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Traveling Waves for a Spatial SIRI Epidemic Model

Zhiting Xu*, Yixin Xu and Yehui Huang

Abstract. The aim of this paper is to study the traveling waves in a spatial SIRI epi-

demic model arising from herpes viral infection. We obtain the complete information

about the existence and non-existence of traveling waves in the model. Namely, we

prove that when the basic reproduction number R0 > 1, there exists a critical wave

speed c∗ > 0 such that for each c > c∗, the model admits positive traveling waves;

and for c < c∗, the model has no non-negative and bounded traveling wave. We also

give some numerical simulations to illustrate our analytic results.

1. Introduction

In [19], Tudor proposed an S → I → R→ I epidemic model for the spread of a herpes-type

infection in either human or animal populations as follows

dS(t)

dt
= µ− µS(t)− βS(t)I(t),

dI(t)

dt
= βS(t)I(t) + δR(t)− (µ+ γ)I(t),

dR(t)

dt
= γI(t)− (µ+ δ)R(t),

S(0) + I(0) +R(0) = 1, S(0) > 0, I(0) > 0, R(0) ≥ 0,

(1.1)

where S, I and R, respectively, are the fractions of susceptible, infectious and recovered

subpopulations. Assumptions made in the system (1.1) are homogeneous mixing, the

birth and death rates are assumed to be the same value µ, δ is the coefficient of the

rate at which recovered individuals lose their immunity (δ = 0 corresponds to permanent

immunity), and γ is the coefficient of the rate at which infectious individuals change to

removed individuals. β stands for the transmission coefficient from susceptible individuals

to infectious individuals. The parameters µ, β and γ are positive, and δ is nonnegative.

In model (1.1), it is assumed that the susceptibles become infectious, then are removed

with temporary immunity, and then become infectious again. And also, it was assumed
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that the rate at which susceptibles become infectives is the usual bilinear incidence βSI.

As reported in [4, 13], the model (1.1) is also appropriate for the diseases such as human

and bovine tuberculosis, recovered population may revert back to the infective class due

to reactivation of the latent infection or incomplete treatment.

By using the characteristic equation technique, Tudor [19] showed that the basic re-

production number is a threshold parameter for the local stability of system (1.1). Fur-

thermore, applying an elementary analysis of Liénard’s equation [33,36] and the classical

Lyapunov theorem [36], Moreira and Wang [14] gave the sufficient conditions on the global

stability of the disease-free and endemic equilibria in a general model with substituting

the nonlinear incidence rate Iϕ(S) by βS(t)I(t). A more general SIRI model under the

assumption that incidence of infection is given in an abstract, possibly bi-nonlinear form

has been proposed and analyzed in Georgescu and Zhang [9], and the sufficient conditions

for the global stability of equilibria are obtained by means of Lyapunov’s second method.

Clearly, system (1.1) is one of ODE type, which could only reflect the epidemiologi-

cal and demographic process as the time changes. Since the disease populations usually

disperse spatially as well as involving in time, it is reasonable to consider the spatial struc-

tures in the model. Therefore, it gives us the motivation to investigate the PDE version

of system (1.1). And also, to account for behavioral change and infection mechanism, we

consider the saturated incidence rate [3] defined by g(I) = I/(1 + αI) in system (1.1).

Here we propose the following spatial disease model

∂S(t, x)

∂t
= d1∆S(t, x) + µ− µS(t, x)− βS(t, x)g(I(t, x)),

∂I(t, x)

∂t
= d2∆I(t, x) + βS(t, x)g(I(t, x)) + δR(t, x)− (µ+ γ)I(t, x),

∂R(t, x)

∂t
= d3∆R(t, x) + γI(t, x)− (µ+ δ)R(t, x),

(1.2)

in which S(t, x), I(t, x) and R(t, x) are the population sizes of susceptible, infected and

recovered individuals at location x ∈ Rn and time t ≥ 0, respectively, ∆ =
∑n

j=1
∂2

∂x2j
.

The positive constants di, i = 1, 2, 3, are the corresponding diffusion coefficients. The

parameters µ, β, γ > 0 and δ ≥ 0 are constants as in system (1.1), and α > 0 determines

the saturation level when the infectious population is large.

It is noted that disease propagation in space is relevant to the so-called traveling

wave solutions which are used to study the spread of infectious diseases. The traveling

wave solution describes that the transition process of the disease population runs into the

susceptible population from an initial disease-free equilibrium to the endemic equilibrium.

Results on this topic may help people to predict how fast a disease invades geographically,

and accordingly, take necessary measures in advance to prevent the disease, or at least,

decrease possible negative consequences [15]. Recently, many researchers have studied
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the existence and non-existence of traveling wave solutions of the epidemic models of two

equations, see, for example [2,5,6,8,11,12,16,22–24,26,27,29,30] and the references cited

therein. However, to the best of our knowledge, there are few literature dealing with the

existence and non-existence of traveling waves for the epidemic models of three equations,

except four types of simple epidemic disease-transmission models [1, 21, 28, 31, 35] and a

class of reaction-diffusion systems of three equations [34]. But the results in [34] can not

be applied directly to establish the existence of traveling wave solutions for system (1.2)

since the system (1.2) does not satisfy the conditions (A5)(II) and (III) in [34]. This is

the motivation for the current study.

The purpose of the current paper is to study the existence and non-existence of trav-

eling wave solutions connecting the disease-free equilibrium and endemic equilibrium of

system (1.2). We employ the Schauder fixed point theorem and construct the upper-lower

solutions to establish the existence theorem (see Theorem 3.4 below). Namely, we will

show that when the basic reproduction number R0 > 1, there exists a constant c∗ > 0

such that (1.2) has a positive traveling wave solution if c > c∗. One important feature

of our method, which is different from the ones [2, 8, 21–24], is that we need to construct

the vector type of upper-lower solutions [7, 20, 25, 28] for system (2.1) (see Section 2.2)

since system (2.1) consists of three equations. Further, we shall construct the appropriate

Lyapunov function to show that the traveling wave converges to the endemic equilibrium

as t→∞. Here we would like to comment that construction of the Lyapunov function is

nontrivial and difficult because the corresponding wave profile system (2.1) is a second or-

der differential system of three equations. Moreover, by the two-sided Laplace transform,

we conclude the non-existence of traveling wave solutions for model (1.2) when R0 > 1

and c ∈ (0, c∗).

This paper is organized as follows. In the next section, we give some preliminaries,

that is, we study the eigenvalue problems for wave profile equation (2.1) and construct the

vector type of upper-lower solutions, and then verify the conditions of the Schauder fixed

point theorem. In Section 3, we establish the existence and non-existence of traveling

waves in model (1.2). In Section 4, we carry out some numerical simulations to confirm

our theoretical results and give a brief summary.

2. Preliminaries

2.1. The eigenvalue problems

In this subsection, we study the eigenvalue problems for the wave profile equation. First,

we define the basic reproduction number of system (1.2) as

R0 :=
β(µ+ δ)

µ(µ+ δ + γ)
.
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By a direct computation, we get the following conclusion.

Lemma 2.1. (1) If R0 < 1, then system (1.2) has only a disease-free equilibrium E0 =

(1, 0, 0).

(2) If R0 > 1, then system (1.2) admits a positive constant endemic equilibrium E∗ =

(S∗, I∗, R∗), where

S∗ =
1

R0
(1 + αI∗), I∗ =

µ

β + αµ
(R0 − 1), R∗ =

γ

µ+ δ
I∗.

Furthermore,

0 < S∗ < 1, 0 < I∗ <
R0

α
, 0 < R∗ <

γR0

α(µ+ δ)
.

