# An Analytic Version of Wiener-Itô Decomposition on Abstract Wiener Spaces 

Yuh-Jia Lee and Hsin-Hung Shih*

In memory of Professor Hwai-Chiuan Wang


#### Abstract

In this paper, we first establish an analogue of Wiener-Itô theorem on finitedimensional Gaussian spaces through the inverse $S$-transform, that is, the Gauss transform on Segal-Bargmann spaces. Based on this point of view, on infinite-dimensional abstract Wiener space $(H, B)$, we apply the analyticity of the $S$-transform, which is an isometry from the $L^{2}$-space onto the Bargmann-Segal-Dwyer space, to study the regularity. Then, by defining the Gauss transform on Bargmann-Segal-Dwyer space and showing the relationship with the $S$-transform, an analytic version of Wiener-Itô decomposition will be obtained.


## 1. Introduction

The Wiener-Itô theorem is an important result concerning an orthogonal decomposition of the Hilbert space of square integrable functions on a Gaussian space. It was first proved in 1938 by N. Wiener [19] in terms of homogeneous chaos. It is a natural question to find an explicit description concerning homogeneous chaos. About this decomposition theorem, K. Itô [8] in 1951 provided a different proof from N. Wiener. In that paper, Itô defined multiple Wiener integrals, and shown that there is a one-to-one correspondence between the homogeneous chaoses and multiple Wiener integrals.

In 11], Lee studied the regularity of the heat semigroup generated from the abstract Wiener measure $p_{t}$ on an abstract Wiener space (AWS, in short) $(H, B)$. It was shown that the convolution $p_{t} * f$ is infinitely Fréchet differentiable for $f \in L_{c}^{\alpha}\left(B, p_{t}\right)$ with $\alpha>1$. Further, Lee [12] applied the results concerning regularity of $p_{t} * f$ to show that there is one-to-one correspondence between the homogeneous chaoses of order $n$ and the space of the Gauss transforms of $n$-linear continuous Hilbert-Schmidt operators on the complexification $H_{c}$ of $H$. In that paper, Lee did not apply the analyticity of $p_{t} * f$ to study the regularity.

[^0]In infinite-dimensional Gaussian analysis, the semigroup $p_{t} * f$ plays the role of the $S$ transform of $f$, which provides an isometric link between the $L^{2}$-space and the Bargmann-Segal-Dwyer spaces. If $H$ is finite-dimensional, a well-known fact is that the Taylor expansion of an Bargmann analytic function is an orthogonal decomposition with respect to the Gauss measure on the complex Euclidean space. Then the Wiener-Itô decomposition is immediately achieved by taking the inverse $S$-transform, that is, the Gauss transform.

In this paper, we first study the relationship between the $S$-transform, the Gauss transform and Hermite polynomials in order to establish the analogue of Wiener-Itô theorem on finite-dimensional Gaussian spaces in Section 2. Our basic idea is to consider the $S$ transform of an $L^{2}$-function, and then expand it into a Taylor series; finally the analogue of Wiener-Itô decomposition is obtained by taking the Gauss transform. In Section 3, we review some basic properties of AWS. For the $S$-transform and Gauss transform, we will study in Sections 4 and 5 . It is worth noting that every $L^{2}$-function on a general infinitedimensional AWS can be regarded as an $L^{2}$-limit of a sequence of cylinder functions by taking the conditional expectation (see Lemma 3.4). Based on this point of view, we will apply the results obtained in Section 2 to cylinder functions, and then use Lemma 3.4 to arrive at the desired Wiener-Itô theorem on $(H, B)$ in Section 5 . And, by defining the Gauss transform on Bargmann-Segal-Dwyer space and showing the relationship with the $S$-transform, the Wiener-Itô decomposition will be expressed in terms of the Gauss transform in Theorem 5.3.

Notations. Throughout this paper, we always use boldface to represent multi-indices, and elements in multi-dimensional real or complex Euclidean spaces, or to emphasize elements in the complexification of a real locally convex space. In addition, we list some of shorthand notations that are often used in this paper.
(1) For a real locally convex space $V, V_{c}$ denotes its complexification. If $V$ is a real Hilbert space endowed with $\|\cdot\|_{V}$-norm induced by the inner product $\langle\langle\cdot, \cdot\rangle\rangle_{V}$, then $V_{c}$ is a complex Hilbert space with the $\|\cdot\|_{V_{c}}$-norm given by $\left\|\phi_{1}+\mathrm{i} \phi_{2}\right\|_{V_{c}}^{2}=$ $\left\|\phi_{1}\right\|_{V}^{2}+\left\|\phi_{2}\right\|_{V}^{2}$ induced by the inner product defined by $\left\langle\left\langle\phi_{1}+\mathrm{i} \phi_{2}, \psi_{1}+\mathrm{i} \psi_{2}\right\rangle\right\rangle_{V_{c}}=$ $\left\langle\left\langle\phi_{1}, \psi_{1}\right\rangle\right\rangle_{V}+\left\langle\left\langle\phi_{2}, \psi_{2}\right\rangle\right\rangle_{V}+\mathrm{i}\left(\left\langle\left\langle\phi_{2}, \psi_{1}\right\rangle\right\rangle_{V}-\left\langle\left\langle\phi_{1}, \psi_{2}\right\rangle\right\rangle_{V}\right)$ for any $\phi_{1}, \phi_{2}, \psi_{1}$ and $\psi_{2}$ in $V$. In addition, we define $(\cdot, \cdot)_{V_{c}}$ on $V_{c} \times V_{c}$ as a bilinear form given by

$$
\left(\phi_{1}+\mathrm{i} \phi_{2}, \psi_{1}+\mathrm{i} \psi_{2}\right)_{V_{c}}=\left\langle\left\langle\phi_{1}, \psi_{1}\right\rangle\right\rangle_{V}-\left\langle\left\langle\phi_{2}, \psi_{2}\right\rangle\right\rangle_{V}+\mathrm{i}\left(\left\langle\left\langle\phi_{2}, \psi_{1}\right\rangle\right\rangle_{V}+\left\langle\left\langle\phi_{1}, \psi_{2}\right\rangle\right\rangle_{V}\right) .
$$

If $V=\mathbb{R}^{k}, V_{c}=\mathbb{C}^{k}$ endowed with the dot product in this paper.
(2) If $T$ is an $n$-linear operator on $X \times \cdots \times X$ ( $n$-times) ( $X=V$ or $V_{c}$ ), $T x_{1} \cdots x_{n}$ means $T\left(x_{1}, \ldots, x_{n}\right)$ for $x_{1}, \ldots, x_{n} \in X$, and if $x_{1}=\cdots=x_{n}=x$, we write $T x \cdots x$ as $T x^{n}$.

Let $\mathbb{N}_{0}$ be the set of all nonnegative integers. For any multi-index $\boldsymbol{\alpha}=\left(n_{1}, \ldots, n_{k}\right) \in$ $\mathbb{N}_{0}^{k}$ and $\mathbf{z}=\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{C}^{k}$, define
(3) $|\boldsymbol{\alpha}|=n_{1}+\cdots+n_{k}, \boldsymbol{\alpha}!=n_{1}!\cdots n_{k}!$,
(4) $\mathbf{z}^{\alpha}=z_{1}^{n_{1}} \cdots z_{k}^{n_{k}}$.

Similarly, we define the differential operator $\left(\frac{\partial}{\partial \mathrm{x}}\right)^{\alpha}$ by
(5) $\left(\frac{\partial}{\partial \mathbf{x}}\right)^{\boldsymbol{\alpha}}=\left(\frac{\partial}{\partial x_{1}}\right)^{n_{1}} \cdots\left(\frac{\partial}{\partial x_{k}}\right)^{n_{k}}$ for $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}$ or $\mathbb{C}^{k}$.

## 2. Finite-dimensional Gaussian space

Let $\mu_{1}(d u)$ be the standard Gaussian measure on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ with mean 0 and variance 1. Apply the orthogonalization procedure to the monomials $\left\{1, u, u^{2}, \ldots, u^{n}, \ldots\right\}$ in $L_{c}^{2}\left(\mathbb{R}, \mu_{1}\right)$, in this order, to get Hermite polynomials $\left\{H_{0}(u), H_{1}(u), \ldots, H_{n}(u), \ldots\right\}$. Here $H_{n}$ is a polynomial of degree $n$ with leading coefficient 1 , and the generating function of $\left\{H_{n}\right\}$ is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{H_{n}(u)}{n!} z^{n}=e^{u z-\frac{1}{2} z^{2}}, \quad \forall u \in \mathbb{R}, z \in \mathbb{C} \tag{2.1}
\end{equation*}
$$

And, by substituting the formula $e^{-\frac{1}{2} z^{2}}=\int_{-\infty}^{\infty} e^{\mathrm{i} z v} \mu_{1}(d v), \mathrm{i}=\sqrt{-1}$ and $z \in \mathbb{C}$, into (2.1), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{H_{n}(u)}{n!} z^{n}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \int_{-\infty}^{\infty}(u+\mathrm{i} v)^{n} \mu_{1}(d v), \quad \forall u, z \in \mathbb{C} \tag{2.2}
\end{equation*}
$$

For other related properties, we refer the reader to 17.
Let $\boldsymbol{\mu}_{r}(d \mathbf{v}), r>0$, be the Gausssian measure on $\left(\mathbb{R}^{k}, \mathscr{B}\left(\mathbb{R}^{k}\right)\right)$ given by

$$
\boldsymbol{\mu}_{r}(d \mathbf{v})=(\sqrt{2 \pi r})^{-k} e^{-\frac{1}{2 r} \mathbf{v} \cdot \mathbf{v}} d \mathbf{v}
$$

where $d \mathbf{v}$ denotes $k$-dimensional Lebesgue measure on $\mathbb{R}^{k}$. Note that $\left(\mathbb{R}^{k}, \mathscr{B}\left(\mathbb{R}^{k}\right), \boldsymbol{\mu}_{1}\right)$ is the product measure space $\left(\mathbb{R}, \mathscr{B}(\mathbb{R}), \mu_{1}\right) \times \cdots \times\left(\mathbb{R}, \mathscr{B}(\mathbb{R}), \mu_{1}\right)$. For any multi-index $\boldsymbol{\alpha}=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{N}_{0}^{k}$ and $\mathbf{u}=\left(u_{1}, \ldots, u_{k}\right) \in \mathbb{R}^{k}$, set the shorthand notation

$$
H_{\boldsymbol{\alpha}}(\mathbf{u})=H_{n_{1}}\left(u_{1}\right) \cdots H_{n_{k}}\left(u_{k}\right)
$$

Comparing the coefficients on both sides of (2.2) yields that

$$
\begin{equation*}
H_{\boldsymbol{\alpha}}(\mathbf{u})=\int_{\mathbb{R}^{k}}(\mathbf{u}+\mathrm{iv})^{\boldsymbol{\alpha}} \boldsymbol{\mu}_{1}(d \mathbf{v}), \quad \forall \boldsymbol{\alpha} \in \mathbb{N}_{0}^{k}, \mathbf{u} \in \mathbb{R}^{k} \tag{2.3}
\end{equation*}
$$

and then, through direct calculation,

$$
\begin{equation*}
\int_{\mathbb{R}^{k}} H_{\boldsymbol{\alpha}}(\mathbf{v}) H_{\boldsymbol{\beta}}(\mathbf{v}) \boldsymbol{\mu}_{1}(d \mathbf{v})=\delta_{\boldsymbol{\alpha}, \boldsymbol{\beta}} \cdot \boldsymbol{\alpha}! \tag{2.4}
\end{equation*}
$$

where $\delta_{\boldsymbol{\alpha}, \boldsymbol{\beta}}=1$ as $\boldsymbol{\alpha}=\boldsymbol{\beta}$; otherwise, 0 .

