
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 23, No. 2, pp. 473–501, April 2019

DOI: 10.11650/tjm/181113

Compressed Hierarchical Schur Algorithm for Frequency-domain Analysis of

Photonic Structures

Cheng-Han Du, Yih-Peng Chiou and Weichung Wang*

In memory of Professor Hwai-Chiuan Wang

Abstract. Three-dimensional finite-difference frequency-domain analyses of partially

periodic photonic structures result in large-scale ill-conditioned linear systems. Due to

the lack of efficient preconditioner and reordering scheme, existed general-purpose iter-

ative and direct solvers are inadequate to solve these linear systems in time or memory.

We propose an efficient direct solver to tackle this problem. By exploring the physical

properties, the coefficient matrix structure, and hardware computing efficiency, we

extend the concepts of grid geometry manipulation and multi-level Schur method to

propose the Compressed Hierarchical Schur algorithm (CHiS). The proposed CHiS

algorithm can use less memory and remove redundant computational workloads due

to the homogeneity and periodicity of photonic structures. Moreover, CHiS relies on

dense BLAS3 operations of sub-matrices that can be computed efficiently with strong

scalability by the latest multicore processors or accelerators. The implementation and

benchmarks of CHiS demonstrate promising memory usage, timing, and scalability

results. The feasibility of future hardware acceleration for CHiS is also addressed us-

ing computational data. This high-performance analysis tool can improve the design

and modeling capability for various photonic structures.

1. Introduction

Photonics has been an active research topic for decades. It has been widely applied in

scientific and industrial applications, such as high-speed signal transmission, processing,

and sensing, just to name a few. Among the various photonic devices, partially periodic

photonic structures have played an important role in photonics-related developments and

studies. These structures are the building blocks of complete photonic circuits and net-

works. Partially periodic photonic structures are frequently utilized in wavelength filtering,

Received May 7, 2018; Accepted November 25, 2018.

Communicated by Suh-Yuh Yang.

2010 Mathematics Subject Classification. 65F05, 65Y05, 65Z05.

Key words and phrases. partially periodic photonic structures, finite-difference frequency-domain method,

direct solver for ill-conditioned linear systems, Schur complements, BLAS3 operations, multithreading

parallelism.

*Corresponding author.

473

474 Cheng-Han Du, Yih-Peng Chiou and Weichung Wang

wave confinement, and various manipulations of propagation behaviors. For example, fi-

nite structure periodicity, such as the frequency filters shown in Figure 1.1a, can lead to

different wave behaviors, and a rigorous numerical analysis is required. Moreover, pho-

tonic crystal-based devices with partially periodic structures are important components in

photonic designs. For example, point defects in photonic crystals, as shown in Figure 1.1b,

can work as a resonance cavity [1, 31]. Linear defects, as shown in Figure 1.1c, can be

used as photonic crystal waveguides [11,30]. It is even possible to combine multiple linear

and point defects for wavelength filtering [17].

(a) (b) (c)

Figure 1.1: Photonic structures with partial (finite or imperfect) periodicity are illustrated

by (a) a frequency filter, (b) an L3 photonic crystal resonance cavity, and (c) a photonic

crystal waveguide.

Efficient simulation algorithms for partially periodic photonic structures are in high

demand for rigorous simulations and practical designs for designing future photonic sys-

tems. Several numerical methods and algorithms have been developed to analyze field

behaviors in perfectly periodic structures. Examples include the planewave expansion

method [9,10,25] and finite difference time domain (FDTD) methods [28]. Time-domain-

based formulations, such as FDTD, are a popular choice for modeling partially periodic

photonic structures because of their feasible computation costs in most cases. However, in

certain analyses, such as high-Q resonator and extremely narrow-band filters, the FDTD

analysis requires prolonged simulation times to achieve a finer frequency resolution. A

three-dimensional (3D) FDTD simulation can take a considerable amount of time to com-

plete if the simulation requires many time steps.

Alternatively, frequency-domain simulations such as finite difference frequency domain

(FDFD) methods [8] yield wave behavior analysis at specified frequencies. Designers can

simply specify the target frequency range and perform corresponding frequency-domain

analyses. Furthermore, FDFD can be used to rigorously analyze spectral (frequency)

characteristics. A simple implementation of arbitrarily shaped total-field/scattered-field

simulations has also been reported [18], which allows easy customization of different inci-

dent waves and enables great flexibility of the FDFD method for a wide array of photonic

Compressed Hierarchical Schur Algorithm for Frequency-domain Analysis of Photonic Structures 475

simulations. In short, frequency-domain simulation is a vital design tool in photonic device

analysis and component characterization, and it is complementary to FDTD simulations.

An efficient FDFD simulation can be beneficial to the photonic research community and

industry.

However, in general FDFD simulation, multiple lattices must be modeled, and their

full-vectorial 3D rigorous analyses require tremendous computational resources while mod-

eling partially periodic photonic structures. In particular, the key computational compo-

nent in the FDFD method is a linear system solver and there are three challenges for

solving the linear systems. First, the dimension of the linear systems in the 3D FDFD

simulations can be very large, and tremendous computational resources are required. Sec-

ond, the matrices corresponding to these problems are mostly ill-conditioned when the

computational domain is considerably larger than the wavelength scale and a perfectly

matched layer (PML) is applied [29]. Third, novel algorithms are required to efficiently

take advantage of the latest computing capacities, such as multicore parallelism, to reduce

the computation time. To overcome these three challenges, we propose an efficient direct

solver described in the next section.

1.1. CHiS: an efficient direct solver for FDFD simulations

We develop an FDFD simulation tool for modeling partially periodic photonic structures.

The kernel of the simulator is a fast direct linear system solver based on the proposed

compressed hierarchical Schur algorithm (CHiS). The CHiS algorithm has been designed

by exploring the physical properties of partially periodic photonic structures and matrix

structures such that we can reduce workloads, use less memory, and take advantage of the

computing capacities of recent hardware accelerators.

The main concepts of the proposed CHiS are derived from geometry-based nested

dissection method and recursive multi-level Schur method. On top of these dissection and

Schur methods, we further propose two compression schemes to use less memory space and

remove redundant computational workloads. These compressions greatly improve overall

computation efficiency due to a significant reduction of small BLAS3 operations. As a

matrix-free implementation, CHiS avoids complete graph-based partitioning and global

sparse pattern analysis. In the matrix-free setting, CHiS can also quickly identify the

portion to be compressed in less than one second even for large matrices. Last but not

least, CHiS can be accelerated by various modern high-performance processing units that

dense BLAS3 operations such as ZGEMM and ZGETRS are efficiently executed.

This efficient FDFD analysis tool can facilitate rapid developments of future pho-

tonic circuit designs and networks [2], particularly in component design and optimization.

In addition, the proposed framework is applicable to other numerical simulations with

476 Cheng-Han Du, Yih-Peng Chiou and Weichung Wang

Cartesian or staggered Cartesian grids. The effectiveness of this framework depends on

the duplication property of the physical domain after the computational domain decom-

position process. The simulation parameters should be tuned based on physical structures

and grid alignment to expose as many duplicate sub-structures as possible. If the portion

of identical sub-structures is large, then the proposed framework can provide significant

memory and workload savings.

The remainder of this paper is organized as follows. We discuss the governing equa-

tions, the discretization scheme, perfectly matched layer boundary conditions, and the

resulting linear system in Section 2. We propose the hierarchical Schur algorithm in

Section 3 by discussing how the hierarchical Schur matrix is formed and factorized. In

Section 4, we propose the compressed hierarchical Schur algorithm that contains two com-

pression schemes, allowing us to solve the linear system by using less memory storage

and performing fewer computational tasks. We present the numerical simulation results

of several photonic structures and analyze the computational performance in Section 5.

Finally, we conclude this paper with a discussion of future works in Section 6.

2. Problem formulation

We derive the target linear system from the following time-harmonic Maxwell equations.

Assuming the time-varying term e−ıωt, we have the equations

∇× ~E = ıωµ ~H, ∇× ~H = ~J − ıωε ~E,(2.1)

∇ · (ε ~E) = ρ, ∇ · (µ ~H) = 0.

Here, ~E is the electric field, ~H is the magnetic field, ~J is the electric current, ρ is the

charge source, and ω, µ, and ε are the angular frequency, permeability, and permittivity,

respectively. If we further assume nonmagnetic materials in our simulations with µ = µ0

and ε = ε0εr, the vector wave equation

(2.2) −∇×∇× ~E + k20εr ~E = ~fsrc

can be derived from (2.1). The constants µ0 and ε0 are vacuum permeability and vacuum

permittivity, respectively, εr is relative permittivity, ~fsrc = −ıωµ0 ~J , k0 = ω
√
µ0ε0 =

2π/λ0, λ0 is the vacuum wavelength, and ~J is the current source [26,27].