A traveling wave solution of system (1.2) is a special solution (S(t, x), I(t, x), R(t, x))

taking the form

(S(t, x), I(t, x), R(t, x)) = (S̃(ξ), Ĩ(ξ), R̃(ξ)), ξ := ν · x+ ct,

where c > 0 is the wave speed, ν ∈ Rn is a unit vector denoting the direction of wave

propagation, ν ·x is the usual inner product in Rn, and (S(ξ), I(ξ), R(ξ)) (for convenience,

we use (S(ξ), I(ξ), R(ξ)) instead of (S̃(ξ), Ĩ(ξ), R̃(ξ))) satisfies the following wave profile

equation

cS′(ξ) = d1S
′′(ξ) + µ− µS(ξ)− βS(ξ)g(I(ξ)),

cI ′(ξ) = d2I
′′(ξ) + βS(ξ)g(I(ξ)) + δR(ξ)− (µ+ γ)I(ξ),

cR′(ξ) = d3R
′′(ξ) + γI(ξ)− (µ+ δ)R(ξ),

(2.1)

and the boundary conditions

(2.2) lim
ξ→−∞

(S(ξ), I(ξ), R(ξ)) = (1, 0, 0), lim
ξ→+∞

(S(ξ), I(ξ), R(ξ)) = (S∗, I∗, R∗).

Linearizing the equations of I and R of (2.1) at E0 = (1, 0, 0), we get

d2I
′′(ξ)− cI ′(ξ) + (β − µ− γ)I(ξ) + δR(ξ) = 0,

d3R
′′(ξ)− cR′(ξ)− (µ+ δ)R(ξ) + γI(ξ) = 0.

(2.3)

Plugging I(ξ) = η1e
λξ and R(ξ) = η2e

λξ into (2.3), we get the following eigenvalue problem

H(λ) := detA(λ) = 0, A(λ)

η1
η2

 = 0, where A(λ) =

h2(λ) δ

γ h3(λ)


with h2(λ) = d2λ

2 − cλ+ β − µ− γ and h3(λ) = d3λ
2 − cλ− µ− δ.

Using the ideas in [11,34], we give the following lemma.
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Lemma 2.2. Assume that R0 > 1 holds. Then there exists a positive constant c∗ such

that

(1) for any c > c∗, then the characteristic equation H(λ) = 0 has three positive roots

0 < λ1 < λ2 < λ3 and a negative root λ4 < 0 with

H(λ1 + ε) > 0, h2(λ1) < 0, h3(λ1) < 0

for ε ∈ (0, λ2 − λ1);

(2) for any 0 < c < c∗, there exists no positive constant λ∗ such that

(2.4) H(λ∗) = 0, h2(λ
∗) < 0, h3(λ

∗) < 0;

(3) for 0 < c < c∗, the characteristic equation H(λ) = 0 has no roots with zero real

parts.

Proof. We divide the following three possible cases to show this lemma. (C1) β > µ+ γ,

(C2) β = µ+ γ, (C3) β < µ+ γ. We only give the proof of the case (C1), since the proofs

of the cases (C2) and (C3) are similar.

(1) For convenience, set

λ±2 :=
c±

√
c2 − 4d2(β − µ− γ)

2d2
, λ±3 :=

c±
√
c2 + 4d3(µ+ δ)

2d3
.

Note that β > µ + γ and µ + δ > 0. Then c > c0 := 2
√
d2(β − µ− γ) implies that λ±2

and λ±3 are real, and λ−3 < 0 < λ+3 and 0 < λ−2 < λ+2 hold. Therefore, there are the

following three cases. (a) λ−3 < 0 < λ−2 < λ+2 ≤ λ+3 , (b) λ−3 < 0 < λ−2 ≤ λ+3 < λ+2 ,

(c) λ−3 < 0 < λ+3 ≤ λ
−
2 < λ+2 .

Figure 2.1: The graphs of h2(λ), h3(λ) and H(λ).
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Since the proofs of cases (a), (b) and (c) are similar, we only give the proof of the

case (a). By the expression of H(λ), we see that H(λ) is decreasing in λ ∈ (−∞, λ−3 ),

and H(λ) < 0 for λ ∈ (λ−3 , λ
−
2 ) ∪ (λ+2 , λ

+
3 ) and H(λ) is increasing in λ ∈ (λ+3 ,+∞) (see

Figure 2.1).

Observing the fact H(λ−3 ) = H(λ+3 ) = −δγ < 0, consequently, H(λ) = 0 has exactly

two real roots with one in the interval (−∞, λ−3 ) and the other in the interval (λ+3 ,+∞).

The simple calculation yields

dH

dc
= −λ(h2(λ) + h3(λ)) > 0, ∀λ ∈ (λ−2 , λ

+
2 ).

Thus, we see that H(λ) is increasing in c for any fixed λ ∈ (λ−2 , λ
+
2 ). Note that

lim
c→+∞

H

(
1√
c

)
= +∞, lim

c→+∞
h2

(
1√
c

)
= −∞, lim

c→+∞
h3

(
1√
c

)
= −∞,

which imply 1/
√
c ∈ (λ−2 , λ

+
2 ) for c large enough. Combing the monotonicity of H(λ) in c

with any fixed λ ∈ (λ−2 , λ
+
2 ), there exists a positive constant c∗ > c0 such that H(λ) = 0

has two positive roots in (λ−2 , λ
+
2 ) when c > c∗ and has no positive roots in (λ−2 , λ

+
2 )

when c0 < c < c∗. Therefore, we have shown that H(λ) = 0 has three positive roots

0 < λ1 < λ2 < λ3 and a negative λ4 < 0, and also, for ε > 0 small enough, it holds that

H(λ1 + ε) > 0, h2(λ1) < 0, h3(λ1) < 0.

(2) It follows from the proof of (1) that H(λ) = 0 has no positive roots in (λ−2 , λ
+
2 )

when c0 < c < c∗. Thus, for c0 < c < c∗, there does not exist λ∗ > 0 satisfying (2.4).

And, for c ≤ c0, it is clear that there is no λ∗ > 0 satisfying h2(λ
∗) < 0. Hence, in this

case c < c∗, there does not exist λ∗ > 0 such that (2.4) holds.

(3) Note that H(λ) = 0 can be rewritten as

d2d3λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0 = 0,

where

a3 = −c(d2 + d3) < 0, a2 = c2 − (µ+ γ − β)d3 − (µ+ δ)d2,

and

a1 = c(µ+ γ − β + µ+ δ), a0 = (µ+ γ − β)(µ+ δ)− δγ.

Obviously, R0 > 1 follows a0 < 0, which implies that λ = 0 is not the root of H(λ) = 0.

If λ = iω (ω > 0) is the root of H(λ) = 0, then, substituting λ = iω into H(λ) = 0 and

separating real and imaginary parts, we get

(2.5) d2d3ω
4 − a2ω2 + a0 = 0, a1 = a3ω

2.
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It follows from the fact a3 < 0 that a1 < 0. And eliminating w in (2.5), we get

d2d3a
2
1 − a1a2a3 + a0a

2
3 = 0.

An simple computation yields

d2d3a
2
1 − a1a2a3 + a0a

2
3

= −c2
[
((µ+ δ)d2 − (µ+ γ − β)d3)

2 + δγ(d2 + d3)
2 − a1c(d2 + d3)

]
< 0,

a contradiction. This completes the proof.

2.2. The upper and lower solutions

In the following, without mentioning, we always assume that R0 > 1 and c > c∗ hold.

Let λ1 be the eigenvalue defined as in Lemma 2.2(1) and (η1, η2) � 0 its associating

eigenvector with

(2.6) h2(λ1)η1 + δη2 = 0, γη1 + h3(λ1)η2 = 0.

Also, by Lemma 2.2(1), for a sufficient small ε ∈ (0, λ2 − λ1), we get

h2(λ1 + ε)h3(λ1 + ε)− δγ > 0, h2(λ1 + ε) < 0, h3(λ1 + ε) < 0.

Then we can choose a constant h > 0 such that

(2.7) − γ

h3(λ1 + ε)
< h < −h2(λ1 + ε)

δ
.