### 2.1. The $S$-transform on $L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right)$

Let $\phi \in L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right)$ be arbitrarily given. The $S$-transform $S \phi$ of $\phi$ is a complex-valued function on $\mathbb{R}^{k}$ defined by $S \phi(\mathbf{u})=\boldsymbol{\mu}_{1} * \phi(\mathbf{u}), \mathbf{u} \in \mathbb{R}^{k}$, where $\boldsymbol{\mu}_{1} * \phi$ is the convolution of $\phi$ with $\boldsymbol{\mu}_{1}$. It is easily seen by checking their characteristic functions that $\boldsymbol{\mu}_{1}(d \mathbf{v}-\mathbf{u})=$ $e^{\mathbf{v} \cdot \mathbf{u}-\frac{1}{2}|\mathbf{u}|^{2}} \boldsymbol{\mu}_{1}(d \mathbf{v})$ for any $\mathbf{u} \in \mathbb{R}^{k}$. Then we can immediately extend the definition of the $S$-transform of $\phi$ to $\mathbb{C}^{k}$, still denoted by $S \phi$, by

$$
S \phi(\mathbf{z})=\int_{\mathbb{R}^{k}} \phi(\mathbf{v}) e^{(\mathbf{v}, \mathbf{z})-\frac{1}{2}(\mathbf{z}, \mathbf{z})} \boldsymbol{\mu}_{1}(d \mathbf{v}), \quad \forall \mathbf{z} \in \mathbb{C}^{k}
$$

where $(\cdot, \cdot)$ represents $(\cdot, \cdot)_{\mathbb{C}^{k}}$. By applying Hartogs' theorem (see [2]), S $\phi(\mathbf{z})$ is a holomorphic function of $\mathbf{z} \in \mathbb{C}^{k}$; therefore, it enjoys the Taylor series expansion

$$
\begin{equation*}
S \phi(\mathbf{z})=\sum_{\alpha \in \mathbb{N}_{0}^{k}} \frac{\mathbf{z}^{\alpha}}{\boldsymbol{\alpha}!}\left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} S \phi(\mathbf{0}), \quad \forall \mathbf{z} \in \mathbb{C}^{k} \tag{2.5}
\end{equation*}
$$

For any $\mathbf{u} \in \mathbb{R}^{k}$ and $\mathbf{z} \in \mathbb{C}^{k}$, it follows from (2.1) that

$$
e^{(\mathbf{u}, \mathbf{z})-\frac{1}{2}(\mathbf{z}, \mathbf{z})}=\sum_{\alpha \in \mathbb{N}_{0}^{k}} \frac{H_{\boldsymbol{\alpha}}(\mathbf{u})}{\boldsymbol{\alpha}!} \mathbf{z}^{\alpha}
$$

Let $\mathbf{z} \in \mathbb{C}^{k}$ be fixed and consider both sides of the above formula as a function of $\mathbf{u}$. Observe that $\sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k}} \frac{\left|\mathbf{z}^{\alpha}\right|^{2}}{\alpha!}=e^{|\mathbf{z}|^{2}}$ is finite. Then, by (2.4),

$$
e^{(\cdot, \mathbf{z})-\frac{1}{2}(\mathbf{z}, \mathbf{z})}=\sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k}} \frac{\mathbf{z}^{\boldsymbol{\alpha}}}{\boldsymbol{\alpha}!} H_{\boldsymbol{\alpha}} \quad \text { in } L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right)
$$

and thus

$$
\begin{equation*}
S \phi(\mathbf{z})=\sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k}} \frac{\mathbf{z}^{\boldsymbol{\alpha}}}{\boldsymbol{\alpha}!} \int_{\mathbb{R}^{k}} \phi(\mathbf{u}) H_{\boldsymbol{\alpha}}(\mathbf{u}) \boldsymbol{\mu}_{1}(d \mathbf{u}) \tag{2.6}
\end{equation*}
$$

Compare (2.5) with (2.6) to get that

$$
\begin{equation*}
\int_{\mathbb{R}^{k}} \phi(\mathbf{u}) H_{\boldsymbol{\alpha}}(\mathbf{u}) \boldsymbol{\mu}_{1}(d \mathbf{u})=\left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} S \phi(\mathbf{0}), \quad \forall \boldsymbol{\alpha} \in \mathbb{N}_{0}^{k} \tag{2.7}
\end{equation*}
$$

### 2.2. The Segal-Bargmann space of $\mathbb{C}^{k}$

A Bargmann analytic function defined on $\mathbb{C}^{k}$, introduced in 1 , is a holomorphic function, which is square-integrable with respect to the Gausssian measure $\boldsymbol{\mu}_{r}, r>0$, on $\left(\mathbb{C}^{k}, \mathscr{B}\left(\mathbb{C}^{k}\right)\right), \boldsymbol{\mu}_{r}(d \mathbf{z})$ being given by

$$
\boldsymbol{\mu}_{r}(d \mathbf{z})=(\sqrt{2 \pi r})^{-k} e^{-\frac{1}{2 r} \mathbf{z} \cdot \mathbf{z}} d \mathbf{z}
$$

where $d \mathbf{z}$ denotes $2 k$-dimensional Lebesgue measure on $\mathbb{C}^{k}$. Denote the class of Bargmann analytic functions defined above by $\mathcal{K}^{r}\left(\mathbb{C}^{k}\right)$, called the Segal-Bargmann space of $\mathbb{C}^{k}$ (see [6]). One notes that $\mathcal{K}^{r}\left(\mathbb{C}^{k}\right)$ is a complex separable Hilbert space with $\|\cdot\|_{\mathcal{K}^{r}\left(\mathbb{C}^{k}\right)}$-norm induced by the inner product $\langle\langle\cdot, \cdot\rangle\rangle_{\mathcal{K}^{r}\left(\mathbb{C}^{k}\right)}$ defined by

$$
\langle\langle F, G\rangle\rangle_{\mathcal{K}^{r}\left(\mathbb{C}^{k}\right)}=\int_{\mathbb{C}^{k}} F(\mathbf{z}) \overline{G(\mathbf{z})} \boldsymbol{\mu}_{r}(d \mathbf{z})
$$

For any $F \in \mathcal{K}^{r}\left(\mathbb{C}^{k}\right)$, it enjoys the Taylor expansion $\sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k}} \frac{\mathbf{z}^{\boldsymbol{\alpha}}}{\boldsymbol{\alpha}!}\left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} F(\mathbf{0})$, and for $r=1 / 2$, we have, through direct calculation, that

$$
\begin{equation*}
\int_{\mathbb{C}^{k}} \mathbf{z}^{\boldsymbol{\alpha}} \overline{\mathbf{z}}^{\boldsymbol{\beta}} \boldsymbol{\mu}_{1 / 2}(d \mathbf{z})=\delta_{\boldsymbol{\alpha}, \boldsymbol{\beta}} \cdot \boldsymbol{\alpha}!, \quad \forall \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{N}_{0}^{k} \tag{2.8}
\end{equation*}
$$

Then it immediately from (2.5), (2.7) and (2.8) that $S \phi \in \mathcal{K}^{1 / 2}\left(\mathbb{C}^{k}\right)$, where

$$
\begin{equation*}
\|S \phi\|_{\mathcal{K}^{1 / 2}\left(\mathbb{C}^{k}\right)}^{2}=\sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k}} \frac{1}{\boldsymbol{\alpha}!}\left|\int_{\mathbb{R}^{k}} \phi(\mathbf{u}) H_{\boldsymbol{\alpha}}(\mathbf{u}) \boldsymbol{\mu}_{1}(d \mathbf{u})\right|^{2}<+\infty \tag{2.9}
\end{equation*}
$$

For any holomorphic function $F$ on $\mathbb{C}^{k}$ and $n \in \mathbb{N}$, let $D^{n} F(\mathbf{0})$ be the function defined by

$$
\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right) \in \mathbb{C}^{k} \times \cdots \times\left.\mathbb{C}^{k} \mapsto \frac{\partial^{n}}{\partial \xi_{1} \cdots \partial \xi_{n}}\right|_{\xi_{1}=\cdots=\xi_{n}=0} F\left(\xi_{1} \mathbf{z}_{1}+\cdots+\xi_{n} \mathbf{z}_{n}\right)
$$

Then $D^{n} F(\mathbf{0})$ is a symmetric $n$-linear form (see $[7]$ ), and

$$
\begin{equation*}
\sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k},|\boldsymbol{\alpha}|=n} \frac{\mathbf{z}^{\boldsymbol{\alpha}}}{\boldsymbol{\alpha}!}\left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} F(\mathbf{0})=\frac{1}{n!} D^{n} F(\mathbf{0}) \mathbf{z}^{n}, \quad \forall \mathbf{z} \in \mathbb{C}^{k} \tag{2.10}
\end{equation*}
$$

where $\mathbf{z}^{n}$ means $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ with $z_{1}=z_{2}=\cdots=z_{n}$. By (2.8) and together with (2.10), we see that for any $F, G \in \mathcal{K}^{1 / 2}\left(\mathbb{C}^{k}\right)$,

$$
\begin{align*}
\langle\langle F, G\rangle\rangle_{\mathcal{K}^{1 / 2}\left(\mathbb{C}^{k}\right)} & =\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k},|\boldsymbol{\alpha}|=n} \frac{n!}{\boldsymbol{\alpha}!}\left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} F(\mathbf{0})\left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} G(\mathbf{0})  \tag{2.11}\\
& =\sum_{n=0}^{\infty} \frac{1}{n!}\left\langle\left\langle D^{n} F(\mathbf{0}), D^{n} G(\mathbf{0})\right\rangle\right\rangle_{\mathcal{H S}}
\end{align*}
$$

where $\left\langle\langle\cdot, \cdot\rangle_{\mathcal{H S}}\right.$ means the Hilbert-Schmidt inner product (see [16] for the definition). In particular, for any $\phi \in L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right)$,

$$
\begin{equation*}
\|S \phi\|_{\mathcal{K}^{1 / 2}\left(\mathbb{C}^{k}\right)}^{2}=\sum_{n=0}^{\infty} \frac{1}{n!}\left\|D^{n} S \phi(\mathbf{0})\right\|_{\mathcal{H S}}^{2} \tag{2.12}
\end{equation*}
$$

where $\|\cdot\|_{\mathcal{H S}}$ denotes the Hilbert-Schmidt operator norm induced by $\langle\langle\cdot, \cdot\rangle\rangle_{\mathcal{H} \mathcal{S}}$.