The double-curl operator in (2.2) can be discretized using Yee’s scheme with central

differences [32]. By using the uniform grid sizes ∆x, ∆y, and ∆z, (2.2) can be discretized

as shown in (7.1)–(7.3) of the appendix. By letting Nx, Ny, and Nz be the grid numbers

and packing the x-, y-, and z-field components together, we can rewrite (7.1)–(7.3) as a

linear system Ax = b, where x is defined in (7.4) and b is the corresponding vector of

discretized fsrc.

Compressed Hierarchical Schur Algorithm for Frequency-domain Analysis of Photonic Structures 477

A perfectly matched layer (PML) based on stretched coordinates has been proposed

for the frequency-domain formulation [4] to handle the truncation near domain boundaries

such that the artificial reflection from the domain boundary can be effectively suppressed.

When using stretched-coordinate-based PML to absorb outward wave propagation, the

grid sizes in the PML region are chosen to be nonuniform to achieve optimal absorption.

The vector wave equation equipped with stretched-coordinate-based PML is expressed as

(2.3) −∇PML ×∇PML × ~E + k20εr
~E = ~fsrc,

where ∇PML = x̂ 1
sx

∂
∂x + ŷ 1

sy
∂
∂y + ẑ 1

sz
∂
∂z , x̂, ŷ, and ẑ are the unit vectors in the Cartesian

coordinate system, the stretching factors sn = 1 + ı σnωε0 for n = x, y, z, and σns are

position- and problem-dependent variables. Because of the scaling distribution of σns, the

computational domain has nonuniform grids.

In short, by using Yee’s scheme and PML, we can derive the linear system

(2.4) APMLx = b.

The matrix APML is derived from (2.3), and it includes stretched-coordinate-based PML.

The matrix APML is complex and non-Hermitian as shown in [3]. The unknown vector x

is defined in (7.4), and b is the discrete right-hand-side vector corresponding to ~fsrc. In

the next sections, we focus on how the linear system (2.4) can be solved efficiently.

To the best of our knowledge, little efficient iterative or direct methods have been pro-

posed to solve the linear system (2.4). First, iterative methods can handle large sparse lin-

ear systems in general. However, finding an efficient preconditioner for the ill-conditioned

target problems is non-trivial. For example, iterative methods are used to solve some

specific problem settings with PML in [26], but no preconditioner is used. The condition

numbers of several test linear systems are improved by a modification of the formula-

tions [27]. However, the convergence performance varies, and the performance depends

on the simulation parameters, such as physical parameters, excitation current, and other

numerical settings. Several iterative linear system solvers such as STRUMPACK [6] with

hierarchical semi-separables method and algebraic recursive multi-level solver [13, 19] are

also reported, while their convergence properties for the general FDFD photonic simula-

tion are not fully investigated yet. In other words, these existing methods are designed

to solve the specific problems, and they are not efficient for the target problem. Second,

direct methods do not involve preconditioning, and they are robust to solve ill-conditioned

problems. Consequently, a direct approach has been used to perform 3D geophysical anal-

ysis by FDFD [15]. However, significant fill-ins typically occur in the eliminations that

may greatly slow down the solver. Third, computer architectures evolve rapidly, and the

latest processors are generally equipped with multiple or many (lightweight) computing

478 Cheng-Han Du, Yih-Peng Chiou and Weichung Wang

cores. Algorithms must be redesigned to fully use these computational capacities. Hard-

ware accelerated sparse linear system solvers have been reported [20–22,33]. However, how

we can use the computing capacities along the trend of the latest and coming processors

to solve the target problems remains an open problem.

3. Hierarchical Schur algorithm (HiS)

The goal of this section is to derive the hierarchical Schur method (HiS) to solve the

linear system (3.1). The concept is a variation of recursive multi-level solver [13,19], while

we perform exact factorization instead of an approximated one. We first discuss how we

decompose the computational domain, and then we form the hierarchical Schur coefficient

matrix in Section 3.1. This hierarchical Schur coefficient matrix is denoted as AHS and

defined in (3.2). The matrix AHS is a reorder of APML; however, AHS has a particular form

that leads to a balanced binary elimination tree. By taking advantage of these properties

of the coefficient matrix, we discuss how we can factorize the matrix in Section 3.2. The

algorithm and its main computational workloads are presented in Section 3.3.

3.1. Hierarchical Schur coefficient matrix and the elimination tree

Because Yee’s mesh is geometrically and regularly structured in a cuboid computational

domain, we can decompose the domain and order the grid points to obtain the hierarchical

Schur coefficient matrix by exploring the geometric and Yee’s discretization properties on

the computational domain directly [14, 24]. This approach effectively reduces the work-

loads of global sparse pattern analysis and fill-reduction reordering. Furthermore, AHS

can be implicitly defined. We can quickly compute the entries of AHS on-the-fly when

we need them during the computations without explicitly storing the whole AHS before-

hand. In other words, because the grid geometry and the sparse pattern are regular, we

can directly order the matrix elements in a way that we prefer rather than analyzing the

complete sparse pattern of the matrix efficiently.

In contrast, the matrix AHS can be (approximately) obtained by applying the nested

dissection approach [12,16] to the matrix APML. However, the nested dissection approach

needs to analyze the sparse pattern of the matrix and perform graph partitioning to

reorder the matrix. This procedure may be time consuming, particularly when a high-

quality partitioning is required. Moreover, some partitioning parameters and schemes

generally need careful tuning for efficient computing.

For the sake of simplicity and clarity, we use an example to describe how we can derive

the hierarchical Schur coefficient matrix. We consider the cuboid computational domain

shown in Figure 3.1a. The grid numbers of this cuboid computational domain example are

Compressed Hierarchical Schur Algorithm for Frequency-domain Analysis of Photonic Structures 479

(Nx, Ny, Nz) = (19, 39, 19). As shown in Figure 3.1b, the entire domain is partitioned into

16 subdomains evenly by the separators recursively. Each subdomain contains 9 × 9 × 9

grids. The subdomains are denoted as D1 to D16. The separators are denoted as Si,j , and

the indices i and j stand for the separator level and separator index in the elimination

tree (to be discussed later), respectively.

(a)

D6

S1,1 S1,2

S1,3 S1,4

S1,5 S1,6

S1,7 S1,8

S2,1
S2,3

S2,2 S2,4

S3,1 S3,2
S4,1

D5

D2

D1

D7

D3

D4

D13

D14

D9

D10

D15

D16

D11

D12

D8

(b)

Figure 3.1: A schema of customized domain decomposition. (a) The sample computa-

tional domain with (Nx, Ny, Nz) = (19, 39, 19) grid points. (b) The subdomains D∗ and

separators S∗,∗.

Next, based on the decomposition, we group the grid points in the subdomains and sep-

arators together to form the subdomain sub-matrices and separator sub-matrices. These

sub-matrices contain the grid points that are ordered in the same manner locally. Fur-

thermore, these sub-matrices are ordered globally such that the corresponding subdomain

sub-matrices D∗ and separator sub-matrices S∗,∗ are located in the diagonal blocks of the

hierarchical Schur coefficient matrix AHS as shown in Figure 3.2a. The off-diagonal rectan-

gular sub-matrices of AHS are the interface sub-matrices, which involve the discretization

of the grid points in the subdomain and separators. We will define these interface sub-

matrices in detail after introducing the elimination tree.

The hierarchical Schur coefficient matrix AHS and its corresponding elimination tree

of this particular example are illustrated in Figures 3.2a and 3.2b, respectively. The

leaf-level nodes of the elimination tree consist of the subdomain sub-matrices D1 to D16.

Their parent nodes are the first-level separator sub-matrices S1,∗. The elimination tree

also shows the second-, third-, and fourth-level separators S2,∗, S3,∗, and S4,∗, respectively.

Let A be a subdomain or a separator sub-matrix, and we assume that it is a child of a

sub-matrix B in the elimination tree. We use IL(A,B) (or IU (A,B)) to denote interface

sub-matrices between A and B that belong to the lower (or upper) off-diagonal part of

the matrix AHS. The Schur complement of a matrix M is denoted as M sc. For example,

the Schur complement of AHS is Asc
HS.

480 Cheng-Han Du, Yih-Peng Chiou and Weichung Wang

D*

S1,*

S2,*

S3,*

S4,*

S[0]
=AHS

S[2]

S[3]

S[4]

S[1]
=AHS

sc

(a) (b)

Figure 3.2: (a) The hierarchy of recursive Schur complement matrices S[0] = AHS, S[1] =

Asc
HS, S[2], S[3], and S[4]. (b) The corresponding elimination tree of the computational

domain shown in Figure 3.1. The nodes within the red box are associated with the sub-

matrices of S[1].