Motivated by the ideas [7, 20, 25, 28], we construct the vector type of upper-lower

solutions for (2.1). For ξ ∈ R, we define six continuous functions as follows:

S(ξ) = 1, S(ξ) = max

{
1− 1

σ
eσξ,

αµ

αµ+ β

}
,

I(ξ) = min

{
η1e

λ1ξ,
R0

α

}
, I(ξ) = max

{
0, η1e

λ1ξ −Me(λ1+ε)ξ
}
,

R(ξ) = min

{
η2e

λ1ξ,
γR0

α(µ+ δ)

}
, R(ξ) = max

{
0, η2e

λ1ξ −Mhe(λ1+ε)ξ
}
,

where σ, ε, M are positive constants determined in the following lemmas.

Lemma 2.3. The following inequalities hold.

d1S
′′
(ξ)− cS′(ξ) + µ− µS(ξ)− βS(ξ)g(I(ξ)) ≤ 0, ∀ ξ ∈ R,(2.8)

d2I
′′
(ξ)− cI ′(ξ) + βS(ξ)g(I(ξ)) + δR(ξ)− (µ+ γ)I(ξ) ≤ 0, ∀ ξ 6= ξ1,(2.9)

d3R
′′
(ξ)− cR′(ξ) + γI(ξ)− (µ+ δ)R(ξ) ≤ 0, ∀ ξ 6= ξ2.(2.10)

Here, ξ1 := 1
λ1

ln R0
αη1

, ξ2 := 1
λ1

ln γR0

α(µ+δ)η2
, and the function (S(ξ), I(ξ), R(ξ)) is called an

upper solution of (2.1).
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Proof. Note that the function S(ξ) = 1 and I(ξ) is non-negative for all ξ ∈ R. Then (2.8)

holds. Next, we show the inequality (2.9) holds. Indeed, when ξ < ξ1, I(ξ) = η1e
λ1ξ, and

note that the facts S(ξ) = 1, R(ξ) ≤ η2e
λ1ξ for all ξ ∈ R and 0 < g(x) ≤ 1 for all x ≥ 0,

then, by (2.6),

d2I
′′
(ξ)− cI ′(ξ) + βS(ξ)g(I(ξ)) + δR(ξ)− (µ+ γ)I(ξ)

≤ d2I
′′
(ξ)− cI ′(ξ) + βI(ξ) + δR(ξ)− (µ+ γ)I(ξ)

≤ (h2(λ1)η1 + δη2)e
λ1ξ = 0.

When ξ > ξ1, I(ξ) = R0/α. It follows from the facts R(ξ) ≤ γR0

α(µ+δ) for ξ ∈ R and

g(x) ≤ 1/α for x ≥ 0 that

d2I
′′
(ξ)− cI ′(ξ) + βS(ξ)g(I(ξ)) + δR(ξ)− (µ+ γ)I(ξ)

≤ β

α
+

δγR0

α(µ+ δ)
− µ+ γ

α
R0 = 0.

Finally, we prove (2.10) holds. In fact, note that R(ξ) = η2e
λ1ξ for ξ < ξ2, and I(ξ) ≤

η1e
λ1ξ for all ξ ∈ R, it follows, by (2.6), for ξ < ξ2,

d3R
′′
(ξ)− cR′(ξ) + γI(ξ)− (µ+ δ)R(ξ) ≤ eλ1ξ(γη1 + h3(λ1)η2) = 0.

When ξ > ξ2, R(ξ) = γR0

α(µ+δ) , and in view of I(ξ) ≤ 1
αR0 for all ξ ∈ R, we get

d3R
′′
(ξ)− cR′(ξ) + γI(ξ)− (µ+ δ)R(ξ) ≤ γ

α
R0 −

(µ+ δ)γ

α(µ+ δ)
R0 = 0, ∀ ξ > ξ2.

The proof is completed.

Lemma 2.4. Let

0 < σ < min

{
1,
λ1
2
,
c+ µ

d1 + βη1

}
, 0 < ε < min{σ, λ2 − λ1}

and

M > max

{
η1,

η2
h
,− βη1(1 + αση1)

σ(h2(λ1 + ε) + δh)

}
hold. Then the following inequalities hold.

d1S
′′(ξ)− cS′(ξ) + µ− µS(ξ)− βS(ξ)g(I(ξ)) ≥ 0, ∀ ξ 6= ξ3,(2.11)

d2I
′′(ξ)− cI ′(ξ) + βS(ξ)g(I(ξ)) + δR(ξ)− (µ+ γ)I(ξ) ≥ 0, ∀ ξ 6= ξ4,(2.12)

d3R
′′(ξ)− cR′(ξ) + γI(ξ)− (µ+ δ)R(ξ) ≥ 0, ∀ ξ 6= ξ5,(2.13)

where

ξ3 :=
1

σ
ln

σβ

αµ+ β
, ξ4 :=

1

η
ln
η1
M
, ξ5 :=

1

η
ln

η2
Mh

.

Here, the function (S(ξ), I(ξ), R(ξ)) is called a lower solution of (2.1).
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Proof. When ξ > ξ3, S(ξ) = αµ
αµ+β , then

d1S
′′(ξ)− cS′(ξ) + µ− µS(ξ)− βS(ξ)g(I(ξ))

≥ d1S′′(ξ)− cS′(ξ) + µ− µS(ξ)− β

α
S(ξ) = 0.

Note that I(ξ) ≤ η1eλ1ξ for all ξ ∈ R, and

e(λ1−σ)ξ < e
λ1−σ
σ

ln σβ
αµ+β =

(
σβ

αµ+ β

)(λ1−σ)/σ
< σ(λ1−σ)/σ < σ, ∀ ξ < ξ3.

Hence, it follows from the fact S(ξ) = 1− 1
σe

σξ for ξ < ξ3 that

d1S
′′(ξ)− cS′(ξ) + µ− µS(ξ)− βS(ξ)g(I(ξ))

≥ d1S′′(ξ)− cS′(ξ) + µ− µS(ξ)− βI(ξ)

≥ −d1σeσξ + ceσξ +
µ

σ
eσξ − βη1eλ1ξ

>
(
− d1σ + c+ µ− βη1e(λ1−σ)ξ

)
eσξ

> (−d1σ + c+ µ− βη1σ)eσξ.

Here, we just need to choose the constant σ < c+µ
d1+βη1

, then (2.11) holds for all ξ 6= ξ3.

Now, we show that (2.12) holds. In fact, for ξ > ξ4, inequality (2.12) holds since I(ξ) =

0 on [ξ4,∞) and R(ξ) is non-negative for all ξ ∈ R. For ξ < ξ4, I(ξ) = η1e
λ1ξ−Me(λ1+ε)ξ,

and R(ξ) ≥ η2eλ1ξ −Mhe(λ1+ε)ξ for all ξ ∈ R, and by the facts that g(x) ≥ x(1− αx) for

all x ≥ 0, and

1− 1

σ
eσξ ≤ S(ξ) ≤ 1, η1e

λ1ξ −Me(λ1+ε)ξ ≤ I(ξ) ≤ η1eλ1ξ, ∀ ξ ∈ R,

we get, for ξ < ξ4,

d2I
′′(ξ)− cI ′(ξ) + βS(ξ)g(I(ξ)) + δR(ξ)− (µ+ γ)I(ξ)

≥ d2I ′′(ξ)− cI ′(ξ) + β

(
1− 1

σ
eσξ
)
I(ξ)(1− αI(ξ)) + δR(ξ)− (µ+ γ)I(ξ)

≥ d2I ′′(ξ)− cI ′(ξ) + (β − µ− γ)I(ξ) + δR(ξ)− αβI2(ξ)− β

α
eσξI(ξ)

≥ eλ1ξ(h2(λ1)η1 + δη2)− e(λ1+ε)ξ
(
M(h2(λ1 + ε) + δh) +

βη1
σ
e(σ−ε)ξ + αβη21e

(λ1−ε)ξ
)

> −e(λ1+ε)ξ
(
M(h2(λ1 + η) + δh) + βη1

(
1

σ
+ αη1

))
,

since e(λ1−ε)ξ < 1 and e(σ−ε)ξ < 1 for ξ < ξ4 < 0. By (2.7), we see h2(λ1 + η) + δh < 0

and then only need to choose

M > − βη1(1 + αση1)

σ(h2(λ1 + ε) + δh)
.
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Hence, (2.12) holds.