### 2.3. The Gauss transform on $\mathcal{K}^{1 / 2}\left(\mathbb{C}^{k}\right)$

Let $F \in \mathcal{K}^{1 / 2}\left(\mathbb{C}^{k}\right)$ be given. The Gauss transform $\sigma(F)$ of $F$ is a function on $\mathbb{R}^{k}$ defined by

$$
\sigma(F)(\cdot)=\int_{\mathbb{R}^{k}} F(\cdot+\mathrm{i} \mathbf{v}) \boldsymbol{\mu}_{1}(d \mathbf{v}) \quad \text { (if it exists). }
$$

It follows from (2.3) that for any $\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k}$ and $\mathbf{u} \in \mathbb{R}^{k}$,

$$
\begin{equation*}
\sigma\left(\mathbf{z}^{\boldsymbol{\alpha}}\right)(\mathbf{u})=\int_{\mathbb{R}^{k}}(\mathbf{u}+\mathrm{i} \mathbf{v})^{\boldsymbol{\alpha}} \boldsymbol{\mu}_{1}(d \mathbf{v})=H_{\boldsymbol{\alpha}}(\mathbf{u}), \tag{2.13}
\end{equation*}
$$

and therefore, by 2.6), $S \sigma\left(\mathbf{z}^{\alpha}\right)=\mathbf{z}^{\alpha}$. Now, for any $n \in \mathbb{N}$, set

$$
\psi_{n} \equiv \sigma\left(\sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k},|\boldsymbol{\alpha}| \leq n} \frac{1}{\boldsymbol{\alpha}!}\left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} F(\mathbf{0}) \mathbf{z}^{\boldsymbol{\alpha}}\right)\left(\text { by } \stackrel{\sqrt{2.13})}{ } \sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k},|\boldsymbol{\alpha}| \leq n} \frac{1}{\boldsymbol{\alpha}!}\left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} F(\mathbf{0}) \cdot H_{\boldsymbol{\alpha}} .\right.
$$

As $n$ tends to infinity, since, by (2.11),

$$
\sum_{\alpha \in \mathbb{N}_{0}^{k}} \frac{1}{\boldsymbol{\alpha}!}\left|\left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} F(\mathbf{0})\right|^{2}=\|F\|_{\mathcal{K}^{1 / 2}\left(\mathbb{C}^{k}\right)}^{2}<+\infty
$$

it follows by (2.4) that $\psi_{n} \rightarrow \psi$ in $L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right)$, where

$$
\begin{equation*}
\psi=\sum_{n=0}^{\infty} \sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k},|\boldsymbol{\alpha}|=n} \frac{1}{\boldsymbol{\alpha}!}\left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} F(\mathbf{0}) \cdot H_{\boldsymbol{\alpha}} \tag{2.14}
\end{equation*}
$$

Consequently, by (2.6), $S \psi=F$.
2.4. Wiener-Itô decomposition of $L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right)$

Let $\phi \in L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right)$ be given. Combine (2.5) with (2.14) to get that

$$
S\left(\sum_{n=0}^{\infty} \sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k},|\boldsymbol{\alpha}|=n} \frac{1}{\boldsymbol{\alpha}!}\left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} S \phi(\mathbf{0}) \cdot H_{\boldsymbol{\alpha}}\right)=S \phi
$$

which implies that

$$
\begin{equation*}
S\left(\phi-\sum_{n=0}^{\infty} \sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k},|\boldsymbol{\alpha}|=n} \frac{1}{\boldsymbol{\alpha}!}\left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} S \phi(\mathbf{0}) \cdot H_{\boldsymbol{\alpha}}\right)(\mathbf{z})=0, \quad \forall \mathbf{z} \in \mathbb{C}^{k} \tag{2.15}
\end{equation*}
$$

Then we need the following
Lemma 2.1. The $S$-transform on $L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right)$ is injective.

Proof. Let $\psi \in L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right)$. If $S \psi(\mathbf{z})=0$ for any $\mathbf{z} \in \mathbb{C}^{k}$, then $S \psi(\mathrm{iu})=0$ for any $\mathbf{u} \in \mathbb{R}^{k}$. Therefore

$$
\int_{\mathbb{R}^{k}} \psi(\mathbf{v}) e^{\mathrm{i} \cdot \mathbf{u}} \boldsymbol{\mu}_{1}(d \mathbf{v})=0, \quad \forall \mathbf{u} \in \mathbb{R}^{k}
$$

This implies that $\psi(\mathbf{v}) e^{-\frac{1}{2} \mathbf{v} \cdot \mathbf{v}}=0$ and hence $\psi(\mathbf{v})=0$ for almost every $\mathbf{v} \in \mathbb{R}^{k}$ with respect to Lebesgue measure $\mathbf{m}_{k}$ on $\mathbb{R}^{k}$. Since $\boldsymbol{\mu}_{1}$ is absolutely continuous with respect to $\mathbf{m}_{k}, \psi=0$ almost everywhere on $\mathbb{R}^{k}$ with respect to $\boldsymbol{\mu}_{1}$. The proof is complete.

Applying Lemma 2.1 together with (2.3), (2.10) and (2.15), we see that

$$
\begin{align*}
\phi & =\sum_{n=0}^{\infty} \sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k},|\boldsymbol{\alpha}|=n} \frac{1}{\boldsymbol{\alpha}!}\left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} S \phi(\mathbf{0}) \cdot H_{\boldsymbol{\alpha}} \\
& =\sum_{n=0}^{\infty} \sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k},|\boldsymbol{\alpha}|=n} \frac{1}{\boldsymbol{\alpha}!}\left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} S \phi(\mathbf{0}) \int_{\mathbb{R}^{k}}(\cdot+\mathrm{iv})^{\boldsymbol{\alpha}} \boldsymbol{\mu}_{1}(d \mathbf{v})  \tag{2.16}\\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \int_{\mathbb{R}^{k}} D^{n} S \phi(\mathbf{0})(\cdot+\mathrm{i})^{n} \boldsymbol{\mu}_{1}(d \mathbf{v}) \quad \text { in } L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right) .
\end{align*}
$$

As an immediate consequence of the first equality of (2.16), $\left\{(\boldsymbol{\alpha}!)^{-1 / 2} H_{\boldsymbol{\alpha}} ; \boldsymbol{\alpha} \in \mathbb{N}_{0}^{k}\right\}$ forms a complete orthonormal basis (CONB, in short) of $L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right)$; therefore, the sum on the right side of 2.9) is exactly equal to $\|\phi\|_{L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right)}^{2}$.

Now, we sum up all arguments in this section toghther with (2.9), (2.12), (2.14) and (2.16) to obtain the following

Theorem 2.2. (i) The $S$-transform $S$ is an isometry from $L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right)$ onto $\mathcal{K}^{1 / 2}\left(\mathbb{C}^{k}\right)$.
(ii) (Wiener-Itô Theorem on $L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right)$ ) Let $\phi \in L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right)$ be given. Then

$$
\phi=\sum_{n=0}^{\infty} \frac{1}{n!} \int_{\mathbb{R}^{k}} D^{n} S \phi(\mathbf{0})(\cdot+\mathrm{i} \mathbf{v})^{n} \boldsymbol{\mu}_{1}(d \mathbf{v}) \quad \text { in } L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right)
$$

Moreover,

$$
\|\phi\|_{L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right)}^{2}=\sum_{n=0}^{\infty} \frac{1}{n!}\left\|D^{n} S \phi(\mathbf{0})\right\|_{\mathcal{H S}}^{2}
$$

Corollary 2.3. Let $\lambda>1$. For $\phi \in L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right)$, if

$$
A_{\lambda}(\phi) \equiv \sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!}\left\|D^{n} S \phi(\mathbf{0})\right\|_{\mathcal{H} \mathcal{S}}^{2}<+\infty
$$

then the Wiener-Itô decomposition of $\phi$, that is the right-hand series of Theorem 2.2 (ii), is defined everywhere in $\mathbb{C}^{k}$ and converges absolutely and uniformly on bounded subsets of $\mathbb{C}^{k}$.

Proof. By using the Cauchy-Schwarz inequality,

$$
\sum_{n=0}^{\infty} \frac{1}{n!} \int_{\mathbb{R}^{k}}\left|D^{n} S \phi(\mathbf{0})(\mathbf{z}+\mathrm{i} \mathbf{v})^{n}\right| \boldsymbol{\mu}_{1}(d \mathbf{v}) \leq \sqrt{A_{\lambda}(\phi)} \int_{\mathbb{R}^{k}} e^{\frac{1}{2 \lambda}(|\mathbf{z}|+|\mathbf{v}|)^{2}} \boldsymbol{\mu}_{1}(d \mathbf{v})
$$

from which the assertion follows.

## 3. Abstract Wiener spaces

Let $H$ be a real separable Hilbert space with $|\cdot|$-norm induced by the inner product $\langle\cdot, \cdot\rangle$, and $\|\cdot\|$ be an another norm defined on $H$ which is weaker than the $|\cdot|$-norm and measurable on $H$. Then the triple $(i, H, B)$ is called an abstract Wiener space (AWS, in short), where $B$ is the completion of $H$ with respect to $\|\cdot\|$-norm and $i$ is the canonical embedding of $H$ into $B$. The AWS was introduced by L. Gross in his celebrated paper [4]. Readers interested in details and other related results concerning AWS may consult [4, 5, 9].