The aforementioned customized domain decomposition and grid point ordering scheme

suggest that we should rewrite the target linear system (2.4) as

(3.1) AHSx = b,

where x = [xD1 , xD2 , . . . , xD16 , xS[1]
]T and b = [bD1 , bD2 , . . . , bD16 , bS[1]

]T . Note that the

unknown vectors x’s and the right-hand-side vectors b’s in (2.4) and (3.1) are equivalent

up to a permutation. In (3.1), the hierarchical Schur coefficient matrix is

(3.2) AHS =

D1 IU (D1, S[0])

D2 IU (D2, S[0])

. . .
...

D16 IU (D16, S[0])

IL(D1, S[0]) IL(D2, S[0]) · · · IL(D16, S[0]) Asc
HS

.

The lower-right block of AHS is the Schur complement Asc
HS. It consists of the sepa-

rator sub-matrices in the diagonal and the corresponding interface sub-matrices in the

off-diagonal, as shown in Figure 3.2a. This figure also suggests that the hierarchical Schur

coefficient matrix has a recursive block arrow matrix structure. As shown in Figure 3.2b,

the corresponding binary elimination tree is perfectly balanced in the sense that all of the

subdomain sub-matrices and the separator sub-matrices in the same level of the elimina-

tion tree have identical dimensions and matrix entry orderings.

Compressed Hierarchical Schur Algorithm for Frequency-domain Analysis of Photonic Structures 481

3.2. Factorization of the Hierarchical Schur matrix

The LU factorization of the matrix AHS can be computed by the three-stage operations

recursively. These operations include factorization, solve, and update. Take AHS shown

in Figure 3.2a as an example; the matrix has four levels of Schur complement hierarchy,

and we need to perform such operations four times plus a final factorization of the matrix

S4,1.

The first-level factorization involves the sub-matrices D∗, S1,∗, S2,∗, S3,∗, S4,∗, and the

mutually interacting interface sub-matrices. In particular, for i = 1, . . . , 16, we (i) fac-

torize the subdomain sub-matrices Di = LiUi; (ii) solve the linear system with mul-

tiple right-hand-side vectors to compute IL(Di, A
sc
HS)U−1

i and L−1
i IU (Di, A

sc
HS), or only

D−1
i IU (Di, A

sc
HS) with an equivalent result; and (iii) update the first-level Schur comple-

ment

(3.3) S[1] = Ssc
[0] −

16∑
i=1

IL(D1, S
sc
[0])D

−1
i IU (Di, S

sc
[0]),

where S[0] = AHS and Ssc
[0] = Asc

HS. In other words, by performing these three-stage

operations, we complete the first-level factorization and factor AHS = L[1]U[1], where

(3.4) L[1] =

L1

L2

. . .

L16

IL(D1, S[0])U
−1
1 IL(D2, S[0])U

−1
2 · · · IL(D16, S[0])U

−1
16 I

and

(3.5) U[1] =

U1 L−1
1 IU (D1, S[0])

U2 L−1
2 IU (D2, S[0])

. . .
...

U16 L−1
16 IU (D16, S[0])

S[1]

.

Note that Ssc
[0] (= Asc

HS) and S[1] have the same block sparsity, and both of them are

arrowhead block matrices, as shown in Figure 3.2a.

The second-level factorization involves the updated S1,∗, S2,∗, S3,∗, S4,∗, and the

mutual interface sub-matrices. In the second-level factorization, we apply the three-

stage operations on Schur complement S[1] to complete the second-level factorization

482 Cheng-Han Du, Yih-Peng Chiou and Weichung Wang

and obtain the second-level Schur complement matrix S[2]. In particular, we (i) fac-

torize the updated S1,i = LiUi, (ii) solve the multiple right-hand-side systems to obtain

IL(S1,i, S
sc
[1])U

−1
i and L−1

i IU (S1,i, S
sc
[1]), and (iii) update the second-level Schur comple-

ment S[2] = Ssc
[1] −

∑8
i=1 IL(S1,i, S

sc
[1])S

−1
1,i IU (S1,i, S

sc
[1]). These operations are similar to the

operations shown in (3.3)–(3.5) by replacing S[0] (= AHS) with S[1].

We continue such three-stage operations recursively to complete the third- and fourth-

level factorizations. The final task is to perform LU-factorization of S[4], which is the

updated S4,1. See Figure 3.2a for the matrices S[1], S[2], and S[3] and Figure 3.2b for the

matrices involved in the first-, second-, third-, fourth-, and final-level factorizations. The

block sparsity of the matrix AHS and the factored lower and upper triangular matrices

remains unchanged. That is, there is no fill-in in terms of block sub-matrices during the

entire LU factorization. Moreover, S[0] (= AHS), S[1], S[2], S[3], and S[4] are all block

arrowhead matrices, and they are computed recursively.

3.3. The HiS algorithm and its computational tasks

We have discussed how the matrix AHS can be factorized. The proposed factorization

scheme is summarized conceptually in Algorithm 3.1. The operations that consume the

majority of the computation time in the algorithm are Steps 3 and 4.

Algorithm 3.1 HiS: Hierarchical Schur Factorization of AHS defined in (3.1)

1: For each subdomain sub-matrix Dj , perform sparse factorization and solve multiple right-hand-side

linear systems D−1
j IU (Dj , ∗) corresponding to its adjacent interfaces.

2: Perform sparse matrix multiplications IL(Dj , ∗)D−1
j IU (Dj , ∗) for all j and update Ssc

[0] to S[1].

3: For the level-i separators, factorize the dense sub-matrices Si,j = Li,jUi,j and solve the multiple

right-hand-side linear systems S−1
i,j IU (Si,j , ∗) related to interface sub-matrices.

4: Perform dense matrix multiplications of IL(Si,j , ∗)S−1
i,j IU (Si,j , ∗) and update Ssc

[i] to S[i+1].

5: Move to level-(i + 1) and perform Steps 3–5 until the final level of the elimination tree.

Fortunately, these dense operations are included in high-performance linear algebra

libraries that are available in almost all of the advanced computing environments. For ex-

ample, matrix multiplication can be executed by the ZGEMM routine from BLAS, while

multiple-RHS solves and LU factorization can be computed by ZGETRS and ZGETRF

from the LAPACK library, respectively. Moreover, these operations greatly rely on BLAS3

operations, which are also optimized for many hardware architectures, such as Intel MKL

for multicore and manycore CPUs and CUBLAS and MAGMA for GPU accelerators.

Consequently, these operations can be executed efficiently on the latest computer archi-

tectures.

Compressed Hierarchical Schur Algorithm for Frequency-domain Analysis of Photonic Structures 483

4. Compressed Hierarchical Schur algorithm (CHiS)

We have proposed HiS in Section 3. Motivated by the homogeneity and periodicity of

photonic structures, we further develop two approaches to “compress” the hierarchical

Schur coefficient matrix AHS such that we can consume less storage and perform less

computations to solve the linear system (3.1). In the first scheme, as shown in Section 4.1,

we consider the identical subdomains and identical separators. In the second scheme, as

shown in Section 4.2, we focus on the identification of the leaf-level interface sub-matrices.

The overall procedure of CHiS is summarized in Section 4.3.

4.1. De-duplication of identical subdomains and separators

The first step of the elimination tree de-duplication (ETD) is to identify identical sub-

domains by determining whether there is any difference in the corresponding physical

parameters (e.g., material permittivity and structure locations) and the grid properties

(e.g., grid size uniformity and PML settings). We then apply the same rules to check

the identity of the separator sub-matrices in all levels. Clearly, the children of any two

identical separator sub-matrices must also be the same. For example, if the permittivity

and grid sizes in separators S1,1 and S1,2 are identical, then we also need D1 = D3 and

D2 = D4 to confirm that S1,2 is a duplication of S1,1. After identifying these duplicated

sub-matrices, we can store one representative sub-matrix and perform the correspond-

ing computations once and simply refer those duplicated sub-matrices and the necessary

intermediate numerical results to the representative sub-matrix.

S1,*

S2,*

S3,*

S4,*

D*

(a)

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16

S1,1 S1,2 S1,3 S1,4 S1,5 S1,6 S1,7 S1,8

S2,1 S2,2 S2,3 S2,4

S3,1 S3,2

S4,1

D1

S1,1

S2,1

S3,1

S4,1

(b)

D1

S1,*

S2,*

S3,*

S4,*

D7

(c)

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16

S1,1 S1,2 S1,3 S1,4 S1,5 S1,6 S1,7 S1,8

S2,1 S2,2 S2,3 S2,4

S3,1 S3,2

S4,1

D1

S1,1

S2,1

S3,1

S4,1

D7

S1,4

S2,2

(d)

Figure 4.1: The coefficient matrices AHS and their elimination trees with “perfect” com-

pressions (a,b) and with compression containing defects (c,d).