Next, we verify that (2.13) holds. Clearly, (2.13) holds since R(ξ) = 0 for ξ > ξ5.

When ξ < ξ5, R(ξ) = η2e
λ1ξ −Mhe(λ1+ε)ξ, and note that I(ξ) ≥ η1e

λ1ξ −Me(λ1+ε)ξ for

all ξ ∈ R, we get

d3R
′′(ξ)− cR′(ξ) + γI(ξ)− (µ+ δ)R(ξ)

≥ eλ1ξ(h2(λ1)η2 + γη1)−Me(λ1+ε)ξ(hh2(λ1 + ε) + γ)

= −Me(λ1+ε)ξ(hh3(λ1 + ε) + γ).

By (2.7), we have hh3(λ1 + ε) + γ < 0, which follows that (2.13) holds. The proof is

completed.

2.3. The solutions for (2.1)

In this subsection, we will use the upper-lower solutions (S, I,R) and (S, I,R) to verify

that the conditions of the Schauder fixed point theorem hold.

Letting r > max{µ+ β/α, µ+ γ, µ+ δ} such that

H1(S, I,R)(ξ) := rS(ξ) + µ− µS(ξ)− βS(ξ)g(I(ξ))

is monotone increasing in S ∈ [0, 1], and monotone decreasing in I ∈ [0,R0/α] for all

ξ ∈ R, and

H2(S, I,R)(ξ) := rI(ξ) + βS(ξ)g(I(ξ)) + δR(ξ)− (µ+ γ)I(ξ)

is monotone increasing in S ∈ [0, 1] and I ∈ [0,R0/α], R ∈
[
0, γR0

α(µ+δ)

]
for all ξ ∈ R, and

H3(S, I,R)(ξ) := rR(ξ) + γI(ξ)− (µ+ δ)R(ξ)

is monotone increasing in both I ∈ [0,R0/α] and R ∈
[
0, γR0

α(µ+δ)

]
for all ξ ∈ R. Then,

(2.1) can be written as

d1S
′′(ξ)− cS′(ξ)− rS(ξ) +H1(S, I,R)(ξ) = 0,

d2I
′′(ξ)− cI ′(ξ)− rI(ξ) +H2(S, I,R)(ξ) = 0,

d3R
′′(ξ)− cR′(ξ)− rR(ξ) +H3(S, I,R)(ξ) = 0.

(2.14)

Define the set

Γ = {(S, I,R) ∈ C(R,R3) : (S, I,R)(ξ) ≤ (S, I,R)(ξ) ≤ (S, I,R)(ξ), ∀ ξ ∈ R}.

Obviously, Γ is nonempty, closed and convex in C(R,R3). Furthermore, we define an

operator: F = (F1, F2, F3) : Γ→ C(R,R3) by

Fi(S, I,R)(ξ) =
1

Λi

(∫ ξ

−∞
eλi1(ξ−x) +

∫ +∞

ξ
eλi2(ξ−x)

)
Hi(S, I,R)(x) dx,



A Spatial SIRI Epidemic Model 1445

where Λi = di(λi2 − λi1), and λi1 < 0 < λi2 are the roots of diλ
2 − cλ− r = 0, i = 1, 2, 3.

One can easily see that any fixed point of F is a solution of (2.14), also is the solution of

(2.1). Hence, the existence of the solution of (2.14) is reduced to verify that the operator

F satisfies the conditions of the Schauder fixed point theorem. Next we divide the proof

into the following three lemmas.

Lemma 2.5. The operator F maps Γ into Γ.

Proof. Given (S, I,R) ∈ Γ. Obviously, we only need to show that, for all ξ ∈ R,

S(ξ) ≤ F1(S, I,R)(ξ) ≤ 1, I(ξ) ≤ F2(S, I,R)(ξ) ≤ I(ξ), R(ξ) ≤ F3(S, I,R)(ξ) ≤ R(ξ).

Based on the monotonicity of Hi, i = 1, 2, 3, we need to prove that

S(ξ) ≤ F1(S, I,R)(ξ) ≤ F1(S, I,R)(ξ) ≤ F1(S, I,R)(ξ) ≤ 1,

I(ξ) ≤ F2(S, I,R)(ξ) ≤ F2(S, I,R)(ξ) ≤ F2(S, I,R)(ξ) ≤ I(ξ),

R(ξ) ≤ F3(S, I,R)(ξ) ≤ F3(S, I,R)(ξ) ≤ F3(S, I,R)(ξ) ≤ R(ξ).

First, we show the inequality S(ξ) ≤ F1(S, I,R)(ξ) holds for all ξ ∈ R. Indeed, for

ξ 6= ξ3, by (2.11), we get

F1(S, I,R)(ξ) =
1

Λ1

(∫ ξ

−∞
eλ11(ξ−x) +

∫ +∞

ξ
eλ12(ξ−x)

)
H1(S, I,R)(x) dx

≥ 1

Λ1

(∫ ξ

−∞
eλ11(ξ−x) +

∫ +∞

ξ
eλ12(ξ−x)

)
(−d1S′′(x) + cS′(x) + rS(x)) dx.

When ξ > ξ3, it follows that

F1(S, I,R)(ξ)

≥ 1

Λ1

(∫ ξ3

−∞
+

∫ ξ

ξ3

)
eλ11(ξ−x)(−d1S′′(x) + cS′(x) + rS(x)) dx

+
1

Λ1

∫ +∞

ξ
eλ12(ξ−x)(−d1S′′(x) + cS′(x) + rS(x)) dx

=
1

Λ1

(∫ ξ3

−∞
eλ11(ξ−x)d(−d1S′(x) + cS(x)) + r

∫ ξ3

−∞
eλ11(ξ−x)S(x) dx

+

∫ ξ

ξ3

eλ11(ξ−x)d(−d1S′(x) + cS(x)) + r

∫ ξ

ξ3

eλ11(ξ−x)S(x) dx

)
+

1

Λ1

(∫ +∞

ξ
eλ12(ξ−x)d(−d1S′(x) + cS(x)) + r

∫ +∞

ξ
eλ12(ξ−x)S(x) dx

)
=

1

Λ1

(
− (d1S

′(ξ3 − 0)− cS(ξ3) + d1λ11S(ξ3))e
λ11(ξ−ξ3)

+ (d1S
′(ξ3 + 0)− cS(ξ3)− d1λ11S(ξ3))e

λ11(ξ−ξ3)
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− (d1λ
2
11 − cλ11 − r)

∫ ξ3

−∞
eλ11(ξ−x)S(x) dx− (d1S

′(ξ)− cS(ξ)− d1λ11S(ξ))

− (d1λ
2
11 − cλ11 − r)

∫ ξ

ξ3

eλ11(ξ−x)S(x)

)
+

1

Λ1

(
(d1S

′(ξ)− cS(ξ) + d1λ22S(ξ))− (d1λ
2
12 − cλ12 − r)

∫ +∞

ξ
eλ12(ξ−x)S(x) dx

)
= S(ξ) +

d1
Λ1
eλ11(ξ−ξ3)(S′(ξ3 + 0)− S′(ξ3 − 0))

≥ S(ξ), since S′(ξ3−) ≤ 0 and S′(ξ3+) = 0.

Similarly, when ξ < ξ3, we also show F1(S, I,R)(ξ) ≥ S(ξ) for all ξ ∈ R. By the continuity

of both S(ξ) and F1(S, I,R)(ξ), we obtain F1(S, I,R)(ξ) ≥ S(ξ) for all ξ ∈ R.