As $H$ is identified as a dense subspace of $B$, we also identify $B^{*}$, the dual of $B$, as a dense subspace of the dual $H^{*}$ of $H$ under the adjoint operator $i^{*}$ of $i$ by the following way: For any $x \in H$ and $\eta \in B^{*},\left\langle x, i^{*}(\eta)\right\rangle=(i(x), \eta)$, where $(\cdot, \cdot)$ denotes the $B$ - $B^{*}$ dual pairing in the subsequent study. Applying the Riesz representation theorem to identify $H^{*}$ with $H$, there are continuous inclusion maps $B^{*} \subset H \subset B$. Then L. Gross (4) proved that $B$ carries a probability measure $p_{t}$, known as the abstract Wiener measure with variance parameter $t>0$, which is characterized as the unique Borel measure on $B$ such that for any $\eta \in B^{*}$,

$$
\begin{equation*}
\int_{B} e^{\mathrm{i}(x, \eta)} p_{t}(d x)=e^{-\frac{t}{2}|\eta|^{2}} \tag{3.1}
\end{equation*}
$$

Remark 3.1. If $H=\mathbb{R}^{k}$, then $B^{*}=H=B$. For any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{k},(\mathbf{u}, \mathbf{v})=\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u} \cdot \mathbf{v}$, and $p_{t}$ is exactly the Gaussian measure $\mu_{t}$ on $\left(\mathbb{R}^{k}, \mathscr{B}\left(\mathbb{R}^{k}\right)\right)$ given by

$$
p_{t}(d \mathbf{v})=(\sqrt{2 \pi t})^{-k} e^{-\frac{1}{2 t} \mathbf{v} \cdot \mathbf{v}} d \mathbf{v}
$$

where $d \mathbf{v}$ denotes $k$-dimensional Lebesgue measure on $\mathbb{R}^{k}$.
From (3.1), it follows that $(\cdot, \eta), \eta \in B^{*}$, is a random variable on $\left(B, \mathscr{B}(B), p_{1}\right)$, distributed by the law of $N\left(0,|\eta|^{2}\right)$. For any $h \in H$, let $\left\{\eta_{n}\right\}$ be a sequence in $B^{*}$ such that $\left|\eta_{n}-h\right| \rightarrow 0$ as $n \rightarrow \infty$. Then $\left\{\left(\cdot, \eta_{n}\right)\right\}$ forms a Cauchy sequence in $L_{c}^{2}\left(B, p_{1}\right)$, the $L^{2}\left(B, p_{1}\right)$-limit of which is denoted by $\mathbf{n}(h)$. As $h \in B^{*}, \mathbf{n}(h)=(\cdot, h)$, and for any $h \in H$, $\mathbf{n}(h)$ is independent of the choice of $\left\{\eta_{n}\right\}$ and distributed by the law of $N\left(0,|h|^{2}\right)$. Regard $\mathbf{n}$ as a function from $H$ into $L^{2}\left(B, p_{1}\right)$. Then it can be further extended to $H_{c}$ by defining, for any $h_{1}, h_{2} \in H, \mathbf{n}\left(h_{1}+\mathrm{i} h_{2}\right)=\mathbf{n}\left(h_{1}\right)+\mathrm{in}\left(h_{2}\right)$. It is easy to check that $\mathbf{n}$ is linear from $H_{c}$ into $L_{c}^{2}\left(B, p_{1}\right)$, and for any $\mathbf{h}, \mathbf{k} \in H_{c}$,

$$
\begin{equation*}
(\mathbf{h}, \mathbf{k})_{H_{c}}=\int_{B} \mathbf{n}(\mathbf{h})(x) \mathbf{n}(\mathbf{k})(x) p_{1}(d x) \tag{3.2}
\end{equation*}
$$

Example 3.2. Let $\mathcal{C}$ denote the Banach space, consisting of all real-valued continuous functions $x(t)$ in the unit interval $[0,1]$ with $x(0)=0$, endowed with the supremum norm $|\cdot|_{\infty}$. Let $\mathcal{C}^{\prime}$ be the Cameron-Martin space which is a Hilbert space, consisting of all absolutely continuous functions $x \in \mathcal{C}$ with a square integrable derivative $\dot{x}$, with the norm $|\cdot|_{0}$ induced by the inner product $\langle\cdot, \cdot\rangle_{0}$ defined by $\langle x, y\rangle_{0}=\int_{0}^{1} \dot{x}(t) \dot{y}(t) d t$ for any $x, y \in \mathcal{C}^{\prime}$. The space $\mathcal{C}^{\prime}$ is usually called the Cameron-Martin space and it is well-known that $\left(i, \mathcal{C}^{\prime}, \mathcal{C}\right)$ forms an AWS (see [4, 9]). The triple $\left(i, \mathcal{C}^{\prime}, \mathcal{C}\right)$ is known as the classical Wiener space. As $\mathcal{C}^{\prime}$ is a dense subspace of $\mathcal{C}$, we identify the dual space $\mathcal{C}^{*}$ of $\mathcal{C}$ as a dense subspace of the dual space $\left(\mathcal{C}^{\prime}\right)^{*}$ of $\mathcal{C}^{\prime}$ under the adjoint operator $i^{*}$ of $i$. Then $\mathcal{C}^{*}$ is regarded as the set of all $y \in \mathcal{C}^{\prime}$ satisfying the properties that $\dot{y}$ is right continuous and of bounded variation with $\dot{y}(1)=0$. Moreover, for any $x \in \mathcal{C}$ and $y \in \mathcal{C}^{*}$,

$$
(x, y)=-\int_{0}^{1} x(t) d \dot{y}(t)
$$

where $(\cdot, \cdot)$ is the $\mathcal{C}-\mathcal{C}^{*}$ pairing. Let $\mu$ be the associated abstract Wiener measure. Then a standard Brownian motion $B(t)$ can be represented by $B(t ; x)=x(t)=\left(x, \alpha_{t}\right)$ for any $x \in \mathcal{C}$ and $0 \leq t \leq 1$, where $\alpha_{t}(s)=\min \{t, s\}$. Moreover, apply the integration by parts formula to see that for any $y \in \mathcal{C}^{*}$ and $x \in \mathcal{C},(x, y)=\int_{0}^{1} \dot{y}(t) d B(t ; x)$, where the righthand integral is a Riemann-Stieltjes integral. From this equality it immediately follows that the random variable $\mathbf{n}(y)$ is the Wiener integral $\int_{0}^{1} \dot{y}(t) d B(t)$. For the further details, we refer the reader to 9,14 .
Example 3.3. Let $\mathbf{A}=-\left(\frac{d}{d u}\right)^{2}+1+u^{2}$ be a densely defined self-adjoint operator on $L^{2}(\mathbb{R}, d u)$ with respect to the Lebesgue measure $d u$, and $\left\{h_{n} ; n \in \mathbb{N}_{0}\right\}$ be a CONB for $L^{2}(\mathbb{R}, d u)$, consisting of all Hermite functions on $\mathbb{R}$, formed by the eigenfunctions of $\mathbf{A}$ with corresponding eigenvalues $2 n+2, n \in \mathbb{N}_{0}$, where $h_{n}(u)=(\sqrt{\sqrt{\pi} n!})^{-1} H_{n}(\sqrt{2} u) e^{-\frac{1}{2} u^{2}}$. Let $\mathcal{S}$ be the Schwartz space of real-valued, rapidly decreasing, and infinitely differentiable functions on $\mathbb{R}$ with its dual $\mathcal{S}^{\prime}$, the spaces of tempered distributions. For each $p \in \mathbb{R}$, let $\mathcal{S}_{p}$ denote the space of all functions $f$ in $\mathcal{S}^{\prime}$ having $|f|_{p}^{2} \equiv \sum_{n=0}^{\infty}(2 n+2)^{2 p}\left|\left(f, h_{n}\right)\right|^{2}<+\infty$, where $(\cdot, \cdot)$ always denotes the $\mathcal{S}^{\prime}-\mathcal{S}$ pairing. Then $\mathcal{S}_{p}, p \in \mathbb{R}$, forms a real Hilbert space with the inner product $\langle\cdot, \cdot\rangle_{p}$ induced by $|\cdot|_{p}$. The dual space $\mathcal{S}_{p}^{\prime}, p \in \mathbb{R}$, is unitarily equivalent to $\mathcal{S}_{-p}$. Then we have the continuous inclusions:

$$
\mathcal{S} \subset \mathcal{S}_{q} \subset \mathcal{S}_{p} \subset L^{2}(\mathbb{R}, d u)=\mathcal{S}_{0} \subset \mathcal{S}_{-p} \subset \mathcal{S}_{-q} \subset \mathcal{S}^{\prime}
$$

where $0<p<q<+\infty$. One notes that $\mathcal{S}$ is the projective limit of $\left\{\mathcal{S}_{p} ; p>0\right\}$. In fact, $\mathcal{S}$ is a nuclear space, and thus $\mathcal{S}^{\prime}$ is the inductive limit of $\left\{\mathcal{S}_{-p} ; p>0\right\}$. The wellknown Minlos theorem (see [3]) guarantees the existence of the white noise measure $\mu$ on $\left(\mathcal{S}^{\prime}, \mathscr{B}\left(\mathcal{S}^{\prime}\right)\right)$, the characteristic functional of which is given by

$$
\int_{\mathcal{S}^{\prime}} e^{\mathrm{i}(x, \eta)} \mu(d x)=e^{-\frac{1}{2}|\eta|_{0}^{2}} \quad \text { for all } \eta \in \mathcal{S}
$$

For $p>1 / 2$, it is easy to see that $\left(i, \mathcal{S}_{0}, \mathcal{S}_{-p}\right)$ forms an AWS (see 10, 15), the measurable support of $\mu$ is contained in $\mathcal{S}_{-p}$ and $\mu$ coincides with the associated abstract Wiener measure. The probability space $\left(\mathcal{S}^{\prime}, \mathscr{B}\left(\mathcal{S}^{\prime}\right), \mu\right)$ is known as the white noise space, and the Brownian motion $B=\{B(t) ; t \in \mathbb{R}\}$ on $\left(\mathcal{S}^{\prime}, \mathscr{B}\left(\mathcal{S}^{\prime}\right), \mu\right)$ can be represented by

$$
B(t ; x)= \begin{cases}\mathbf{n}\left(\mathbf{1}_{[0, t]}\right)(x) & \text { if } t \geq 0 \\ -\mathbf{n}\left(\mathbf{1}_{[t, 0]}\right)(x) & \text { if } t<0, x \in \mathcal{S}^{\prime}\end{cases}
$$

where $\mathbf{1}_{A}$ means the indicator function of the set $A$. Moreover, for any $\eta \in \mathcal{S}_{0}, \mathbf{n}(h)$ is exactly the Wiener integral $\int_{-\infty}^{\infty} \eta(t) d B(t)$.