We use two examples to illustrate the effects of the ETD. (i) We assume an ideal case

in which the physical parameters and the grid properties of the subdomain and separator

sub-matrices of the same levels are identical. In this case, there are only one subdomain

type and one separator type in each level. Without loss of generality, we assume that the

484 Cheng-Han Du, Yih-Peng Chiou and Weichung Wang

representative subdomain is D1 and that the representative separators are S1,1, S2,1, S3,1,

and S4,1. The de-duplicated matrix and the corresponding elimination tree are shown in

Figures 4.1a and 4.1b, respectively. (ii) We assume that a defect is located in subdomain

D7. According to the Schur complement update procedure, D7 alters its updating contents

for S1,4, S2,2, S3,1, and S4,1. See Figures 4.1c and 4.1d for an illustration of the second

example. The different components of these Schur complements must be stored, and

corresponding operations must be computed.

In short, structure homogeneity and periodicity are common in photonic device simu-

lations. We can take advantage of this particular property to de-duplicate the elimination

tree thanks to the Yee’s discretization and the proposed grid alignment and ordering dis-

cussed in Section 3.1. Our ETD scheme explores such structures directly and efficiently

without performing matrix structure analysis. This is a major advantage of the ETD

scheme. For example, the identification and de-duplication takes less than one second

to complete in all of the numerical tests in this paper. Furthermore, because the de-

fects in many photonic structures and imperfect periodicity are limited, the ETD remains

beneficial to many other photonic device simulations.

4.2. Compression of leaf-level interface sub-matrices

The matrix storage and computations can be further compressed by the leaf-level interface

sub-matrix compression (LIC), as shown below. To achieve this goal, we first examine the

structure of the interface sub-matrices. As illustrated in Figure 4.2a, each subdomain

interacts with separators in the following 12 directions: ±x, ±y, ±z, ±x ∓ y, ±y ∓ z,
and ±x ∓ z. A separator adjoins a subdomain via face components (FCs) or edge com-

ponents (ECs). We take subdomain D13 and separator S4,1 as an example to illustrate

these notations. As shown in Figure 4.2b, S4,1 contains EC−y+z and FC−y of D13. The

corresponding D13-S4,1 related interface sub-matrices are denoted as IU (D13, S4,1) and

IL(D13, S4,1), which are indicated in the top-right and bottom-left parts of Figure 4.2c,

respectively. Moreover, IU (D13, S4,1) is assembled by the sub-matrices UD13,EC−y+z and

UD13,FC−y with a particular column arrangement based on the ordering of S4,1. Similarly,

IL(D13, S4,1) is assembled by the sub-matrices LD13,EC−y+z and LD13,FC−y with a partic-

ular row arrangement based on the ordering of S4,1. Next, we illustrate the concept of

compressing the interface sub-matrices by considering D8, D12, D13, and their correspond-

ing separators. As shown in Figure 4.2d, D8, D12, and D13 contain the face components

FC−ys that are also parts of the separators S2,2, S2,3, and S4,1, respectively.

The key concept of the LIC scheme is to recognize that UD1,FC−y , UD8,FC−y , UD12,FC−y ,

and UD13,FC−y are equivalent up to suitable column permutations when the grid sizes are

uniform. Moreover, D8, D12, and D13 are identical to D1, and only D1 is stored, as shown

Compressed Hierarchical Schur Algorithm for Frequency-domain Analysis of Photonic Structures 485

EC-x+zEC-y+z

EC+x-y EC-x+y

EC+x-z EC+y-z

FC+x

FC-z

FC-y FC-x

FC+z

FC+y

(a)

D13

S4,1

EC-y+z

FC-y

(b)

S4,1

D13

· · ·

· · ·

IU(D13,S4,1)

IL(D13,S4,1)

(c)

D8
D13

D12

S2,2

S2,3

S4,1

(d)

D1

FD1,FC-x

FD1,EC-x+y

FD1,EC+x-y

FD1,EC-x+z

FD1,EC+x-z

FD1,EC-y+z

FD1,EC+y-z

FD1,FC+x

FD1,FC-y

FD1,FC+y

FD1,FC-z

FD1,FC+z

EFC

-x

EFC

+x

EFC

-y

EFC

+y

EFC

-z

EFC

+z

EEC

-x+y

EEC

+x-y

EEC

-x+z

EEC

+x-z

EEC

-y+z

EEC

+y-z

FD1

ED1

BD1

S2,2

S4,1

S2,3

D8

D12

D13

· · ·

· · ·

· · ·

· · ·

(e)

Figure 4.2: Conceptual schema of leaf-level interface sub-matrix compression. (a) Separa-

tor components adjacent to a subdomain. (b) Subdomain D13 and its adjacent components

in S4,1. (c) Sub-matrices related to D13 and S4,1. (d) D8, D12, and D13 and their FC−ys.

(e) Updating multiple sub-matrices with a single restructured matrix from FC−y.

in Figure 4.1b. Consequently, there is no need to compute D−1
8 UD8,FC−y , D−1

12 UD12,FC−y ,

and D−1
13 UD13,FC−y because the results can be extracted from D−1

1 UD1,FC−y . Similar tech-

niques can be applied to the sub-matrices associated with LD8,FC−y , LD12,FC−y , and

LD13,FC−y because LD1,FC−y , LD8,FC−y , LD12,FC−y , and LD13,FC−y are equivalent up to

suitable row permutations. This compression scheme is conceptually illustrated in Fig-

ure 4.2e.

Note that although there is no FC−y for subdomain D1 in the original example, we can

construct a virtual FC−y based on Yee’s mesh. Furthermore, under ideal periodicity, we

can simply use interfaces between D1 and the twelve possible FCs to describe all interface

sub-matrices between subdomains and any other separators, as shown in Figures 4.1a and

4.1b.

We conclude this section by emphasizing that with a higher compression rate in the

subdomains, the interface component arrangement greatly reduces the number of right-

hand-side vectors in the sparse triangular solves. Consequently, LIC can significantly save

overall computation time in the leaf-level computations.

486 Cheng-Han Du, Yih-Peng Chiou and Weichung Wang

4.3. The CHiS algorithm

We modify Algorithm 3.1 (HiS) to include the compression schemes ETD and LIC. The

overall procedure for CHiS to factorize the hierarchical Schur coefficient matrix AHS de-

fined in (3.2) is summarized in Algorithm 7.1. CHiS greatly reduces the computational

workloads in ZGEMM, ZGETRF, and ZGETRS calls thanks to the co-design of physical

properties, algorithm design, and efficient architectures.

As proposed in Section 4.1, we use the elimination tree de-duplication scheme to remove

the identical sub-structures. Here, we elaborate the compression scheme with more details.

For the triangular solves in the leaf-level, the ETD is first implemented to remove the

duplicated sparse factorization of subdomains. As illustrated in Figure 4.2e (and lines

7 and 8 of Algorithm 7.1), the following step is performed to aggregate EC- and FC-

related interface sub-matrices corresponding to each subdomain Di into EDi (for upper

blocks) and FDi (for lower blocks). The aggregation eliminates multiple tiny matrix

computations to increase computational efficiency and provides preparation for the LIC

scheme. The aggregated EDi can be handled as multiple-RHS (right-hand-side vectors) for

the sparse linear system BDi = D−1
i EDi . After we obtain the solution BDi , sparse matrix

multiplication of FDi and BDi is performed in line 12 of Algorithm 7.1, which is utilized

for the first-level Schur complement update based on the LIC and elimination tree. When

there are many duplicates of subdomain Di, from the LIC scheme, we can apply multiple

updates at different sub-matrices in the Schur complement with the single computation

of SDi , as illustrated in Figure 4.2e.

Other details of the algorithm are highlighted below.

• The coefficient matrix AHS is defined implicitly based on ETD and LIC. The matrix

entries in the de-duplicated sub-matrices are accessed by remapping on-the-fly.

• The matrix blocks of non-duplicate subdomains in D and their related interface

blocks in off-diagonal positions are assembled in sparse form. In the hierarchical

Schur complement Asc
HS, we store the sub-matrix corresponding to each separator in

dense format. Mutual interface sub-matrices between separators are also packed in

a dense format.

• Information of non-zero columns and rows are recorded. The non-zero column and

row information are referenced when updating next-level Schur complement sub-

matrices. We use OpenMP to accelerate the permutation of the updating operation.

This technique maintains the performance benefits of BLAS3 operations with higher

arithmetic intensity in the CHiS without significantly increasing the computational

workloads.

Compressed Hierarchical Schur Algorithm for Frequency-domain Analysis of Photonic Structures 487

• In the hierarchical Schur complement Asc
HS, the diagonal block of each non-duplicate

separator is factorized by dense LU decomposition. When performing updates to

the successive-level Schur complement, upper interface sub-matrix duplicates are

searched after each multiple-RHS solving of BSi,jd = S−1
i,j IUc . If an upper duplicate

is found, the update process is performed by reusing the solving results BSi,jd . This

ensures that the multiple-RHS solves of BSi,jd = S−1
i,j IUc are not repetitive and

that computation of de-duplication is achieved. Moreover, the workload of matrix

multiplication can be reduced if the update target is de-duplicated.