On the other hand, for any ξ ∈ R, it follows from (2.8) that

F1(S, I,R)(ξ) =
1

Λ1

(∫ ξ

−∞
eλ11(ξ−x) +

∫ +∞

ξ
eλ12(ξ−x)

)
H1(S, I,R)(x) dx

≤ 1

Λ1

(∫ ξ

−∞
eλ11(ξ−x) +

∫ +∞

ξ
eλ12(ξ−x)

)
(−d1S

′′
(x) + cS

′
(x) + rS(x)) dx

=
1

Λ1

(∫ ξ

−∞
eλ11(ξ−x) +

∫ +∞

ξ
eλ12(ξ−x)

)
(rS(x)) dx

= 1.

So we have shown S(ξ) ≤ F1(S, I,R)(ξ) ≤ S(ξ) for all ξ ∈ R.

The proofs of Fi(S, I,R)(ξ), i = 2, 3, are similar to that of F1(S, I,R)(ξ) and are

omitted. Hence, we complete the proof.

For 0 < ρ < min{−λ11,−λ21,−λ31}, define

Bρ(R,R3) = {Φ ∈ C(R,R3) : ‖Φ‖ρ < +∞}

with the norm

‖Φ‖ρ = max

{
sup
ξ∈R
|S(ξ)|e−ρ|ξ|, sup

ξ∈R
|I(ξ)|e−ρ|ξ|, sup

ξ∈R
|R(ξ)|e−ρ|ξ|

}
.

Then Bρ(R,R3) is a Banach space with the decay norm ‖ · ‖ρ.

Lemma 2.6. The operator F = (F1, F2, F3) : Γ → Γ is continuous with respect to the

norm ‖ · ‖ρ.

Proof. Note that the function G(S, I) := Sg(I) has bounded partial derivatives with

respect to S and I. For example, we see that the partial derivative G(S, I) with respect to
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S is g(I) is bounded by 1/α. Similarly, we can show that the partial derivative G(S, I) with

respect to I is also bounded by S. Hence, for any Φ1 = (S1, I1, R1),Φ2 = (S2, I2, R2) ∈ Γ,

we get

|S1(ξ)g(I1(ξ))− S2(ξ)g(I2(ξ))| ≤
1

α
|S1(ξ)− S2(ξ)|+ |I1(ξ)− I2(ξ)|.

By the above equality, it easy to see that there is a constant L > 0 such that

|H1(Φ1)(ξ)−H1(Φ2)(ξ)| ≤ L
(
|S1(ξ)− S2(ξ)|+ |I1(ξ)− I2(ξ)|

)
,

|H2(Φ1)(ξ)−H2(Φ2)(ξ)| ≤ L
(
|S1(ξ)− S2(ξ)|+ |I1(ξ)− I2(ξ)|+ |R1(ξ)−R2(ξ)|

)
,

|H3(Φ1)(ξ)−H3(Φ2)(ξ)| ≤ L
(
|I1(ξ)− I2(ξ)|+ |R1(ξ)−R2(ξ)|

)
.

Hence

|Hi(Φ1)(ξ)−Hi(Φ2)(ξ)|e−ρ|ξ| ≤ L‖Φ1 − Φ2‖ρ, ∀ ξ ∈ R, i = 1, 2, 3.

Consequently,

|F1(Φ1)(ξ)− F1(Φ2)(ξ)|e−ρ|ξ|

≤ L

Λ1

(∫ ξ

−∞
eλ11(ξ−x) +

∫ +∞

ξ
eλ12(ξ−x)

)
eρ|x|−ρ|ξ| dx ‖Φ1 − Φ2‖ρ

≤ L

Λ1

(∫ ξ

−∞
eλ11(ξ−x) +

∫ +∞

ξ
eλ12(ξ−x)

)
eρ|x−ξ| dx ‖Φ1 − Φ2‖ρ

=
L

Λ1

(
1

λ12 − ρ
− 1

λ11 + ρ

)
‖Φ1 − Φ2‖ρ,

which indicates that the operator F1 is continuous with respect to the norm ‖ · ‖ρ.
By the similar arguments as above, we can also show that the operators Fi : Γ → Γ,

i = 2, 3, are continuous with respect to the norm ‖ · ‖ρ. The proof is completed.

Lemma 2.7. The operator F = (F1, F2, F3) : Γ→ Γ is compact with respect to the norm

‖ · ‖ρ.

The proof of Lemma 2.7 is similar to that of [21, Lemma 6], see also [22, Lemma 3.5]

or [23, Lemma 2.8], we omit the details.

3. Existence and non-existence of traveling waves

3.1. Existence of traveling waves

In this subsection, we will establish the existence of traveling waves for system (1.2). To

this end, we first give the propositions of the solutions of (2.1).
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Proposition 3.1. Assume that R0 > 1 holds. Then for any c > c∗, (2.1) admits a

non-trivial and positive solution (S(ξ), I(ξ), R(ξ)) satisfying

(3.1) lim
ξ→−∞

(S(ξ), I(ξ), R(ξ)) = (1, 0, 0).

Moreover,

(3.2) 0 < S(ξ) ≤ 1, 0 < I(ξ) ≤ R0

α
, 0 < R(ξ) ≤ γR0

α(µ+ δ)
, ∀ ξ ∈ R

and

(3.3) lim
ξ→−∞

e−λ1ξI(ξ) = η1, lim
ξ→−∞

e−λ1ξR(ξ) = η2.

Proof. By Lemmas 2.5, 2.6 and 2.7, the Schauder fixed point theorem implies that there

exists a pair of (S, I,R) ∈ Γ, which is a fixed point of the operator F . Consequently,

(S(ξ), I(ξ), R(ξ)) is a solution of (2.1) satisfying

0 < S(ξ) ≤ 1, 0 ≤ I(ξ) ≤ R0

α
, 0 ≤ R(ξ) ≤ γR0

α(µ+ δ)
, ∀ ξ ∈ R.

And also, noting that (S, I,R) ∈ Γ, it is easy to see that (3.1) and (3.3) hold.

Next, we claim that I(ξ) > 0 and R(ξ) > 0 for all ξ ∈ R. Indeed, if there exists ξ0 ∈ R
such that I(ξ0) = 0, then there exist constants a, b ∈ R such that a < 1

η ln η1
M < b and

ξ0 ∈ (a, b). This implies I(ξ) attains its minimum in (a, b) for any ξ ∈ [a, b]. It follows

from the second equation of (2.1) that

−d2I ′′(ξ) + cI ′(ξ) + (µ+ γ)I(ξ) ≥ 0, ξ ∈ [a, b].

By the elliptic strong maximum principle (see, [32, Lemma 2.1.2]), it follows that I(ξ) ≡ 0

for ξ ∈ [a, b]. But, I(ξ) ≥ I(ξ) > 0 for ξ ∈
[
a, 1η ln η1

M

)
, a contradiction. Similarly, we can

show R(ξ) > 0 for any ξ ∈ R. The proof is completed.

Proposition 3.2. Let (S(ξ), I(ξ), R(ξ)) be a positive solution of (2.1) satisfying (3.2).

Then there exist positive constants Li, i = 1, 2, . . . , 6, such that

−L1S(ξ) < S′(ξ) < L2S(ξ), −L3I(ξ) < I ′(ξ) < L4I(ξ), −L5R(ξ) < R′(ξ) < L6R(ξ)

for all ξ ≥ 0. Furthermore, there is a constant C1 > 0 such that

(3.4)

∣∣∣∣S′(ξ)S(ξ)

∣∣∣∣+

∣∣∣∣I ′(ξ)I(ξ)

∣∣∣∣+

∣∣∣∣R′(ξ)R(ξ)

∣∣∣∣ ≤ C1 for ξ ≥ 0.
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Proof. (1) We show that −L1S(ξ) < S′(ξ) for all ξ ≥ 0 if L1 is a positive constant

sufficiently large such that −L1S(0) < S′(0) and cL1 ≥ β/α.

