mathbf{h}^{n_1} x^{n_2} p_1(dx) = 0$, if n_2 is an odd positive integer, since $p_1(dx) = p_1(-dx)$. The sum in the last equality of (5.5) is also holomorphic as a function of $(\alpha, \beta) \in \mathbb{C}^2$ and coincides with $g(\alpha, \beta)$ for any $\alpha, \beta \in \mathbb{R}$. By the uniqueness of analytic continuation, these two holomorphic functions are equal on \mathbb{C}^2 . Substituting $\alpha = 1$ and $\beta = i$ into (5.5), the proof is complete.

By Theorem 5.1(i) and Proposition 5.2, we obtain that for any $T \in \mathcal{L}^n(B_c)$,

(5.6)
$$\Lambda(f_T) = \sum_{i_1, \dots, i_n = 0}^{\infty} Te_{i_1} \cdots e_{i_n} \int_B \prod_{j=1}^n (\cdot + iy, e_{i_j}) p_1(dy),$$

where the sum is convergent in $L_c^2(B, p_1)$, and thus

(5.7)
$$\|\Lambda(f_T)\|_{L^2_c(B,p_1)} = \sqrt{n!} \|\operatorname{sym}(T)\|_{\mathcal{HS}}.$$

For $T \in \mathcal{L}^n_{(2)}(H_c)$, one can take a sequence $\{T_k\} \subset \mathcal{L}^n(B_c)$ such that $T_k \to T$ in $\mathcal{L}^n_{(2)}(H_c)$. Then it follows from (5.6) that

(5.8)
$$\lim_{k \to \infty} \Lambda(f_{T_k}) = \sum_{i_1, \dots, i_n = 0}^{\infty} T(e_{i_1}, \dots, e_{i_n}) \int_B \prod_{j=1}^n (\cdot + iy, e_{i_j}) p_1(dy),$$

where the limit and sum are taken in $L_c^2(B, p_1)$, and independent of the choice of $\{T_k\}$ and $\{e_j\}$. Accordingly, we can extend the definition of the Gauss transform to $\mathcal{L}_{(2)}^n(H_c)$ by defining $\Lambda(f_T)$ as the right-hand sum of (5.6).

By employing the Gauss transform, we now sum up all arguments concerning Theorem 5.1, Proposition 5.2 and (5.6)–(5.8) to give the following

Theorem 5.3. (i) Let $f \in L_c^2(B, p_1)$. Then

$$f = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{B} D^{n} S_{\infty} f(0) (\cdot + iy)^{n} p_{1}(dy) \quad in L_{c}^{2}(B, p_{1}),$$

where the integral means $\Lambda(f_{D^nS_{\infty}f(0)})$.

(ii) For any $T_1 \in \mathcal{L}^n_{(2)}(H_c)$ and $T_2 \in \mathcal{L}^m_{(2)}(H_c)$,

$$\int_{B} \Lambda(f_{T_{1}})(x) \overline{\Lambda(f_{T_{2}})(x)} p_{1}(dx) = \delta_{n,m} \cdot n! \langle (\operatorname{sym}(T_{1}), \operatorname{sym}(T_{2})) \rangle_{\mathcal{HS}},$$

where $\delta_{n,m} = 1$, if n = m; 0, if $n \neq m$.

- (iii) For any $T \in \mathcal{L}_{(2)}^n(H_c)$, $S_{\infty}\Lambda(f_T) = \operatorname{sym}(T)$ on H_c .
- (iv) Let $\mathcal{H}_0 = \mathbb{C}$, and for any $n \in \mathbb{N}$, let $\mathcal{H}_n = \{\Lambda(f_T); T \in \mathcal{L}^n_{(2)}(\mathcal{H}_c)\}$. Then $L^2_c(B, p_1)$ is the orthogonal direct sum $\sum_{n=0}^{\infty} \oplus \mathcal{H}_n$.

The formula in Theorem 5.3(i) is a reformulation of Theorem 5.1(ii), called an analytic version of Wiener-Itô decomposition. The orthogonal direct sum in Theorem 5.3(iv) is called the Wiener-Itô theorem on abstract Wiener spaces. From (5.8), the homogeneous chaos \mathcal{H}_n of order n is the completion in $L_c^2(B, p_1)$ of the span of Hermite polynomials of $\{(\cdot, e_i); i = 1, 2, \ldots\}$.

Corollary 5.4. The S-transform S_{∞} is an isometry from $L_c^2(B, p_1)$ onto $\mathcal{F}^1(H_c)$.