5. Numerical experiments

We implement the HiS (see Algorithm 3.1) and CHiS (Algorithm 7.1) by using the C pro-

gramming language and the BLAS, LAPACK, and sparse linear algebra libraries included

in the Intel Math Kernel Library of the Parallel Studio XE 2016 Update 1 Suite. We use

the sparse direct solver PARDISO [23] to factorize the sparse subdomain sub-matrices D∗

and to solve the corresponding linear systems with multiple RHS vectors. The compiler

is the Intel C compiler with the flags of “-O2-openmp”. For comparison, the PARDISO

released in the Intel MKL 11.3 Update 1 is used to solve the entire linear system (3.1).

We perform all of the numerical experiments on a workstation equipped with dual Intel

E5-2670 v3 CPUs and 256 GB of main memory. Each CPU has 12 threads.

We use the HiS and CHiS to solve the linear systems arising in the simulations of

photonic structures. In Section 5.1, we introduce the dielectric waveguides and wavelength

filters to be simulated and show that our simulation results are consistent with the results

reported in the literature. In Section 5.2, we present the performances of HiS and CHiS

in terms of memory usage, timing, multithreading parallelism, and arithmetic intensity.

In Sections 5.3 and 5.4, we illustrate how the proposed algorithms can take advantage

of the homogeneous and periodic structures of the photonic structures, respectively. The

features shown in Sections 5.3 and 5.4 can be highly beneficial to simulations of massively

homogeneous or periodic photonic structures.

5.1. Test problems for benchmark and simulation

Two sets of test problems are considered here. First, as a set of benchmark problems, we

focus on the linear systems arising from various settings of straight dielectric waveguides.

Figure 5.1 illustrates the schema of the dielectric waveguide. The refraction indices of

the waveguide core, substrate, and upper cladding are
√

11, 1.5, and 1.0, respectively.

The height and width of the waveguide core are 0.5 and 0.22 µm, respectively. The

wavelength of this simulation case is 1.5 µm. The figure also shows the computed major

488 Cheng-Han Du, Yih-Peng Chiou and Weichung Wang

field component <[Ex]. In the computational domain, the uniform grid size ∆x = ∆y =

∆z = 0.02 µm is used in the non-PML regions. We use a PML thickness of 8 grids on

each side to absorb outward-propagating waves in all computational domain boundaries.

In particular, we consider the following settings of grid numbers corresponding to the

dielectric waveguides with different lengths.

(W1) Dielectric waveguide with (Nx, Ny, Nz) = (79, 319, 39). The waveguide length in the

y-axis is 6.4 µm, and and the resulting matrix dimension of AHS is 2, 948, 517.

(W2) Dielectric waveguide with (Nx, Ny, Nz) = (79, 639, 39). We extend the computa-

tional domain along the y-direction by a factor of 2. The waveguide length in the

y-axis becomes 12.8 µm, and the dimension of AHS is 5, 906, 277.

(W3) Dielectric waveguide with (Nx, Ny, Nz) = (79, 1279, 39). We consider an even longer

waveguide. The waveguide length in the y-axis is 25.6 µm, and the dimension of

AHS is 11, 821, 797.

Figure 5.1: Schematics and <[Ex] field distribution in modeled dielectric straight waveg-

uide. Source current is a point dipole in waveguide core.

Second, as a set of simulation problems, we model a wavelength filter based on a one-

dimensional periodic airhole array on a CdTe ridge waveguide [5] and solve the problems

by CHiS. The schema of such a ridge waveguide is illustrated in Figure 5.2. The CdTe

waveguide is 0.55 µm in width and 0.35 µm in height. The airhole radii are 0.1 µm, and

the lattice of periodic airholes is 0.45 µm. The refraction indices of CdTe, SiO2 substrate,

and upper air cladding are 2.74, 1.45, and 1.0, respectively. Discretization of the non-

PML domain is (∆x = ∆y = ∆z = 0.025) µm. The grid number of each subdomain is

19× 17× 11. We assume that two dipoles with wavelengths λ0 = 1500 and 1800 nm are

launched in the simulated periodic airhole structures to demonstrate frequency filtering

of the device. Two examples of such periodic airhole structures are simulated, and the

numerical findings are briefly summarized below to demonstrate that our simulation results

are consistent with those in the literature.

(F1) A shorter filter device with 5 air holes and (Nx, Ny, Nz) = (79, 287, 47). The resulting

matrix dimension of AHS is 3, 196, 893. The computed field distributions (i.e., Ex)

associated with wavelengths λ0 = 1500 and 1800 nm are shown in Figures 5.2a

Compressed Hierarchical Schur Algorithm for Frequency-domain Analysis of Photonic Structures 489

and 5.2b, respectively. Figure 5.2a suggests that such a structure provides limited

filtering, and wave leakage through the hole array is visible. Conversely, Figure 5.2b

suggests that the guided wave with λ0 = 1800 nm successfully propagates through

the hole array, as shown in Figure 5.2b. The results are consistent with the band

analysis reported in [5]. As suggested by [5], the wavelength λ0 = 1500 nm is in a

band gap of the periodic structure, and the guided waves cannot propagate through

the airhole array.

(F2) A longer filter device with 28 air holes and (Nx, Ny, Nz) = (79, 575, 47). The resulting

matrix dimension of AHS is 6, 404, 925. Figure 5.2c suggests that there is no visible

guided wave at the end of the hole arrays, and the filtering effect is very effective.

Meanwhile, wave propagation with λ0 = 1800 nm is also correctly simulated.

(a) (b) (c) (d)

Figure 5.2: Illustration and calculated <[Ex] field distribution of periodic airhole array

on CdTe ridge waveguides. Parts (a) and (b) correspond to a short waveguide with 5 air

holes and wavelengths λ0 = 1500 and 1800 nm, respectively. Parts (c) and (d) correspond

to a doubled-length waveguide with 28 air holes and wavelengths λ0 = 1500 and 1800 nm,

respectively.

In short, these observations imply that the proposed algorithm can be a useful simu-

lation tool for partially periodic structure designs.

5.2. Algorithmic performance evaluations

We solve the linear system (W1), i.e., simulation of a dielectric waveguide with (Nx, Ny, Nz)

= (79, 319, 39), to evaluate the performances of HiS and CHiS. In HiS and CHiS, the size of

the subdomain sub-matrices is one tunable parameter that significantly affects the perfor-

mances of HiS and CHiS. In particular, we consider the settings in which each subdomain

contains 4 × 4 × 4, 9 × 9 × 9, and 19 × 19 × 19 grids, and the corresponding elimination

trees include 13, 10, and 7 levels, respectively. The main reasons for why the subdomain

size affects the computational tasks are discussed below. With more grid points in each

subdomain, the dimension of the corresponding sparse linear system and the number of

right-hand-side vectors in the interface sub-matrices are increased. However, the hier-

archy levels and corresponding dense matrix computations are reduced. Consequently,

490 Cheng-Han Du, Yih-Peng Chiou and Weichung Wang

we use different subdomain sizes (and thus different Schur complement hierarchy levels)

for performance analysis regarding the trade-off between sparse and dense linear algebra.

With different subdomain sizes, we discuss the performance evaluation results in terms of

memory usage, timing, and multithreading parallelism.

Subdomain size 4× 4× 4 9× 9× 9 19× 19× 19

Algorithm HiS CHiS HiS CHiS HiS CHiS

Memory in GB 172.2 (1) 103.7 (0.60) 171.5 (1) 99.9 (0.58) 141.5 (1) 90.9 (0.64)

No. of D∗ 8192 (1) 205 (.025) 1024 (1) 54 (.053) 128 (1) 24 (.19)

No. of S1,∗ 4096 (1) 130 (.032) 512 (1) 36 (.070) 64 (1) 12 (.19)

No. of S2,∗ 2048 (1) 78 (.038) 256 (1) 36 (.14) 32 (1) 12 (.38)

No. of S3,∗ 1024 (1) 54 (.053) 128 (1) 24 (.19) 16 (1) 6 (.38)

No. of S4,∗ 512 (1) 36 (.070) 64 (1) 12 (.19) 8 (1) 6 (.75)

No. of S5,∗ 256 (1) 36 (.14) 32 (1) 12 (.38) 4 (1) 3 (.75)

No. of S6,∗ 128 (1) 24 (.19) 16 (1) 6 (.38) 2 (1) 2 (1)

No. of S7,∗ 64 (1) 12 (.19) 8 (1) 6 (.75) 1 (1) 1 (1)

No. of S8,∗ 32 (1) 12 (.38) 4 (1) 3 (.75)

No. of S9,∗ 16 (1) 6 (.38) 2 (1) 2 (1)

No. of S10,∗ 8 (1) 6 (.75) 1 (1) 1 (1)

No. of S11,∗ 4 (1) 3 (.75)

No. of S12,∗ 2 (1) 2 (1)

No. of S13,∗ 1 (1) 1 (1)

Table 5.1: Memory usage compression for the dielectric straight waveguide simulations

described in Section 5.2. The table shows memory usage in GB and the compression

ratios (within the parentheses) for different settings. In addition, the number of sub-

matrices and the corresponding compression ratios in each level of the elimination tree are

listed. Note that PARDISO requests 126.4 GB of main memory to factorize the problem.