Let Φ1(ξ) := S′(ξ) +L1S(ξ) for ξ ≥ 0. It suffices to show that Φ1(ξ) > 0 for all ξ ≥ 0.

In fact, note that Φ1(0) > 0, for contradiction, we assume that there exists ξ1 > 0 such

that Φ1(ξ1) = 0 and Φ′1(ξ1) ≤ 0 hold. Then there are two possibilities: either

(3.5) Φ1(ξ) ≤ 0, ∀ ξ ≥ ξ1,

or there is ξ2 ≥ ξ1 such that

(3.6) Φ1(ξ2) = 0 and Φ′1(ξ2) ≥ 0.

For the first case, (3.5) follows that S′(ξ) ≤ −L1S(ξ) for all ξ ≥ ξ1. Note that g(I) < 1/α,

hence we deduce from the first equation of (2.1) that

d1S
′′(ξ) = cS′(ξ)− µ+ µS(ξ) + βS(ξ)g(I(ξ)) <

(
−cL1 +

β

α

)
S(ξ) ≤ 0, ∀ ξ ≥ ξ1,

which implies that S′(ξ) is decreasing in [ξ1,∞). Hence S′(ξ) ≤ S′(ξ1) ≤ −L1S(ξ1) < 0

for all ξ ≥ ξ1, which contradicts the fact 0 < S(ξ) ≤ 1.

For the second case, (3.6) yields that

S′(ξ2) = −L1S(ξ2) < 0, S′′(ξ2) ≥ −L1S
′(ξ2) > 0.

It follows from the first equation of (2.1) that

0 = d1S
′′(ξ2)− cS′(ξ2) + µ− µS(ξ2)− βS(ξ2)g(I(ξ2)) > cL1S(ξ2)−

β

α
S(ξ2) ≥ 0,

a contradiction again.

(2) We show that S′(ξ) < L2S(ξ) for all ξ ≥ 0 if L2 is a positive constant sufficiently

large such that S′(0) < L2S(0) and d1L
2
2 − cL2 ≥ β/α hold.

Let Φ2(ξ) := S′(ξ)−L2S(ξ) for ξ ≥ 0. We now show that Φ2(ξ) < 0 for all ξ ≥ 0. For

contradiction, noting that Φ2(0) < 0, we can assume that there exists ξ3 ≥ 0 such that

Φ2(ξ3) = 0 and Φ′2(ξ3) ≥ 0. Then

S′(ξ3) = L2S(ξ3), S′′(ξ3) ≥ L2S
′(ξ3) = L2

2S(ξ3).

Thus, we deduce from the first equation of (3.1) that

0 = d1S
′′(ξ3)− cS′(ξ3) + µ− µS(ξ3)− βS(ξ3)g(I(ξ3)) >

(
d1L

2
2 − cL2 −

β

α

)
S(ξ3) ≥ 0,

which is a contradiction.
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(3) Similar to proof of the equality −L1S(ξ) < S′(ξ) for all ξ ≥ 0, we can show

that −L3I(ξ) < I ′(ξ) for all ξ ≥ 0 if L3 is a positive constant sufficiently large such

that −L3I(0) < I ′(0) and cL3 ≥ µ + γ. As the same as the proof of the inequality

S′(ξ) < L2S(ξ) for all ξ ≥ 0, we also show that I ′(ξ) < L4I(ξ) holds for any ξ ≥ 0 if L4

is a positive constant sufficiently large such that I ′(0) < L4I(0) and d2L
2
4 − cL4 ≥ µ+ γ.

We omit the details.

(4) The proof of the inequality of −L5R(ξ) < R′(ξ) < L6R(ξ) for all ξ > 0 is similar

to that of −L3I(ξ) < I ′(ξ) < L4I(ξ) for all ξ > 0, we also omit the details. The proof is

completed.

Proposition 3.3. Let (S(ξ), I(ξ), R(ξ)) be a positive solution of (2.1) satisfying (3.2).

Then limξ→+∞(S(ξ), I(ξ), R(ξ)) = (S∗, I∗, R∗).

Proof. Define

D =

{
(S, I,R) ∈ C1(R,R3

+) :

∣∣∣∣S′(ξ)S(ξ)

∣∣∣∣+

∣∣∣∣I ′(ξ)I(ξ)

∣∣∣∣+

∣∣∣∣R′(ξ)R(ξ)

∣∣∣∣ ≤ C1, ∀ ξ ≥ 0

}
,

where C1 > 0 is defined by Proposition 3.2. Obviously, by (3.4), we know the set D 6= ∅.
Hence, for each (S, I,R) ∈ D, consider the Lyapunov function W (S, I,R) : R+ → R as

follows:

W (S, I,R)(ξ) = W1(S, I,R)(ξ) +W2(S, I,R)(ξ), ∀ ξ ≥ 0,

where

W1(S, I,R)(ξ) = cS∗L
(
S(ξ)

S∗

)
+ cI∗L

(
I(ξ)

I∗

)
+

cδ

µ+ δ
R∗L

(
R(ξ)

R∗

)
,

in which the function L(x) = x− 1− lnx for x > 0, and

W2(S, I,R)(ξ) = d1S
′(ξ)

(
S∗

S(ξ)
− 1

)
+ d2I

′(ξ)

(
I∗

I(ξ)
− 1

)
+

δd3
µ+ δ

R′(ξ)

(
R∗

R(ξ)
− 1

)
.

We first claim that there is a constant C2 ∈ R such that

(3.7) C2 ≤W (S, I,R)(ξ) <∞, ∀ ξ > 0.

Indeed, by (3.2) and the definition of the function L, we know

(3.8) 0 ≤W1(S, I,R)(ξ) <∞, ∀ ξ > 0.

Note that, by (3.2) and (3.4), we see that there exists a constant C3 > 0 such that

|S′(ξ)|+ |I ′(ξ)|+ |R′(ξ)| ≤ C3, ∀ ξ > 0.
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By (3.4) and the last inequality, we get

|W1(S, I,R)(ξ)| ≤ d1S∗
∣∣∣∣S′(ξS(ξ)

∣∣∣∣+ d2I
∗
∣∣∣∣I ′(ξ)I(ξ)

∣∣∣∣+
δd3R

∗

µ+ δ

∣∣∣∣R′(ξ)R(ξ)

∣∣∣∣
+ d1|S′(ξ)|+ d2|I ′(ξ)|+

δd3
µ+ δ

|R′(ξ)| <∞,

which combining with (3.8) implies that the inequality (3.7) holds.

Next, we show that W (S, I,R)(ξ) is non-increasing in ξ > 0. In fact, a direct calcula-

tion leads to

dW

dξ
= W3(S, I,R)− d1S∗

(
S′

S

)2

− d2I∗
(
I ′

I

)2

− δd3
µ+ δ

R∗
(
R′

R

)2

,

where

W3(S, I,R) =

(
1− S∗

S

)
(µ− µS − βSg(I)) +

(
1− I∗

I

)
(βSg(I) + δR− (µ+ γ)I)

+
δ

µ+ δ

(
1− R∗

R

)
(γI − (µ+ δ)R).