Next, assume that $H$ is infinite-dimensional, and $\left\{e_{j} \in B^{*} ; j \in \mathbb{N}\right\}$ is a CONB of $H$. Then, for any $\mathbf{h} \in H_{c}$, we have

$$
\mathbf{n}(\mathbf{h})=\sum_{j=1}^{\infty}\left\langle\mathbf{h}, e_{j}\right\rangle \mathbf{n}\left(e_{j}\right) \quad \text { in } L_{c}^{2}\left(B, p_{1}\right) .
$$

Let $\mathscr{B}_{k}$ be the $\sigma$-field generated by the random variables $\left(\cdot, e_{j}\right)$ for $j=1,2, \ldots, k$. Then $\left\{\mathscr{B}_{k} ; k \in \mathbb{N}\right\}$ is a filtration. It is worth noting that the $\sigma$-field $\mathscr{B}_{\infty} \equiv \bigvee_{k=1}^{\infty} \mathscr{B}_{k}$ coincides with $\mathscr{B}(B)$ (see $[9])$. The following lemma plays an important role, which will enable us to extend the results of Section 2 from finite dimensions to infinite dimensions.

Lemma 3.4. For any $f \in L_{c}^{2}\left(B, p_{1}\right), \mathbb{E}\left[f \mid \mathscr{B}_{k}\right]$ converges to $f$ in $L_{c}^{2}\left(B, p_{1}\right)$ as $k \rightarrow \infty$, where $\mathbb{E}\left[\varphi \mid \mathscr{B}_{k}\right]$ means the conditional expectation of $\varphi$ relative to $\mathscr{B}_{k}$.

Proof. Let $\varepsilon>0$ be given. By applying the Carathéodory-Hahn extension theorem (see [18]), there exists a simple function $f_{\varepsilon}=\sum_{j=1}^{m} a_{j} \mathbf{1}_{E_{j}}, a_{j}$ 's $\in \mathbb{C}$, such that $E_{j}$ 's $\in \bigcup_{k=1}^{\infty} \mathscr{B}_{k}$ and $\left\|f-f_{\varepsilon}\right\|_{L_{c}^{2}\left(B, p_{1}\right)}<\varepsilon / 2$. Let $N \in \mathbb{N}$ such that $E_{j}$ 's $\in \mathscr{B}_{N}$. Then, for any $k \geq N$, $f_{\varepsilon} \in \mathscr{B}_{k}$ and

$$
\begin{aligned}
\left\|f-\mathbb{E}\left[f \mid \mathscr{B}_{k}\right]\right\|_{L_{c}^{2}\left(B, p_{1}\right)}^{2} & \leq 2\left(\left\|f-f_{\varepsilon}\right\|_{L_{c}^{2}\left(B, p_{1}\right)}^{2}+\left\|f_{\varepsilon}-\mathbb{E}\left[f \mid \mathscr{B}_{k}\right]\right\|_{L_{c}^{2}\left(B, p_{1}\right)}^{2}\right) \\
& =2\left(\left\|f-f_{\varepsilon}\right\|_{L_{c}^{2}\left(B, p_{1}\right)}^{2}+\left\|\mathbb{E}\left[f_{\varepsilon}-f \mid \mathscr{B}_{k}\right]\right\|_{L_{c}^{2}\left(B, p_{1}\right)}^{2}\right) \\
& \leq 4\left\|f-f_{\varepsilon}\right\|_{L_{c}^{2}\left(B, p_{1}\right)}^{2}<\varepsilon,
\end{aligned}
$$

where the last inequality is obtained by Jensen's inequality. The proof is complete.
4. The $S$-transform on $L_{c}^{2}\left(B, p_{1}\right)$

In this and next section, $(i, H, B)$ denotes a fixed but arbitrary AWS as given in Section 3 , where $H$ is always assumed to be infinitely dimensional. Roughly speaking, our basic idea of deducing the relevant formulas in an infinite-dimensional space is to consider the
cylinder functions in the beginning; then apply the results obtained in Section 2 to these functions, and finally use Lemma 3.4 to arrive at the results by taking the limits. For example, the arguments in (4.2) and the procedure from (5.1) to $\sqrt{5.4)}$ is a typical process of our basic idea.

Let $f \in L_{c}^{2}\left(B, p_{1}\right)$ be given. Define the $S$-transform $S_{\infty} f$ of $f$ be a function by $S_{\infty} f(h)=p_{1} * f(h), h \in H$, where $p_{1} * f$ is the convolution of $f$ with $p_{1}$. For any $h \in H$, define $p_{1}(h, E)=p_{1}(E-h), E \in \mathscr{B}(B)$. It is well-known (see [9]) that $p_{1}(d x)=p_{1}(-d x)$ and $p_{1}(h, \cdot)$ is absolutely continuous with respect to $p_{1}$, the associated Radon-Nikodym derivative being given by $e^{\mathbf{n}(h)-\frac{1}{2}|h|^{2}}$. Then, for any $h \in H$,

$$
S_{\infty} f(h)=\int_{B} f(x+h) p_{1}(d x)=\int_{B} f(x) e^{\mathbf{n}(h)(x)-\frac{1}{2}|h|^{2}} p_{1}(d x) .
$$

And, there is a natural extension of $S_{\infty} f$ to $H_{c}$, still denoted by $S_{\infty} f$, given by

$$
S_{\infty} f(\mathbf{h})=\int_{B} f(x) e^{\mathbf{n}(\mathbf{h})(x)-\frac{1}{2}(\mathbf{h}, \mathbf{h})_{H_{c}}} p_{1}(d x), \quad \mathbf{h} \in H_{c}
$$

In fact, if $\mathbf{h} \in H_{c}$, say $\mathbf{h}=h_{1}+\mathrm{i} h_{2} \in H_{c}$ with $h_{1}, h_{2} \in H$, then

$$
\left|S_{\infty} f(\mathbf{h})\right| \leq \int_{B}|f(x)| e^{\mathbf{n}\left(h_{1}\right)(x)-\frac{1}{2}\left(\left|h_{1}\right|^{2}-\left|h_{2}\right|^{2}\right)} p_{1}(d x) \leq\|f\|_{L_{c}^{2}\left(B, p_{1}\right)} \cdot e^{\frac{1}{2}|\mathbf{h}|^{2}}
$$

which implies that $S_{\infty} f$ is locally bounded in $H_{c}$. In addition, for any $\mathbf{h}, \mathbf{k} \in H_{c}$, it is easily seen that the function $z \in \mathbb{C} \mapsto S_{\infty} f(\mathbf{h}+z \mathbf{k})$ is holomorphic. Then $S_{\infty} f(\mathbf{h})$ is an analytic function of $\mathbf{h} \in H_{c}$ (see [7]); therefore, $S_{\infty} f$ is Fréchet differentiable in $H_{c}$, and $D^{n} S_{\infty} f(\mathbf{0}), n \in \mathbb{N}$, is a continuous symmetric $n$-linear form, where $D$ is the Fréchet derivative of $S_{\infty} f$. Moreover, $S_{\infty} f$ enjoys the Taylor expansion:

$$
S_{\infty} f(\mathbf{h})=\sum_{n=0}^{\infty} \frac{1}{n!} D^{n} S_{\infty} f(\mathbf{0}) \mathbf{h}^{n}, \quad \forall \mathbf{h} \in H_{c}
$$

Let $\left\{e_{j} \in B^{*} ; j=1,2, \ldots\right\}$ be a CONB of $H$. For any $k \in \mathbb{N}$, let $S_{k}$ be the $S$ transform on $L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right)$. Denote $\mathbb{E}\left[f \mid \mathscr{B}_{k}\right]$ by $f_{k}$, where $\mathscr{B}_{k}$ is a Borel $\sigma$-subfield of $\mathscr{B}(B)$ defined as in the previous section. A well-known fact is that $f_{k}$ can be represented as $\phi_{k}\left(\mathbf{n}\left(e_{1}\right), \ldots, \mathbf{n}\left(e_{k}\right)\right)$, where $\phi_{k} \in L_{c}^{2}\left(\mathbb{R}^{k}, \boldsymbol{\mu}_{1}\right)$. Here one notes that

$$
p_{1}\left(\left\{\left(\mathbf{n}\left(e_{1}\right), \ldots, \mathbf{n}\left(e_{k}\right)\right) \in E\right\}\right)=\boldsymbol{\mu}_{1}(E), \quad \forall E \in \mathscr{B}\left(\mathbb{R}^{k}\right)
$$

For any $k \in \mathbb{N}$ and $x, y \in B$, define $P_{k}(x+\mathrm{i} y)=\sum_{j=1}^{k}\left(\left(x, e_{j}\right)+\mathrm{i}\left(y, e_{j}\right)\right) e_{j} \in B^{*}$, and

$$
\mathbf{z}_{x+\mathrm{i} y, k}=\left(\mathbf{n}\left(e_{1}\right)(x+\mathrm{i} y), \ldots, \mathbf{n}\left(e_{k}\right)(x+\mathrm{i} y)\right) \in \mathbb{C}^{k}
$$

Lemma 4.1. Let $f$ and $\phi_{k}$ be given as above. Then, for any $\mathbf{h} \in H_{c}$, we have

$$
D^{n} S_{k} \phi_{k}(\mathbf{0}) \mathbf{z}_{\mathbf{h}, k}^{n}=D^{n} S_{\infty} f(0)\left(P_{k}(\mathbf{h})\right)^{n} .
$$

Proof. Observe that

$$
\begin{align*}
D^{n} S_{k} \phi_{k}(\mathbf{0}) \mathbf{z}_{\mathbf{h}, k}^{n} & =\left.\frac{d^{n}}{d \xi^{n}}\right|_{\xi=0} S_{k} \phi_{k}\left(\xi \mathbf{z}_{\mathbf{h}, k}\right) \\
& =\left.\frac{d^{n}}{d \xi^{n}}\right|_{\xi=0} \int_{\mathbb{R}^{k}} \phi_{k}(\mathbf{v}) e^{\xi\left(\mathbf{v}, \mathbf{z}_{\mathbf{h}, k}\right)_{\mathbb{C}^{k}-\frac{1}{2}} \xi^{2}\left(\mathbf{z}_{\mathbf{h}, k}, \mathbf{z}_{\mathbf{h}, k}\right)_{\mathbb{C}^{k}}} \boldsymbol{\mu}_{1}(d \mathbf{v})  \tag{4.1}\\
& =\left.\frac{d^{n}}{d \xi^{n}}\right|_{\xi=0} \int_{B} f_{k}(x) e^{\mathbf{n}\left(\xi P_{k}(\mathbf{h})\right)(x)-\frac{1}{2}\left(\xi P_{k}(\mathbf{h}), \xi P_{k}(\mathbf{h})\right)_{H_{c}}} p_{1}(d x) .
\end{align*}
$$