5.2.1. Memory usage

Table 5.1 presents an overall comparison of memory usage. The memory usage is counted

as the highest memory usage size in the entire factorization procedure. In the three cases,

the sizes of memory usage in the CHiS are approximately 60% of the HiS. Note that the

full factorization for AHS performed by PARDISO requires 126.4 GB of main memory.

Table 5.1 also lists the number of sub-matrices and the compression ratios in each level

of the elimination tree. These results suggest that significantly high compression ratios

occur in the lower levels of the elimination tree (e.g., D∗, S1,∗, and S2,∗), particularly

Compressed Hierarchical Schur Algorithm for Frequency-domain Analysis of Photonic Structures 491

for the sub-matrices due to smaller subdomains (e.g., 4 × 4 × 4). For example, in the

4 × 4 × 4 case, the compression ratio of the subdomain sub-matrices D∗ due to CHiS is

205/8192 ≈ 0.025.

5.2.2. Total time

Figure 5.3 presents the timing results of the main computational tasks performed by HiS

and CHiS. We use two CPUs and all of the 24 threads to achieve multi-thread parallelism.

To factor AHS in (3.1) numerically, HiS takes 741, 678, and 918 seconds in total for the

4×4×4, 9×9×9, and 19×19×19 cases, respectively. Conversely, CHiS takes approximately

500 seconds in all three subdomain settings. In other words, CHiS is 1.47X, 1.37X, and

1.83X faster than HiS in each of the cases. For comparison, PARDISO takes 898.3 seconds

to perform the numerical factorization.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

HiS CHiS HiS CHiS HiS CHiS

T
im

e
(s

ec
on

ds
)

Subdomain grid size

Factorization time

ZGETRF
ZGETRS
ZGEMM

Leaf factorize
Leaf solve RHS
Other

19×19×199×9×94×4×4

Figure 5.3: Total factorization time of HiS and CHiS with different subdomain grid sizes.

In comparison, direct factorization of the same problem by PARDISO from Intel MKL is

completed in 898.3 seconds.

Note that we count only numerical factorization timing here. Unlike graph-based

reordering schemes, our CHiS implementation can efficiently construct the matrix elements

and the corresponding elimination tree directly from the computational domain. Take

Problem (W1) as an example; PARDISO calls METIS and takes 16.2 seconds to perform

symbolic factorization of APML (2.4) by using 24 threads. In contrast, the construction

of the matrix elimination dependency, all memory allocation, and restructuring can be

completed in less than 4.7 seconds by CHiS.

CHiS is faster mainly because of (i) elimination tree de-duplication of subdomain and

492 Cheng-Han Du, Yih-Peng Chiou and Weichung Wang

separators (Section 4.1) and (ii) leaf-level interface sub-matrices compression (Section 4.2).

At the leaf-level, approximately 98%, 95%, and 81% of subdomain sub-matrices D∗ are

repeated and thus removed from the computations in CHiS, as shown in Table 5.1. There-

fore, CHiS achieves significant savings in the leaf-level factorizations and multiple RHS

solves.

For lower level separators, e.g., S1,∗ and S2,∗, compressions are more significant, and

CHiS can save many computational tasks. In contrast, in the higher level separators (e.g.,

S10,∗ to S13,∗ in the case of the 4 × 4 × 4 subdomain), little or none of the sub-matrices

are identical and de-duplicated. In this case, there is little difference between the HiS and

CHiS timing results.

5.2.3. Multi-thread parallelism of dense matrix operations

The efficiency of the dense BLAS3 operation can be improved by increasing the arithmetic

intensity (AI) with larger matrices. A higher AI ensures that the overall computation is

computing-bound, which indicates that these operations are not bottlenecked by band-

width and that computational efficiency is likely maintained in future computer hardware.

Analysis of AI and computational performance will be discussed below.

1 2 4 8 12 16 20 24

%
 o

f t
ot

al

Number of threads

Operation time ratio

ZGETRF
ZGETRS
ZGEMM
Leaf factorize
Leaf solve RHS
Sparse MatMult
Other

(a)

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

S
pe

ed
up

Number of threads

Total
ZGETRF
ZGETRS
ZGEMM

Leaf factorize
Leaf solve RHS

(b)

Figure 5.4: (a) Workload ratio comparisons with respect to the number of threads and

(b) strong scalability of the workloads in CHiS for solving a linear system with 9× 9× 9

subdomains.

Figure 5.3 suggests that the dense operations ZGEMM, ZGETRS, and ZGETRF in HiS

and CHiS require the majority of the computational time. These operations are associated

with the larger separators and sub-matrices in higher levels. Fortunately, computations

of these large dense matrix operations can be efficiently performed on a multicore CPU

with SIMD arithmetic units. Even better, these operations can be accelerated by, for

example, NVIDIA GPU and Intel Xeon Phi. Next, we investigate internal computational

Compressed Hierarchical Schur Algorithm for Frequency-domain Analysis of Photonic Structures 493

performance of CHiS in terms of strong scalability of multi-threading and arithmetic

intensity.

Figures. 5.4a and 5.4b present the breakdown cost analysis of CHiS in normalized

timing and the results of strong scalability, respectively. In these figures, different numbers

of threads are used to solve the linear system with 9×9×9 subdomains. Figure 5.4a shows

that ZGEMM and ZGETRS dominate the performance of CHiS, and these two operations

are highly scalable for multi-threading, as shown in Figure 5.4b.

We further study the performance of ZGEMM and ZGETRS in terms of GFLOP per

second (GFLOPS) by using 24 threads of the testing workstation. Figure 5.5 shows the

performance of all ZGEMM and ZGETRS calls in CHiS by using 24 threads of the testing

workstation, and the arithmetic intensities of ZGEMM and ZGETRS are also shown. The

FLOP of ZGEMM C = C + A(M×K)B(K×N) is counted as 8MKN . For ZGETRS, the

FLOP count for solving A(M×M)X(M×N) = B(M×N) is 8M2N . The figures suggest that

the GFLOPS performance of ZGEMM is highly correlated to the subdomain size. Larger

sub-matrices corresponding to larger subdomains yield better GFLOPS performance. For

example, the sizes of the sub-matrices corresponding to the 4 × 4 × 4 subdomain are

typically too small to achieve high GFLOPS performance. In contrast, the sub-matrices

corresponding to the 19 × 19 × 19 subdomain are larger, and nearly all dense matrix

operations achieve more than 650 GFLOPS, which is approximately 83% of the peak

performance from Intel Optimized LINPACK LU factorization benchmark (780 GFLOPS).

 0

 100

 200

 300

 400

 500

 600

 700

 800

P
er

fo
rm

an
ce

 (
G

F
LO

P
S

)

(a)

 1

 10

 100

 1000

 10000

A
ri
th

m
e
ti
c
 i
n
te

n
s
it
y
 (

F
L
O

P
/B

y
te

)

(b)

Figure 5.5: (a) GFLOPS performance of ZGEMM and ZGETRS in CHiS for solving the

linear systems with 4×4×4, 9×9×9, and 19×19×19 subdomains. The best Intel Optimized

LINPACK benchmark result (LU factorization) of the testing workstation is approximately

780 GFLOPS. (b) Arithmetic intensity statistics of the ZGEMM with 4× 4× 4, 9× 9× 9,

and 19×19×19 subdomains. Each dot indicates a dense linear algebra function call. The

black, blue, and red dots are associated with the 4 × 4 × 4, 9 × 9 × 9, and 19 × 19 × 19

subdomains, respectively.

494 Cheng-Han Du, Yih-Peng Chiou and Weichung Wang

In short, the aforementioned results suggest that CHiS can be easily accelerated by

modern hardwares such as NVIDIA GPU or Intel Xeon Phi because these hardwares have

higher GFLOPS performance for dense matrix computations.

5.2.4. A short summary

These numerical experiments suggest that the overall timing performance of CHiS is an

interplay of (i) the size of the subdomain and thus the size of the separator and interface

sub-matrices and the number of elimination tree levels, (ii) the performance of sparse lin-

ear system solvers for multiple right-hand sides in the leaf level, and (iii) the performance

of the dense operations such as ZGEMM, ZGETRS, and ZGETRF in the separator levels

of the elimination tree. Furthermore, when subdomains are highly compressed, the inter-

face component arrangement greatly reduces the number of right-hand-side vectors in the

sparse linear system solvers and the overall computation time.