Using the relation at the endemic equilibrium

µ = µS∗ + βS∗g(I∗), βS∗g(I∗) + δR∗ = (µ+ γ)I∗, δR∗ =
δγ

µ+ δ
I∗,

we get

W3(S, I,R)

=

(
1− S∗

S

)
(µ(S∗ − S) + βS∗g(I∗)− βSg(I))

+

(
1− I∗

I

)
(βSg(I)− (µ+ γ)I) + δR

(
1− I∗

I

)
+

δ

µ+ δ

(
γI − (µ+ δ)R− γR∗ I

R
+ (µ+ δ)R∗

)
=

(
1− S∗

S

)
(µ(S∗ − S) + βS∗g(I∗)) + βSg(I)

S∗

S
− βS∗g(I∗)

I

I∗

− βS∗g(I∗)Sg(I)
1 + αI∗

S∗I
+ βS∗g(I∗) +

γδ

µ+ δ
I∗
(

2− I∗R

R∗I
− R∗I

I∗R

)
= −µ

S
(S − S∗)2 +

γδ

µ+ δ
I∗
(

2− I∗R

R∗I
− R∗I

I∗R

)
+ βS∗g(I∗)

(
2− S∗

S
+

I

I∗
1 + αI∗

1 + αI
− I

I∗
− 1 + αI∗

S∗I
Sg(I)

)
= −µ

S
(S − S∗)2 +

γδ

µ+ δ
I∗
(

2− I∗R

R∗I
− R∗I

I∗R

)
− βS∗g(I∗)

(
L
(
S∗

S

)
+ L

(
S(1 + αI∗)

S∗(1 + αI)

)
+ L

(
1 + αI

1 + αI∗

)
+

α(I − I∗)2

I∗(1 + αI)(1 + αI∗)

)
.
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As we know, −µ
S (S−S∗)2 ≤ 0, 2− I∗R

R∗I −
R∗I
I∗R ≤ 0, and the function L(x) is always greater

than or equal to zero for all x > 0, and L(x) = 0 if and only if x = 1. Consequently,

W (S, I,R)(ξ) is non-increasing. Note that dW
dξ = 0 if and only if

(S(ξ), I(ξ), R(ξ)) ≡ (S∗, I∗, R∗) and (S′(ξ), I ′(ξ), R′(ξ)) ≡ 0, ∀ ξ ≥ 0.

Thus, limξ→+∞(S(ξ), I(ξ), R(ξ)) = (S∗, I∗, R∗). This completes the proof.

By Propositions 3.1 and 3.3, we obtain the following existence of traveling wave solu-

tions for (1.2).

Theorem 3.4. Assume that R0 > 1 holds. Then for every c > c∗, system (2.1) has a

positive solution (S(ξ), I(ξ), R(ξ)) satisfying (2.2), (3.2) and (3.3). That is, system (1.2)

admits a positive traveling wave solution with speed c connecting the disease-free equilib-

rium E0(1, 0, 0) and endemic equilibrium E∗(S∗, I∗, R∗).

3.2. Non-existence of traveling waves

In this subsection, by the two-sided Laplace transform, we will establish the non-existence

of traveling wave solutions for system (1.2) when R0 > 1 and c ∈ (0, c∗). To apply the

two-sided Laplace transform, the prior estimate of exponential decay is need.

Lemma 3.5. Assume that R0 > 1 holds. If c < c∗ and (S(ξ), I(ξ), R(ξ)) is a non-negative

and bounded solution of (2.1) satisfying (2.2), then there exist two positive constants α

and α0 such that

sup
ξ∈R
{I(ξ)e−αξ} < +∞, sup

ξ∈R
{|I ′(ξ)|e−αξ} < +∞, sup

ξ∈R
{|I ′′(ξ)|e−αξ} < +∞,(3.9)

sup
ξ∈R
{R(ξ)e−αξ} < +∞, sup

ξ∈R
{|R′(ξ)|e−αξ} < +∞, sup

ξ∈R
{|R′′(ξ)|e−αξ} < +∞(3.10)

and

(3.11) sup
ξ∈R
{|1− S(ξ)|e−α0ξ} < +∞.

Proof. Let (S(ξ), I(ξ), R(ξ)) be a non-negative and bounded solution of (2.1) satisfying

limξ→−∞(S(ξ), I(ξ), R(ξ)) = (1, 0, 0). Then (S(ξ), I(ξ), R(ξ)) satisfies

d2I
′′(ξ)− cI ′(ξ) + βS(ξ)g(I(ξ)) + δR(ξ)− (µ+ γ)I(ξ) = 0,

d3R
′′(ξ)− cR′(ξ) + γI(ξ)− (µ+ δ)R(ξ) = 0.

(3.12)

And, by the fluctuate lemma [10], we get limξ→±∞(S′(ξ), I ′(ξ), R′(ξ)) = (0, 0, 0). Set

I ′ = w, R′ = z. Then (3.12) can be rewritten as

ψ′ = Cψ + f(ξ, ψ),
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where

B =


0 1 0 0

−β−µ−γd2
c
d2
− δ
d2

0

0 0 0 1

− γ
d3

0 µ+δ
d3

c
d3

 , ψ =


I

w

R

z

 and f(ξ, ψ) =


0

β
d2

(I(ξ)− S(ξ)g(I(ξ)))

0

0

 .

It is easy to show that the characteristic equation for the matrix B is given by H(λ).

It follows from Lemma 2.2(3) that the equation H(λ) = 0 has no roots with zero parts.

Hence the initial equilibrium (1, 0, 0) is hyperbolic. Then it follows from Stable Manifold

Theorem [17, p. 107] (see also, the proof of [35, Lemma 3.1]) that there exists a positive

constant α ∈ R such that (3.9) and (3.10) hold.

Next we show that (3.11) holds. First, we need to show that 0 ≤ S(ξ) < 1 for all

ξ ∈ R. In fact, if not, we suppose that there exists ξ0 such that S(ξ0) ≥ 1. If there exists

a local maximum value S(ξ1) of S(ξ) such that S(ξ1) ≥ 1, it follows that S′(ξ1) = 0 and

S′′(ξ1) ≤ 0. Therefore,

0 = d1S
′′(ξ1) + µ(1− S(ξ1))− βS(ξ1)g(I(ξ1)) < 0,

a contraction. Otherwise, there exists ξ2 such that S(ξ2) > 1 and that S(ξ) is increasing

on (ξ2,+∞). Note that S(ξ) is bounded, then there exists ξ3 (ξ3 > ξ2) such that S′(ξ3) ≥ 0

and S′′(ξ3) ≤ 0, again getting a contradiction to the first equality of (2.1). Hence, we have

shown that 0 ≤ S(ξ) < 1 for all ξ ∈ R.

Using the fact 0 ≤ S(ξ) < 1 for all ξ ∈ R, we see that 0 < αS(ξ)g(I(ξ)) ≤ αI(ξ) for

all ξ ∈ R, and, by the first inequality of (3.9),

(3.13) sup
ξ∈R
{S(ξ)g(I(ξ))e−αξ} < +∞.

Let S̃(ξ) = 1− S(ξ) ≥ 0 for all ξ ∈ R. Integrating the first equation of (2.1) from −∞ to

ξ < 0 yields

(3.14) d1S̃
′(ξ)− cS̃(ξ) = −h(ξ), ξ < 0,

where

h(ξ) =

∫ ξ

−∞
[βS(η)g(I(η))− µ(1− S(η))] dη.

Note that 0 ≤ S(ξ) < 1 for all ξ ∈ R again and (3.13), it follows

h(ξ) ≤ β
∫ ξ

−∞
S(η)g(I(η)) dη ≤ C0e

αξ

for some constant C0 > 0, that is, h(ξ) = O(eαξ) as ξ → −∞. Solving (3.14) yields

S̃(ξ) = S̃(0)e
c
d1
ξ

+
1

d1
e
c
d1
ξ
∫ 0

ξ
e
− c
d1
η
h(η) dη, ξ < 0.
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Choose α0 < min{c/d1, α}, we get

S̃(ξ)e−α0ξ = S̃(0)e(c/d1−α0)ξ +
1

d1
e(c/d1−α0)ξ

∫ 0

ξ
e
− c
d1
η
h(η) dη, ξ < 0.

Note that h(ξ) = O(eαξ) as ξ → −∞, it is easy to see that S̃(ξ) = 0(eα0ξ) as ξ → −∞.