Since $e^{\mathbf{n}\left(\xi P_{k}(\mathbf{h})\right)(x)-\frac{1}{2}\left(\xi P_{k}(\mathbf{h}), \xi P_{k}(\mathbf{h})\right)_{H_{c}}}$ is $\mathscr{B}_{k}$-measurable, 4.1) can be transformed into

$$
\begin{aligned}
& \left.\frac{d^{n}}{d \xi^{n}}\right|_{\xi=0} \int_{B} \mathbb{E}\left[\left.f \cdot e^{\mathbf{n}\left(\xi P_{k}(\mathbf{h})\right)-\frac{1}{2}\left(\xi P_{k}(\mathbf{h}), \xi P_{k}(\mathbf{h})\right)_{H_{c}}} \right\rvert\, \mathscr{B}_{k}\right](x) p_{1}(d x) \\
= & \left.\frac{d^{n}}{d \xi^{n}}\right|_{\xi=0} \int_{B} f(x) e^{\mathbf{n}\left(\xi P_{k}(\mathbf{h})\right)(x)-\frac{1}{2}\left(\xi P_{k}(\mathbf{h}), \xi P_{k}(\mathbf{h})\right)_{H_{c}}} p_{1}(d x)=D^{n} S_{\infty} f(0)\left(P_{k}(\mathbf{h})\right)^{n} .
\end{aligned}
$$

The proof is complete.
Applying Lemma 4.1, the explicit formula of $D^{n} S_{\infty} f(0)$ can be obtained as follows.
Proposition 4.2. For any $f \in L_{c}^{2}\left(B, p_{1}\right)$ and $\mathbf{h}_{1}, \ldots, \mathbf{h}_{n} \in H_{c}$,

$$
D^{n} S_{\infty} f(0) \mathbf{h}_{1}, \cdots \mathbf{h}_{n}=\int_{B} f(x)\left\{\int_{B} \prod_{j=1}^{n}\left(\mathbf{n}\left(\mathbf{h}_{j}\right)(x)+\operatorname{in}\left(\mathbf{h}_{j}\right)(y)\right) p_{1}(d y)\right\} p_{1}(d x)
$$

Proof. First, we consider the case that $\mathbf{h}_{1}=\cdots=\mathbf{h}_{n}=h \in H \backslash\{0\}$. By Lemma 4.1 and applying (2.3), 2.7) and 2.10, one can see that

$$
\begin{align*}
D^{n} S_{\infty} f(0) h^{n} & =\lim _{k \rightarrow \infty} D^{n} S_{\infty} f(0)\left(P_{k}(h)\right)^{n} \\
& =\lim _{k \rightarrow \infty} D^{n} S_{k} \phi_{k}(\mathbf{0}) \mathbf{z}_{h, k}^{n} \\
& =\lim _{k \rightarrow \infty} n!\sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k},|\boldsymbol{\alpha}|=n} \frac{\mathbf{z}_{h, k}^{\boldsymbol{\alpha}}}{\boldsymbol{\alpha}!}\left(\frac{\partial}{\partial \mathbf{z}}\right)^{\boldsymbol{\alpha}} S_{k} \phi_{k}(\mathbf{0}) \\
& =\lim _{k \rightarrow \infty} n!\sum_{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{k},|\boldsymbol{\alpha}|=n} \frac{\mathbf{z}_{h, k}^{\boldsymbol{\alpha}}}{\boldsymbol{\alpha}!} \int_{\mathbb{R}^{k}} \phi_{k}(\mathbf{u}) H_{\boldsymbol{\alpha}}(\mathbf{u}) \boldsymbol{\mu}_{1}(d \mathbf{u})  \tag{4.2}\\
& =\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{k}} \phi_{k}(\mathbf{u})\left\{\int_{\mathbb{R}^{k}}\left(\mathbf{z}_{h, k}, \mathbf{u}+\mathrm{i} \mathbf{v}\right)_{\mathbb{C}^{k}}^{n} \boldsymbol{\mu}_{1}(d \mathbf{v})\right\} \boldsymbol{\mu}_{1}(d \mathbf{u}) \\
& =\lim _{k \rightarrow \infty} \int_{B} f_{k}(x)\left\{\int_{B}\left(x+\mathrm{i} y, P_{k}(h)\right)^{n} p_{1}(d y)\right\} p_{1}(d x) \\
& =\lim _{k \rightarrow \infty} \int_{B} f(x)\left\{\int_{B}\left(x+\mathrm{i} y, P_{k}(h)\right)^{n} p_{1}(d y)\right\} p_{1}(d x),
\end{align*}
$$

where $T_{h, k} \equiv \int_{B}\left(\cdot+\mathrm{i} y, P_{k}(h)\right)^{n} p_{1}(d y)$ is obviously $\mathscr{B}_{k}$-measurable. Note that

$$
T_{h, k}=\left|P_{k}(h)\right|^{n} H_{n}\left(\left(\cdot, P_{k}(h) /\left|P_{k}(h)\right|\right)\right) \sim N\left(0, n!\left|P_{k}(h)\right|^{2 n}\right) .
$$

Let $T_{h}(x)=\int_{B}(\mathbf{n}(h)(x)+\operatorname{in}(h)(y))^{n} p_{1}(d y), x \in B$. Then

$$
T_{h}=|h|^{n} H_{n}(\mathbf{n}(h /|h|)) \sim N\left(0, n!|h|^{2 n}\right) .
$$

As $k \rightarrow \infty$, since $\left|P_{k}(h)\right| \rightarrow|h|$ and $\left(\cdot, P_{k}(h) /\left|P_{k}(h)\right|\right) \rightarrow \mathbf{n}(h /|h|)$ in $L^{2}\left(B, p_{1}\right), T_{h, k}$ converges in probability to $T_{h}$, and moreover $\left\|T_{h, k}\right\|_{L^{2}\left(B, p_{1}\right)}^{2}$ converges to $\left\|T_{h}\right\|_{L^{2}\left(B, p_{1}\right)}^{2}$. By the dominated convergence theorem, $T_{h, k} \rightarrow T_{h}$ in $L^{2}\left(B, p_{1}\right)$. Then it follows from (4.2) that

$$
\begin{equation*}
D^{n} S_{\infty} f(0) h^{n}=\int_{B} f(x)\left\{\int_{B}(\mathbf{n}(h)(x)+\operatorname{in}(h)(y))^{n} p_{1}(d y)\right\} p_{1}(d x) \tag{4.3}
\end{equation*}
$$

By the uniqueness of analytic continuation, the formula 4.3) still holds by replacing $h$ by $h_{1}+z h_{2}, h_{1}, h_{2} \in H$ and $z \in \mathbb{C}$, especially by $\mathbf{h} \in H_{c}$. Finally, by applying the polarization formula (see Appendices of [15]), we complete the proof.

Remark 4.3. In order to study the regularity of heat semigroup generated from $p_{t}$, Lee 11 has already achieved the same formula as in Proposition 4.2 even for $f \in L_{c}^{\alpha}\left(B, p_{t}\right)$ with $\alpha>1$. In the course of derivation, Lee proved it by using induction and more sophisticated calculation than the above proof.

## 5. Wiener-Itô theorem on abstract Wiener spaces

In this section, we would like to establish an analytic version of Wiener-Itô orthogonal decomposition of $L_{c}^{2}\left(B, p_{1}\right)$. Let $\left\{e_{j} \in B^{*} ; j=1,2, \ldots\right\}$ be a CONB of $H$. For any $f \in L_{c}^{2}\left(B, p_{1}\right), f_{k}, \phi_{k}$ are defined as in Section 4. First, we observe by Theorem 2.2 (ii) and Lemma 4.1 that for any $k \in \mathbb{N}$,

$$
\begin{align*}
f_{k}(x) & =\phi_{k}\left(\mathbf{u}_{x, k}\right) \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \int_{\mathbb{R}^{k}} D^{n} S_{k} \phi_{k}(\mathbf{0})\left(\mathbf{u}_{x, k}+\mathrm{i} \mathbf{v}\right)^{n} \boldsymbol{\mu}_{1}(d \mathbf{v}) \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \int_{B} D^{n} S_{k} \phi_{k}(\mathbf{0})\left(\mathbf{u}_{x, k}+\mathrm{i} \mathbf{u}_{y, k}\right)^{n} p_{1}(d y)  \tag{5.1}\\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \int_{B} D^{n} S_{k} \phi_{k}(\mathbf{0}) \mathbf{z}_{P_{k}(x+\mathrm{i} y), k}^{n} p_{1}(d y) \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \int_{B} D^{n} S_{\infty} f(0)\left(P_{k}(x+\mathrm{i} y)\right)^{n} p_{1}(d y) \quad \text { in } L_{c}^{2}\left(B, p_{1}\right) .
\end{align*}
$$

And, for any $x \in B$, it follows by 2.3 and Lemma 4.1 that

$$
\begin{align*}
& \int_{B} D^{n} S_{\infty} f(0)\left(P_{k}(x+\mathrm{i} y)\right)^{n} p_{1}(d y) \\
= & \sum_{1 \leq i_{1}, \ldots, i_{n} \leq k} D^{n} S_{\infty} f(0) e_{i_{1}} \cdots e_{i_{n}} \int_{B} \prod_{j=1}^{n}\left(x+\mathrm{i} y, e_{i_{j}}\right) p_{1}(d y)  \tag{5.2}\\
= & n!\sum_{\ell} \sum_{\substack{1 \leq j_{1}<\cdots<j_{\ell} \leq k \\
n_{1}+\cdots+n_{\ell}=n}} \frac{D^{n} S_{\infty} f(0) e_{j_{1}}^{n_{1}} \cdots e_{j_{\ell}}^{n_{\ell}}}{n_{1}!\cdots n_{\ell}!} H_{\left(n_{1}, \ldots, n_{\ell}\right)}\left(Q_{j_{1}, \ldots, j_{\ell}}(x)\right),
\end{align*}
$$

where

$$
Q_{j_{1}, \ldots, j_{\ell}}(x)=\left(\left(x, e_{j_{1}}\right), \ldots,\left(x, e_{j_{\ell}}\right)\right), \quad x \in B
$$

Since, by (2.4) and (3.2),

$$
\begin{equation*}
\left\{(\boldsymbol{\alpha}!)^{-1 / 2} H_{\boldsymbol{\alpha}}\left(Q_{j_{1}, \ldots, j_{\ell}}(\cdot)\right) ; 1 \leq j_{1}<\cdots<j_{\ell}, \boldsymbol{\alpha} \in \mathbb{N}^{\ell}, \forall \ell \in \mathbb{N}\right\} \tag{5.3}
\end{equation*}
$$

is an orthonormal set in $L_{c}^{2}\left(B, p_{1}\right)$, we combine (5.1) and (5.2) to obtain that

$$
\begin{aligned}
\left\|f_{k}\right\|_{L_{c}^{2}\left(B, p_{1}\right)}^{2} & =\sum_{n=0}^{\infty} \sum_{\ell} \sum_{\substack{\leq j_{1}<\cdots<j_{\ell} \leq k \\
n_{1}+\cdots+n_{\ell}=n}} \frac{\left|D^{n} S_{\infty} f(0) e_{j_{1}}^{n_{1}} \cdots e_{j_{\ell}}^{n_{\ell}}\right|^{2}}{n_{1}!\cdots n_{\ell}!} \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{\substack{1 \leq i_{1}, \ldots, i_{n} \leq k}}\left|D^{n} S_{\infty} f(0) e_{i_{1}} \cdots e_{i_{n}}\right|^{2} .
\end{aligned}
$$