5.3. Memory and time savings due to homogeneous structures

We analyze the performance of CHiS for solving Problems (W1), (W2), and (W3) defined

in Section 5.1 to demonstrate how CHiS can achieve memory and time savings due to

homogeneous structures. In these three problems, the domains along the y-direction are

doubled such that Ny = 319, 639, and 1, 279 in (W1), (W2), and (W3), respectively. If

no compression scheme is used, we expect that the memory usage and the execution time

will increase by a factor of larger than 2 because of the double-sized elimination tree and

a new root node in the highest level of the elimination tree. However, Figure 5.6 shows

that CHiS uses less memory and time than we expect. This performance improvement is

primarily due to the elimination tree de-duplication (see Section 4.1) of Schur complement

sub-matrices related to several large separators. We illustrate the effect of elimination tree

de-duplication through the following example.

For the cases with 4×4×4, 9×9×9, or 19×19×19 subdomains, the largest separator

is the y-normal cross-section with dimensions 3NxNz = 9, 243. The most time-consuming

computations are related to these largest separators. If no compression scheme is used,

then the number of such separators is expected to be doubled. However, CHiS finds only

6, 9, and 12 non-identical largest separators in (W1), (W2), and (W3). These separator

number counts show that the workloads do not increase proportionally with respect to

the problem sizes. This improved scaling is primarily due to the compression schemes

proposed in Section 4 in which the homogeneous physical structure of the waveguide

among y-direction is the critical factor.

Compressed Hierarchical Schur Algorithm for Frequency-domain Analysis of Photonic Structures 495

 0

 50

 100

 150

 200

 250

 300

 350

 400

319 639 1279

M
em

or
y

U
sa

ge
 (

G
B

)

Ny

4×4×4
9×9×9

19×19×19

(a)

 0

 500

 1000

 1500

 2000

319 639 1279

F
ac

to
riz

at
io

n
T

im
e

(s
ec

on
ds

)

Ny

4×4×4
9×9×9

19×19×19

(b)

Figure 5.6: (a) Memory usage and (b) timing results for solving Problems (W1), (W2),

and (W3) defined in Section 5.1 by CHiS with different subdomain sizes. The black dashed

lines are reference of memory usage and timing, and they are proportional to Ny in (W1),

(W2), and (W3).

5.4. Performance gains due to periodicity

Periodicities are common in photonic structures. We consider Problems (F1) and (F2)

introduced in Section 5.1 to show how CHiS can achieve memory and time savings in

periodic structures. By using 19 × 17 × 11 subdomains, CHiS factorizes the coefficient

matrix arising in the shorter filter device with 5 periodic air-holes (F1) by using approxi-

mately 780 seconds and 145.8 GB of main memory. For the longer filter with 28 periodic

air-holes (F2), CHiS consumes 1, 299 seconds and 187.3 GB of main memory. That is, for

the double-sized problem with more periodicity, CHiS takes only 1.28X in memory usage

and 1.67X in timing.

We examine the reasons responsible for this performance improvement below. From

the non-duplicate elimination tree statistics, (F1) and (F2) have 4 and 3 non-duplicated

large separators S6,∗. In other words, the (F2) can be processed with significantly higher

compression in the S6,∗ level due to more periodicities. This fact contributes to less than

2X scale-up of memory and time consumption. The compression effect of large separators

in these two wavelength filter examples indicates significant scaling advantages of CHiS

for highly periodic devices.

6. Conclusion

We have proposed and implemented the compressed hierarchical Schur algorithm as a

framework for efficient FDFD simulations of photonic structures by presenting the follow-

ing items. (i) We discretize the governing Maxwell equations by Yee’s scheme and then

496 Cheng-Han Du, Yih-Peng Chiou and Weichung Wang

partition the computational domain and reorder the grid points by using physical and

geometrical information. (ii) The resulting coefficient matrix has a particular hierarchi-

cal Schur structure that can be efficiently factorized using multicore-processor-accelerated

BLAS3 operations. (iii) The computational performance is further improved by remov-

ing redundant matrix storages and factorization workloads due to the homogeneity and

periodicity of the photonic structures. (iv) The construction of the hierarchical Schur

coefficient matrix and recolonization of the duplicate sub-matrices are achieved in a very

short time (less than one second in our experience) by exploring the physical and geo-

metrical structures without going through graphical and symbolic analysis. (v) Numerical

experiments regarding straight waveguides and periodic air-holes show that CHiS is a fast

solver for FDFD. CHiS can significantly reduce the memory usages and redundant com-

putational workloads. Overall, CHiS factorizes the coefficient quickly with satisfactory

linear scale-up in multicore parallelism.

The proposed CHiS can act as a kernel to enable many other simulations of various

photonic devices. For example, CHiS can be applied to solve eigenvalue problems for

photonic band analysis [7]. That is, if the shift-and-invert technique is applied to solve

the eigenvalue problems, then the proposed linear system solver can be used to solve the

embedded linear systems therein.

Several future works can enhance the performance of CHiS. Although we only imple-

ment a CPU-only CHiS algorithm in this paper, performance analysis of matrix operations

shows great acceleration potentials for modern HPC hardwares such as GPU-accelerated

parallel computers. To remain efficient for even larger scale simulations, CHiS must be

modified to deal with large root-level sub-matrices and take advantage of the multiple

computational nodes. Parameter tuning that balances the effects among subdomain size,

memory use, and computational workload will be a subject for improving the performance.

A satisfactory tuning result is determined by considering the subdomain size, physical

homogeneous and periodic properties, computer hardware performance, and numerical

library features.

7. Appendix

Part 1. Discretization of (2.2):

fsrc,x =
Ei,j,k−1

x

(∆z)2
+
Ei,j−1,k

x

(∆y)2
+
Ei,j+1,k

x

(∆y)2
+
Ei,j,k+1

x

(∆z)2
−
(

2

(∆y)2
+

2

(∆z)2
− k20εr

)
Ei,j,k

x

− 1

∆x∆y

(
Ei+1,j,k

y − Ei,j,k
y − Ei+1,j−1,k

y + Ei,j−1,k
y

)
− 1

∆x∆z

(
Ei+1,j,k

z − Ei,j,k
z − Ei+1,j,k−1

z + Ei,j,k−1
z

)
,

(7.1)

Compressed Hierarchical Schur Algorithm for Frequency-domain Analysis of Photonic Structures 497

fsrc,y =
Ei,j,k−1

y

(∆z)2
+
Ei−1,j,k

y

(∆x)2
+
Ei+1,j,k

y

(∆x)2
+
Ei,j,k+1

y

(∆z)2
−
(

2

(∆x)2
+

2

(∆z)2
− k20εr

)
Ei,j,k

y

− 1

∆x∆y

(
Ei,j+1,k

x − Ei,j,k
x − Ei−1,j+1,k

x + Ei−1,j,k
x

)
− 1

∆y∆z

(
Ei,j+1,k

z − Ei,j,k
z − Ei,j+1,k−1

z + Ei,j,k−1
z

)
,

(7.2)

fsrc,z =
Ei,j−1,k

z

(∆y)2
+
Ei−1,j,k

z

(∆x)2
+
Ei+1,j,k

z

(∆x)2
+
Ei,j+1,k

z

(∆y)2
−
(

2

(∆x)2
+

2

(∆y)2
− k20εr

)
Ei,j,k

z

− 1

∆x∆z

(
Ei,j,k+1

x − Ei,j,k
x − Ei−1,j,k+1

x + Ei−1,j,k
x

)
− 1

∆y∆z

(
Ei,j,k+1

y − Ei,j,k
y − Ei,j−1,k+1

y + Ei,j−1,k
y

)
,

(7.3)

where Ei,j,kx , Ei,j,ky , and Ei,j,kz are the unknown discretized electric fields along the x-, y-,

and z-axes, respectively. The column vector x has 3NxNyNz entries and

x =
[
E1,1,1
x , E1,1,1

y , E1,1,1
z , E2,1,1

x , E2,1,1
y , E2,1,1

z , . . . , ENx,1,1
x , ENx,1,1

y , ENx,1,1
z ,

E1,2,1
x , E1,2,1

y , E1,2,1
z , E2,2,1

x , E2,2,1
y , E2,2,1

z , . . . , E
Nx,Ny ,1
x , E

Nx,Ny ,1
y , E

Nx,Ny ,1
z ,

E1,1,2
x , E1,1,2

y , E1,1,2
z , . . . , E

Nx,Ny ,Nz
x , E

Nx,Ny ,Nz
y , E

Nx,Ny ,Nz
z

]T
.