In view of the fact 0 ≤ S̃(ξ) ≤ 1 for all ξ ∈ R, we have limξ∈R{Ŝ(ξ)e−α0ξ} < +∞. Thus,

(3.11) holds. The proof is completed.

To show the non-existence of traveling wave solutions of (1.2), we now define the

two-sided Laplace transform for a non-negative and bounded function F (ξ) by

LF (λ) =

∫
R
e−λξF (ξ) dξ

for λ ≥ 0. Obviously, LF (λ) is defined in [0, λ∗F ) such that λ∗F < +∞ satisfying limλ→λ∗F−0

LF (λ) or λ∗F = +∞.

Theorem 3.6. Assume that R0 > 1 holds. Then, for any c ∈ (0, c∗), system (1.2) has no

non-negative and bounded traveling solutions (S(x+ ct), I(x+ ct), R(x+ ct)) with speed c

satisfying the boundary condition (2.2).

Proof. Suppose that there exists a non-negative and bounded traveling wave solution

(S(ξ), I(ξ), R(ξ)) of system (2.1) satisfying (2.2). Set

LI(λ) =

∫
R
e−λξI(ξ) dξ, λ ∈ [0, λ∗I), LR(λ) =

∫
R
e−λξR(ξ) dξ, λ ∈ [0, λ∗R).

By Lemma 3.5, it is easy to see that λ∗I ≥ α and λ∗R ≥ α.

Now we rewrite the second and third equations of (2.1) as follows:

d2I
′′(ξ)− cI ′(ξ) + (β − µ− γ)I(ξ) + δR(ξ) = Q(ξ),

d3R
′′(ξ)− cR′(ξ)− (µ+ δ)R(ξ) = −γI(ξ),

(3.15)

where Q(ξ) = β(I(ξ) − S(ξ)g(I(ξ)). Taking the two-sided Laplace transform for (3.15)

yields

(3.16) h2(λ)LI(λ) + δLR(λ) = LQ(λ), h3(λ)LR(λ) = −γLI(λ),

where LQ(λ) =
∫
R e
−λξQ(ξ) dξ.

We claim that λ∗I = λ∗R < +∞. Indeed, we first show that λ∗I < +∞ and λ∗R < +∞.

In fact, by the second equation of (2.1), we get

∆2(λ) := (d2λ
2 − cλ− (µ+ γ))LI(λ) + β

∫
R
e−λξS(ξ)g(I(ξ)) dξ + δLR(λ) = 0.



A Spatial SIRI Epidemic Model 1455

Since LI(λ) > 0, LR(λ) > 0 and
∫
R e
−λξS(ξ)g(I(ξ)) dξ > 0 for λ ∈ [0, λ∗I), then λ∗I = +∞

implies that limλ→+∞∆2(λ) = ∞, a contradiction. Thus, λ∗I < +∞. Similarly, we

also get λ∗R < +∞. Secondly, we prove λ∗I = λ∗R. On the contrary, if λ∗I < λ∗R, then

limλ→λ∗I−0 LI(λ) = +∞ and limλ→λ∗I−0 LR(λ) = LR(λ∗I) < +∞. This contradicts to

the second equality of (3.16). Thus, λ∗I ≥ λ∗R. On the other hand, if λ∗I > λ∗R, then

limλ→λ∗R−0 LR(λ) = +∞ and limλ→λ∗R−0 LI(λ) = LI(λ∗R) < +∞. Noth that

(3.17) |Q(ξ)| = β|I(ξ)− S(ξ)g(I(ξ)| ≤ β(|1− S(ξ)|+ α|I(ξ)|)|I(ξ)|,

here we have used the fact 0 ≤ S(ξ) < 1 for all ξ ∈ R. By Lemma 3.5, we get

lim
λ→λ∗R−0

LQ(λ) = LQ(λ∗R) < +∞,

which contradicts to the first equality of (3.16). Thus λ∗I ≤ λ∗R. Hence, we get λ∗ := λ∗I =

λ∗R.

We next show that h2(λ
∗) < 0 and h3(λ

∗) < 0 hold. In fact, if h2(λ
∗) ≥ 0, then

h2(λ
∗)LI(λ∗) + δLR(λ∗) = +∞ > |LQ(λ∗)|,

which contradicts the first equality of (3.16). Hence, we get h2(λ
∗) < 0. Similarly, we can

prove h3(λ
∗) < 0. Also, by (3.17) and Lemma 3.5, we see |LQ(λ∗)| < +∞. By (3.16), we

get

H(λ)LI(λ) = h3(λ)LQ(λ),

which implies

H(λ∗) = lim
λ→λ∗−0

h3(λ)LQ(λ)

LI(λ)
= 0,

contradicting Lemma 2.2(2). The proof is completed.

4. Numerical simulations and summary

In this section, we first carry out numerical simulations to illustrate the existence of

traveling waves for (1.2) obtained by Theorem 3.4 for the two cases, β > µ + γ and

β < µ+ γ, respectively. For convenience, we only present the diagrams in the domain of

x ∈ [−50, 50]. Here most of the values of parameters are taken in [9, 18] and the rest of

the parametric values are assumed for numerical computation.

Example 4.1 (Case (C1): β > µ+ γ). For system (1.2), we set the parameter values as:

d1 = 2, d2 = 1.2, d3 = 1.5, µ = 0.0000351 (per day), β = 0.4 (per day), δ = 0.805 (per day),

γ = 0.03521 (per day) and α = 2. By a direct calculation, we can get R0 ≈ 10918 > 1,

(S∗, I∗, R∗) ≈ (0.000267, 0.958, 0.0419), and β > µ+ γ holds. Therefore, by Theorem 3.4,
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we conclude that system (1.2) has a positive traveling wave connecting the disease-free

equilibrium E0 = (1, 0, 0) and the endemic equilibrium E∗ ≈ (0.000267, 0.958, 0.0419). See

Figure 4.1 for the simulation diagram of traveling waves.

Figure 4.1: The traveling wave solution of (1.2) found with the parameters satisfying

β > µ+ γ in Example 4.1.

Example 4.2 (Case (C3): β < µ+ γ). For system (1.2), we set the parameter values as:

d1 = 2, d2 = 1.2, d3 = 1.5, µ = 0.0000351 (per day), β = 0.4 (per day), δ = 0.5 (per

day), γ = 0.4 (per day) and α = 3. By a direct calculation, one can get R0 ≈ 6331 > 1,

(S∗, I∗, R∗) ≈ (0.000421, 0.555, 0.444), and β < µ + γ holds. Hence, by Theorem 3.4,

we conclude that system (1.2) has a positive traveling wave connecting the disease-free

equilibrium E0 = (1, 0, 0) and the endemic equilibrium E∗ ≈ (0.000421, 0.555, 0.444). See

Figure 4.2 for the simulation diagram of traveling waves.

Figure 4.2: The traveling wave solution of (1.2) found with the parameters satisfying

β < µ+ γ in Example 4.2.
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In this paper, based on the SIRI epidemic model proposed by [9,14,19], we incorporate

the diffusion of individuals to the system (1.1) and then introduce an spatial SIRI epidemic

model with nonlinear incidence rate. For this mathematical model, we construct the

upper-lower solutions and Lyapunov function for (2.1), together with the Schauder fixed

point theorem, establish existence of traveling wave solutions for the model connecting

the two equilibria E0 and E∗ with speed c > c∗. Furthermore, based on the two-sided

Laplace transform, we show that the model has no such a traveling wave solution with

speed c < c∗. And also, we give two numerical simulations to illustrate our analytic

results. Biologically, a traveling wave solution connecting the two equilibria E0 and E∗

accounts for the transition from disease uninfected equilibrium E0 to the endemic infected

equilibrium E∗ as time goes, and the wave speed c may explain the spatial spread speed

of the disease, which may measure how fast the disease invades geographically. Hence,

the study of the traveling waves is a very important topic for disease models with spatial

heterogeneity.
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