Letting $k \rightarrow \infty$, it follows by Lemma 3.4 that

$$
\begin{align*}
\|f\|_{L_{c}^{2}\left(B, p_{1}\right)}^{2} & =\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{1 \leq i_{1}, \ldots, i_{n} \in \mathbb{N}}\left|D^{n} S_{\infty} f(0) e_{i_{1}} \cdots e_{i_{n}}\right|^{2} \\
& =\sum_{n=0}^{\infty} \frac{1}{n!}\left\|D^{n} S_{\infty} f(0)\right\|_{\mathcal{H S}}^{2}<+\infty . \tag{5.4}
\end{align*}
$$

Then the following are immediate consequences by Proposition 4.2 and (5.1)-(5.4).
Theorem 5.1. (i) $\left\{(\boldsymbol{\alpha}!)^{-1 / 2} H_{\boldsymbol{\alpha}}\left(Q_{j_{1}, \ldots, j_{\ell}}(\cdot)\right) ; 1 \leq j_{1}<\cdots<j_{\ell}, \boldsymbol{\alpha} \in \mathbb{N}^{\ell}, \forall \ell \in \mathbb{N}\right\}$ is a $C O N B$ of $L_{c}^{2}\left(B, p_{1}\right)$.
(ii) Let $f \in L_{c}^{2}\left(B, p_{1}\right)$ be given. Then

$$
f=\sum_{n=0}^{\infty} \sum_{\ell} \sum_{\substack{1 \leq j_{1}<\cdots<j_{\ell} \leq k \\ n_{1}+\cdots+n_{\ell}=n}} \frac{D^{n} S_{\infty} f(0) e_{j_{1}}^{n_{1}} \cdots e_{j_{\ell}}^{n_{\ell}}}{n_{1}!\cdots n_{\ell}!} H_{\left(n_{1}, \ldots, n_{\ell}\right)}\left(Q_{j_{1}, \ldots, j_{\ell}}(\cdot)\right) \quad \text { in } L_{c}^{2}\left(B, p_{1}\right) .
$$

Moreover,
(iii) $\|f\|_{L_{c}^{2}\left(B, p_{1}\right)}^{2}=\sum_{n=0}^{\infty} \frac{1}{n!}\left\|D^{n} S_{\infty} f(0)\right\|_{\mathcal{H S}}^{2}$.

Recall that, for $r>0$, denote by $\mathcal{F}^{r}\left(H_{c}\right)$, the class of analytic functionals on $H_{c}$ with $\|\cdot\|_{\mathcal{F}^{r}\left(H_{c}\right)}$-norm satisfying

$$
\|F\|_{\mathcal{F}^{r}\left(H_{c}\right)}^{2}=\sum_{n=0}^{\infty} \frac{r^{n}}{n!}\left\|D^{n} F(0)\right\|_{\mathcal{H S}^{n}\left(H_{c}\right)}^{2}<+\infty
$$

called the Bargmann-Segal-Dwyer space. Members of $\mathcal{F}^{r}\left(H_{c}\right)$ are called Bargmann-Segal analytic functionals. We refer the interested reader to [13] and the references cited therein. If $H_{c}=\mathbb{C}^{k}$, we remark that $\mathcal{F}^{r}\left(\mathbb{C}^{k}\right)=\mathcal{K}^{r / 2}\left(\mathbb{C}^{k}\right)$ given as in Subsection 2.2. Consequently, it follows by Theorem 5.1(iii) that $S_{\infty} f \in \mathcal{F}^{1}\left(H_{c}\right)$ with $\left\|S_{\infty} f\right\|_{\mathcal{F}^{1}\left(H_{c}\right)}=\|f\|_{L_{c}^{2}\left(B, p_{1}\right)}$.

In order to express the right-hand side of Theorem 5.1(ii) as an integral form shown in 2.16), we need to introduce the Gauss transform $\Lambda$ on $\mathcal{F}^{1}\left(H_{c}\right)$ as follows. For any $F \in \mathcal{F}^{1}\left(H_{c}\right)$, if $F$ has an extension to $B_{c}$, the Gauss transform $\Lambda(F)$ of $F$ is defined as a function on $B$ such that for any $x \in B$,

$$
\Lambda(F)(x)=\int_{B} F(x+\mathrm{i} y) p_{1}(d y) \quad \text { (if it exists). }
$$

Let $\mathcal{L}^{n}\left(B_{c}\right)$ be the space of $n$-linear continuous operators from $B_{c} \times \cdots \times B_{c}$ ( $n$-times) into $\mathbb{C}$, and $\mathcal{L}_{(2)}^{n}\left(H_{c}\right)$ the space of $n$-linear Hilbert-Schmidt operators from $B_{c} \times \cdots \times B_{c}$ ( $n$-times) into $\mathbb{C}$. Then, by applying Kuo's theorem (see Corollary 4.4, p. 85, in [9]), the restriction of $T \in \mathcal{L}^{n}\left(B_{c}\right)$ to $H_{c} \times \cdots \times H_{c}$ is a member of $\mathcal{L}_{(2)}^{n}\left(H_{c}\right)$. For $T \in \mathcal{L}^{n}\left(B_{c}\right)$, let $f_{T}$ be a function on $H_{c}$ given by $f_{T}(\mathbf{x})=T \mathbf{x}^{n}, \mathbf{x} \in B_{c}$. Then $f_{T}$ is obviously an analytic function on $B_{c}$; moreover, $D^{n} f_{T}(0)=n!\cdot \operatorname{sym}(T)$ and $D^{m} f_{T}(0)=0$, if $m \neq n$. Hence $f_{T} \in \mathcal{F}^{1}\left(H_{c}\right)$ and

$$
\Lambda\left(f_{T}\right)(x)=\int_{B} \operatorname{sym}(T)(x+\mathrm{i} y)^{n} p_{1}(d y), \quad x \in B
$$

where $\operatorname{sym}(T)$ denotes the symmetrization of $T$, and the existence of the right-hand integral is guaranteed by the Fernique theorem (see [9]). It is easy to check that $\Lambda\left(f_{T}\right) \in$ $L_{c}^{2}\left(B, p_{1}\right)$. Moreover, we can apply Proposition 4.2 to see that for any $\mathbf{h}_{1}, \ldots, \mathbf{h}_{m} \in H_{c}$,

$$
D^{m} S_{\infty} \Lambda\left(f_{T}\right)(0) \mathbf{h}_{1}, \cdots \mathbf{h}_{m}=\int_{B} \Lambda\left(f_{T}\right)(x)\left\{\int_{B} \prod_{j=1}^{m}\left(\mathbf{n}\left(\mathbf{h}_{j}\right)(x)+\operatorname{in}\left(\mathbf{h}_{j}\right)(y)\right) p_{1}(d y)\right\} p_{1}(d x)
$$

In fact, we have the following
Proposition 5.2. Let $T \in \mathcal{L}^{n}\left(B_{c}\right)$ be arbitrarily given. Then, for any $m \in \mathbb{N}, D^{m} f_{T}(0)=$ $m!\cdot \operatorname{sym}(T)$, if $m=n$; 0 , if $m \neq n$, and for any $\mathbf{h}_{1}, \ldots, \mathbf{h}_{m} \in H_{c}$,

$$
D^{m} f_{T}(0) \mathbf{h}_{1} \cdots \mathbf{h}_{m}=\int_{B} \Lambda\left(f_{T}\right)(x)\left\{\int_{B} \prod_{j=1}^{m}\left(\mathbf{n}\left(\mathbf{h}_{j}\right)(x)+\operatorname{in}\left(\mathbf{h}_{j}\right)(y)\right) p_{1}(d y)\right\} p_{1}(d x)
$$

Proof. It suffices to show that $S_{\infty} \Lambda\left(f_{T}\right)(\mathbf{h})=\operatorname{sym}(T) \mathbf{h}^{n}$ for any $\mathbf{h} \in H_{c}$. Observe that

$$
S_{\infty} \Lambda\left(f_{T}\right)(\mathbf{h})=\int_{B} \int_{B} \operatorname{sym}(T)(\mathbf{h}+x+\mathrm{i} y)^{n} p_{1}(d y) p_{1}(d x)
$$

Define a function $g$ from $\mathbb{C}^{2}$ into $\mathbb{C}$ by

$$
\begin{aligned}
g(\alpha, \beta) & =\int_{B} \int_{B} \operatorname{sym}(T)(\mathbf{h}+\alpha x+\beta y)^{n} p_{1}(d y) p_{1}(d x) \\
& =n!\sum_{n_{1}+n_{2}+n_{3}=n} \frac{\alpha^{n_{2}} \beta^{n_{3}}}{n_{1}!n_{2}!n_{3}!} \int_{B} \int_{B} \operatorname{sym}(T) \mathbf{h}^{n_{1}} x^{n_{2}} y^{n_{3}} p_{1}(d y) p_{1}(d x)
\end{aligned}
$$

Then $g$ is holomorphic on $\mathbb{C}^{2}$. For any $\alpha, \beta \in \mathbb{R}$,

$$
\begin{align*}
g(\alpha, \beta) & =\int_{B} \int_{B} \operatorname{sym}(T)(\mathbf{h}+x+y)^{n} p_{\alpha^{2}}(d y) p_{\beta^{2}}(d x) \\
& =\int_{B} \operatorname{sym}(T)(\mathbf{h}+x)^{n} p_{\alpha^{2}+\beta^{2}}(d x) \\
& =\int_{B} \operatorname{sym}(T)\left(\mathbf{h}+\sqrt{\alpha^{2}+\beta^{2}} x\right)^{n} p_{1}(d x)  \tag{5.5}\\
& =n!\sum_{n_{1}+n_{2}=n} \frac{\left(\sqrt{\alpha^{2}+\beta^{2}}\right)^{n_{2}}}{n_{1}!n_{2}!} \int_{B} \operatorname{sym}(T) \mathbf{h}^{n_{1}} x^{n_{2}} p_{1}(d x) \\
& =n!\sum_{n_{1}+\left(2 n_{2}^{\prime}\right)=n} \frac{\left(\alpha^{2}+\beta^{2}\right)^{n_{2}^{\prime}}}{n_{1}!\left(2 n_{2}^{\prime}\right)!} \int_{B} \operatorname{sym}(T) \mathbf{h}^{n_{1}} x^{2 n_{2}^{\prime}} p_{1}(d x),
\end{align*}
$$

where $\int_{B} \operatorname{sym}(T) \mathbf{h}^{n_{1}} x^{n_{2}} p_{1}(d x)=0$, if $n_{2}$ is an odd positive integer, since $p_{1}(d x)=$ $p_{1}(-d x)$. The sum in the last equality of (5.5) is also holomorphic as a function of $(\alpha, \beta) \in \mathbb{C}^{2}$ and coincides with $g(\alpha, \beta)$ for any $\alpha, \beta \in \mathbb{R}$. By the uniqueness of analytic continuation, these two holomorphic functions are equal on $\mathbb{C}^{2}$. Substituting $\alpha=1$ and $\beta=\mathrm{i}$ into (5.5), the proof is complete.