Proof. By Theorem 5.1(iii), we have seen that S_{∞} is an isometry from $L_c^2(B, p_1)$ into $\mathcal{F}^1(H_c)$. To show S_{∞} is surjective, for any $F \in \mathcal{F}^1(H_c)$, let

$$f = \sum_{n=0}^{\infty} \frac{1}{n!} \Lambda(f_{D^n F(0)})$$
 in $L_c^2(B, p_1)$.

Then it immediately follows from Theorem 5.3(iii) that $S_{\infty}f = F$. The proof is complete.

Remark 5.5. Let (H, B) be the white noise space (S_0, S_{-p}) for p > 1/2 (see Example 3.3). For $f \in L^2_c(B, p_1)$, the integral in Theorem 5.3(i), that is,

$$\frac{1}{n!} \int_B D^n S_{\infty} f(0) (\cdot + iy)^n p_1(dy),$$

is exactly the multiple Wiener integral $I_n(f_n)$ of order n with respect to the Brownian motion B(t) given in Example 3.3, where $f_n \in \widehat{L}^2_c(\mathbb{R}^n)$, the space of symmetric complex-valued L^2 -functions on \mathbb{R}^n , can be represented as

$$f_n(t_1,\ldots,t_n) = \frac{1}{n!} D^n S_{\infty} f(0) \delta_{t_1} \cdots \delta_{t_n},$$

where δ_t is the Dirac measure concentrated on the point t.

References

- [1] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math. 14 (1961), 187–214.
- [2] S. Bochner and W. T. Martin, Several Complex Variables, Princeton Mathematical Series 10, Princeton University Press, Princeton, N.J., 1948.
- [3] I. M. Gel'fand and N. Y. Vilenkin, Generalized Functions, Vol. 4: Applications of Harmonic Analysis, Academic Press, New York, 1964.
- [4] L. Gross, *Abstract Wiener spaces*, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, (1965), 31–42.
- [5] _____, Potential theory on Hilbert space, J. Functional Analysis 1 (1967), 123–181.
- [6] B. C. Hall, *Quantum Theory for Mathematicians*, Graduate Texts in Mathematics **267**, Springer, New York, 2013.
- [7] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, American Mathematical Society Colloquium Publications 31, American Mathematical Society, Providence, R.I., 1957.
- [8] K. Itô, Multiple Wiener integral, J. Math. Soc. Japan 3 (1951), 157–169.
- [9] H.-H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Mathematics 463, Springer-Verlag, Berlin, 1975.
- [10] _____, White Noise Distribution Theory, Probability and Stochastics Series, CRC Press, Boca Raton, FL, 1996.
- [11] Y.-J. Lee, Sharp inequalities and regularity of heat semigroup on infinite-dimensional spaces, J. Funct. Anal. **71** (1987), no. 1, 69–87.

- [12] _____, On the convergence of Wiener-Itô decomposition, Bull. Inst. Math. Acad. Sinica 17 (1989), no. 4, 305–312.
- [13] _____, Analytic version of test functionals, Fourier transform, and a characterization of measures in white noise calculus, J. Funct. Anal. 100 (1991), no. 2, 359–380.
- [14] Y.-J. Lee and H.-H. Shih, The Clark formula of generalized Wiener functionals, in: Quantum Information IV, (Nagoya, 2001), 127–145, World Sci. Publ., River Edge, NJ, 2002.
- [15] N. Obata, White Noise Calculus and Fock Space, Lecture Notes in Mathematics 1577, Springer-Verlag, Berlin, 1994.
- [16] R. Schatten, Norm Ideals of Completely Continuous Operators, Ergebnisse der Mathematik und ihrer Grenzgebiete. N. F., Heft 27 Springer-Verlag, Berlin, 1960.
- [17] W. Schoutens, Stochastic Processes and Orthogonal Polynomials, Lecture Notes in Statistics 146, Springer-Verlag, New York, 2000.
- [18] R. L. Wheeden and A. Zygmund, Measure and Integral: An Introduction to Real Analysis, Pure and Applied Mathematics 43, Marcel Dekker, New York, 1977.
- [19] N. Wiener, The homogeneous chaos, Amer. J. Math. 60 (1938), no. 4, 897–936.

Yuh-Jia Lee and Hsin-Hung Shih

Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan

E-mail address: yuhjialee@gmail.com, hhshih@nuk.edu.tw