By Theorem 5.1(i) and Proposition 5.2, we obtain that for any $T \in \mathcal{L}^{n}\left(B_{c}\right)$,

$$
\begin{equation*}
\Lambda\left(f_{T}\right)=\sum_{i_{1}, \ldots, i_{n}=0}^{\infty} T e_{i_{1}} \cdots e_{i_{n}} \int_{B} \prod_{j=1}^{n}\left(\cdot+\mathrm{i} y, e_{i_{j}}\right) p_{1}(d y) \tag{5.6}
\end{equation*}
$$

where the sum is convergent in $L_{c}^{2}\left(B, p_{1}\right)$, and thus

$$
\begin{equation*}
\left\|\Lambda\left(f_{T}\right)\right\|_{L_{c}^{2}\left(B, p_{1}\right)}=\sqrt{n!}\|\operatorname{sym}(T)\|_{\mathcal{H S}} \tag{5.7}
\end{equation*}
$$

For $T \in \mathcal{L}_{(2)}^{n}\left(H_{c}\right)$, one can take a sequence $\left\{T_{k}\right\} \subset \mathcal{L}^{n}\left(B_{c}\right)$ such that $T_{k} \rightarrow T$ in $\mathcal{L}_{(2)}^{n}\left(H_{c}\right)$. Then it follows from (5.6) that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \Lambda\left(f_{T_{k}}\right)=\sum_{i_{1}, \ldots, i_{n}=0}^{\infty} T\left(e_{i_{1}}, \ldots, e_{i_{n}}\right) \int_{B} \prod_{j=1}^{n}\left(\cdot+\mathrm{i} y, e_{i_{j}}\right) p_{1}(d y) \tag{5.8}
\end{equation*}
$$

where the limit and sum are taken in $L_{c}^{2}\left(B, p_{1}\right)$, and independent of the choice of $\left\{T_{k}\right\}$ and $\left\{e_{j}\right\}$. Accordingly, we can extend the definition of the Gauss transform to $\mathcal{L}_{(2)}^{n}\left(H_{c}\right)$ by defining $\Lambda\left(f_{T}\right)$ as the right-hand sum of (5.6).

By employing the Gauss transform, we now sum up all arguments concerning Theorem 5.1. Proposition 5.2 and (5.6)-5.8) to give the following

Theorem 5.3. (i) Let $f \in L_{c}^{2}\left(B, p_{1}\right)$. Then

$$
f=\sum_{n=0}^{\infty} \frac{1}{n!} \int_{B} D^{n} S_{\infty} f(0)(\cdot+\mathrm{i} y)^{n} p_{1}(d y) \quad \text { in } L_{c}^{2}\left(B, p_{1}\right)
$$

where the integral means $\Lambda\left(f_{D^{n} S_{\infty} f(0)}\right)$.
(ii) For any $T_{1} \in \mathcal{L}_{(2)}^{n}\left(H_{c}\right)$ and $T_{2} \in \mathcal{L}_{(2)}^{m}\left(H_{c}\right)$,

$$
\int_{B} \Lambda\left(f_{T_{1}}\right)(x) \overline{\Lambda\left(f_{T_{2}}\right)(x)} p_{1}(d x)=\delta_{n, m} \cdot n!\left\langle\left\langle\operatorname{sym}\left(T_{1}\right), \operatorname{sym}\left(T_{2}\right)\right\rangle\right\rangle_{\mathcal{H S}}
$$

where $\delta_{n, m}=1$, if $n=m$; 0 , if $n \neq m$.
(iii) For any $T \in \mathcal{L}_{(2)}^{n}\left(H_{c}\right), S_{\infty} \Lambda\left(f_{T}\right)=\operatorname{sym}(T)$ on $H_{c}$.
(iv) Let $\mathcal{H}_{0}=\mathbb{C}$, and for any $n \in \mathbb{N}$, let $\mathcal{H}_{n}=\left\{\Lambda\left(f_{T}\right) ; T \in \mathcal{L}_{(2)}^{n}\left(H_{c}\right)\right\}$. Then $L_{c}^{2}\left(B, p_{1}\right)$ is the orthogonal direct sum $\sum_{n=0}^{\infty} \oplus \mathcal{H}_{n}$.
The formula in Theorem 5.3(i) is a reformulation of Theorem 5.1(ii), called an analytic version of Wiener-Itô decomposition. The orthogonal direct sum in Theorem 5.3 (iv) is called the Wiener-Itô theorem on abstract Wiener spaces. From (5.8), the homogeneous chaos $\mathcal{H}_{n}$ of order $n$ is the completion in $L_{c}^{2}\left(B, p_{1}\right)$ of the span of Hermite polynomials of $\left\{\left(\cdot, e_{i}\right) ; i=1,2, \ldots\right\}$.

Corollary 5.4. The $S$-transform $S_{\infty}$ is an isometry from $L_{c}^{2}\left(B, p_{1}\right)$ onto $\mathcal{F}^{1}\left(H_{c}\right)$.
Proof. By Theorem 5.1(iii), we have seen that $S_{\infty}$ is an isometry from $L_{c}^{2}\left(B, p_{1}\right)$ into $\mathcal{F}^{1}\left(H_{c}\right)$. To show $S_{\infty}$ is surjective, for any $F \in \mathcal{F}^{1}\left(H_{c}\right)$, let

$$
f=\sum_{n=0}^{\infty} \frac{1}{n!} \Lambda\left(f_{D^{n} F(0)}\right) \quad \text { in } L_{c}^{2}\left(B, p_{1}\right) .
$$

Then it immediately follows from Theorem 5.3(iii) that $S_{\infty} f=F$. The proof is complete.

Remark 5.5. Let $(H, B)$ be the white noise space $\left(\mathcal{S}_{0}, \mathcal{S}_{-p}\right)$ for $p>1 / 2$ (see Example 3.3). For $f \in L_{c}^{2}\left(B, p_{1}\right)$, the integral in Theorem 5.3(i), that is,

$$
\frac{1}{n!} \int_{B} D^{n} S_{\infty} f(0)(\cdot+\mathrm{i} y)^{n} p_{1}(d y)
$$

is exactly the multiple Wiener integral $I_{n}\left(f_{n}\right)$ of order $n$ with respect to the Brownian motion $B(t)$ given in Example 3.3, where $f_{n} \in \widehat{L_{c}^{2}}\left(\mathbb{R}^{n}\right)$, the space of symmetric complexvalued $L^{2}$-functions on $\mathbb{R}^{n}$, can be represented as

$$
f_{n}\left(t_{1}, \ldots, t_{n}\right)=\frac{1}{n!} D^{n} S_{\infty} f(0) \delta_{t_{1}} \cdots \delta_{t_{n}}
$$

where $\delta_{t}$ is the Dirac measure concentrated on the point $t$.

## References

[1] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math. 14 (1961), 187-214.
[2] S. Bochner and W. T. Martin, Several Complex Variables, Princeton Mathematical Series 10, Princeton University Press, Princeton, N.J., 1948.
[3] I. M. Gel'fand and N. Y. Vilenkin, Generalized Functions, Vol. 4: Applications of Harmonic Analysis, Academic Press, New York, 1964.
[4] L. Gross, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, (1965), 31-42.
[5] , Potential theory on Hilbert space, J. Functional Analysis 1 (1967), 123-181.
[6] B. C. Hall, Quantum Theory for Mathematicians, Graduate Texts in Mathematics 267, Springer, New York, 2013.
[7] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, American Mathematical Society Colloquium Publications 31, American Mathematical Society, Providence, R.I., 1957.
[8] K. Itô, Multiple Wiener integral, J. Math. Soc. Japan 3 (1951), 157-169.
[9] H.-H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Mathematics 463, Springer-Verlag, Berlin, 1975.
[10] $\qquad$ , White Noise Distribution Theory, Probability and Stochastics Series, CRC Press, Boca Raton, FL, 1996.
[11] Y.-J. Lee, Sharp inequalities and regularity of heat semigroup on infinite-dimensional spaces, J. Funct. Anal. 71 (1987), no. 1, 69-87.
[12] , On the convergence of Wiener-Itô decomposition, Bull. Inst. Math. Acad. Sinica 17 (1989), no. 4, 305-312.
[13] , Analytic version of test functionals, Fourier transform, and a characterization of measures in white noise calculus, J. Funct. Anal. 100 (1991), no. 2, 359-380.
[14] Y.-J. Lee and H.-H. Shih, The Clark formula of generalized Wiener functionals, in: Quantum Information IV, (Nagoya, 2001), 127-145, World Sci. Publ., River Edge, NJ, 2002.
[15] N. Obata, White Noise Calculus and Fock Space, Lecture Notes in Mathematics 1577, Springer-Verlag, Berlin, 1994.
[16] R. Schatten, Norm Ideals of Completely Continuous Operators, Ergebnisse der Mathematik und ihrer Grenzgebiete. N. F., Heft 27 Springer-Verlag, Berlin, 1960.
[17] W. Schoutens, Stochastic Processes and Orthogonal Polynomials, Lecture Notes in Statistics 146, Springer-Verlag, New York, 2000.
[18] R. L. Wheeden and A. Zygmund, Measure and Integral: An Introduction to Real Analysis, Pure and Applied Mathematics 43, Marcel Dekker, New York, 1977.
[19] N. Wiener, The homogeneous chaos, Amer. J. Math. 60 (1938), no. 4, 897-936.

Yuh-Jia Lee and Hsin-Hung Shih
Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan
E-mail address: yuhjialee@gmail.com, hhshih@nuk.edu.tw


[^0]:    Received May 8, 2018; Accepted December 10, 2018.
    Communicated by Xiang Fang.
    2010 Mathematics Subject Classification. Primary: 60B11, 46E20, 46E50; Secondary: 28C20.
    Key words and phrases. abstract Wiener space, abstract Wiener measure, Wiener-Itô decomposition, Segal-Bargmann transform, Gauss transform.
    This research was supported by the Ministry of Science and Technology of Taiwan.
    *Corresponding author.