(7.4)

Part 2. The CHiS Algorithm:

Algorithm 7.1 CHiS: Compressed Hierarchical Schur Factorization (Part 1)

1: Define physical parameters, ~fsrc, subdomain grid number (px, py, pz), and directional hierarchy levels

(lx, ly, lz)

2: for i = 1 to 2lx+ly+lz do

3: if Di is a non-duplicate subdomain then

4: . Sparse factorization of non-duplicate subdomains Di as shown in Figure 4.1

5: Factorize Di

6: . EDi and FDi aggregation as shown in Figure 4.2e

7: Collect all interfaces EDi =
[
EDi,FC−x EDi,FC+x · · ·

]
8: Collect all interfaces FDi =

[
FT

Di,FC−x
FT

Di,FC+x
· · ·

]T
9: . Solve multiple-RHS sparse linear system with factorized Di

10: Solve BDi = D−1
i EDi

11: . Prepared for updating the first-level Schur complement as shown in (3.3)

12: Perform sparse matrix multiplication SDi = FDiBDi

13: for all Di-duplicated subdomains Dj do

14: Update all non-duplicate separators and their mutual interfaces related to Dj using SDi

498 Cheng-Han Du, Yih-Peng Chiou and Weichung Wang

Algorithm 7.1 CHiS: Compressed Hierarchical Schur Factorization (Part 2)

15: for i = 1 to lx + ly + lz do

16: for j = 1 to j = 2lx+ly+lz−i do

17: if Si,j is a non-duplicate separator then

18: . Factorize of non-duplicate Si,j as shown in Figure 4.1

19: Factorize Si,j

20: for ui = i + 1 to lx + ly + lz do

21: for all Si,j-duplicated separators Si,jd with parent Sui,djd/2ui−ie do

22: Identify current IUc = IU (Si,jd , Sui,djd/2ui−ie)

23: if Sui,djd/2ui−ie is non-duplicate then

24: . Solve multiple-RHS linear system with factorized Si,j

25: Solve BSi,jd
= S−1

i,j IUc

26: for all subsequent Si,j-duplicated separators Si,jd′ do

27: . Find other interface sub-matrices identical to IUc for updating the Schur complement

in different sub-matrices. Avoid repetitive solving of multiple-RHS.

28: if jd′ mod 2ui−i ≡ jd mod 2ui−i and Sui,djd′/2
ui−ie = Sui,djd/2ui−ie then

29: for li = i + 1 to lx + ly + lz do

30: if ui < li and Sli,djd′/2
li−ie is not duplicate then

31: . Update target is a lower interface sub-matrix without de-duplication in

successive-level Schur complement.

32: Identify current ILc = IL(Si,jd′ , Sli,djd′/2
li−ie)

33: Perform dense matrix multiplication ILcBSi,j

34: Update IL(ui, djd′/2ui−ie) with ILcBSi,j

35: else if ui > li and Sui,djd′/2
ui−ie is not duplicate then

36: . Update target is a upper interface sub-matrix without de-duplication in

successive-level Schur complement.

37: if Sli,djd/2li−ie is not duplicate then

38: Identify current ILc = IL(Si,jd′ , Sli,djd′/2
li−ie)

39: else

40: . The corresponding lower sub-matrix may be de-duplicated. If so, use the

non-duplicate one to perform the Schur complement update.

41: Look for non-duplicate separator Sli,jnd of Sli,djd′/2
li−ie

42: Identify current ILc = IL(Si,2li−ijnd−(jd′ mod 2li−i), Sli,jnd)

43: Perform dense matrix multiplication ILcBSi,j

44: Update IU (li, djd′/2li−ie) with ILcBSi,j

45: else if ui = li and Sui,djd′/2
ui−ie is not duplicate then

46: . Update target is a diagonal sub-matrix without de-duplication in successive-

level Schur complement.

47: Identify current ILc = IL(Si,jd′ , Sli,djd′/2
li−ie)

48: Perform dense matrix multiplication ILcBSi,j

49: Update Sui,djd′/2
ui−ie with ILcBSi,j

Compressed Hierarchical Schur Algorithm for Frequency-domain Analysis of Photonic Structures 499

References

[1] Y. Akahane, T. Asano, B.-S. Song and S. Noda, Erratum: High-Q photonic nanocavity

in a two-dimensional photonic crystal, Nature 425 (2003), no. 6961, 944–947.

[2] W. Bogaerts, M. Fiers and P. Dumon, Design challenges in silicon photonics, IEEE

J. Sel. Top. Quantum Electron. 20 (2014), no. 4, 1–8.

[3] J. H. Bramble and J. E. Pasciak, Analysis of a Cartesian PML approximation to

the three dimensional electromagnetic wave scattering problem, Int. J. Numer. Anal.

Model. 9 (2012), no. 3, 543–561.

[4] W. C. Chew, J. M. Jin and E. Michielssen, Complex coordinate stretching as a gen-

eralized absorbing boundary condition, Microw. Opt. Techn. Lett. 15 (1997), no. 6,

363–369.

[5] J. Garćıa, P. Sanchis, A. Mart́ınez and J. Mart́ı, 1D periodic structures for slow-wave

induced non-linearity enhancement, Opt. Express 16 (2008), no. 5, 3146–3160.

[6] P. Ghysels, X. S. Li, F.-H. Rouet, S. Williams and A. Napov, An efficient multi-

core implementation of a novel HSS-structured multifrontal solver using randomized

sampling, SIAM J. Sci. Comput. 38 (2016), no. 5, S358–S384.

[7] T.-M. Huang, H.-E. Hsieh, W.-W. Lin and W. Wang, Eigendecomposition of the

discrete double-curl operator with application to fast eigensolver for three-dimensional

photonic crystals, SIAM J. Matrix Anal. Appl. 34 (2013), no. 2, 369-391.

[8] , Eigenvalue solvers for three dimensional photonic crystals with face-centered

cubic lattice, J. Comput. Appl. Math. 272 (2014), 350–361.

[9] J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Meade, Photonic Crystals:

Molding the Flow of Light, Princeton University Press, Princeton, NJ, 2008.

[10] S. Johnson and J. Joannopoulos, Block-iterative frequency-domain methods for

Maxwell’s equations in a planewave basis, Opt. Express 8 (2001), no. 3, 173–190.

[11] S. G. Johnson, P. R. Villeneuve, S. Fan and J. D. Joannopoulos, Linear waveguides

in photonic-crystal slabs, Phys. Rev. B 62 (2000), no. 12, 8212–8222.

[12] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning

irregular graphs, SIAM J. Sci. Comput. 20 (1999), no. 1, 359–392.

[13] Z. Li, Y. Saad, M. Sosonkina, pARMS: A parallel version of the algebraic recursive

multilevel solver, Numer. Linear Algebra Appl. 10 (2003), no. 5-6, 485–509.

500 Cheng-Han Du, Yih-Peng Chiou and Weichung Wang

[14] K. Nakajima, Parallel iterative solvers for ill-conditioned problems with heterogeneous

material properties, Procedia Comput. Sci. 80 (2016), 1635–1645.

[15] S. Operto, J. Virieux, P. Amestoy, J.-Y. L’Excellent, L. Giraud and H. Ben Hadj Ali,

3D finite-difference frequency-domain modeling of visco-acoustic wave propagation

using a massively parallel direct solver: A feasibility study, Geophysics 72 (2007),

no. 5, SM195–SM211.

[16] F. Pellegrini and J. Roman, Scotch: A software package for static mapping by dual

recursive bipartitioning of process and architecture graphs, in: Lecture Notes in Com-

puter Science, 493–498, High-Performance Computing and Networking, 1996.

[17] M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynska, A. Karlsson, M. Kamp

and A. Forchel, Photonic crystal optical filter based on contra-directional waveguide

coupling, Appl. Phys. Lett. 83 (2003), no. 25, 5121–5123.

[18] R. C. Rumpf, Simple implementation of arbitrarily shaped total-field/scattered-field

regions in finite-difference frequency-domain, Progr. Electromagn. Res. B 36 (2012),

221–248.

[19] Y. Saad and B. Suchomel, ARMS: an algebraic recursive multilevel solver for general

sparse linear systems, Numer. Linear Algebra Appl. 9 (2002), no. 5, 359–378.

[20] P. Sao, X. Liu, R. Vuduc and X. Li, A sparse direct solver for distributed memory

Xeon Phi-accelerated systems, IEEE Int. Parallel Distrib. Proc. Symp., (2015), 71–81.

[21] P. Sao, R. Vuduc and X. S. Li, A distributed CPU-GPU sparse direct solver, in:

Lecture Notes in Computer Science, 487–498, Euro-Par 2014 Parallel Processing,

2014.

[22] O. Schenk, M. Christen and H. Burkhart, Algorithmic performance studies on graph-

ics processing units, J. Parallel Distrib. Comput. 68 (2008), no. 10, 1360–1369.

[23] O. Schenk and K. Gärtner, Solving unsymmetric sparse systems of linear equations

with PARDISO, Future Gener. Comput. Syst. 20 (2004), no. 3, 475–487.

[24] P. G. Schmitz and L. Ying, A fast nested dissection solver for Cartesian 3D elliptic

problems using hierarchical matrices, J. Comput. Phys. 258 (2014), 227–245.

[25] S. Shi, C. Chen and D. W. Prather, Plane-wave expansion method for calculating

band structure of photonic crystal slabs with perfectly matched layers, J. Opt. Soc.

Amer. A 21 (2004), no. 9, 1769–1775.

Compressed Hierarchical Schur Algorithm for Frequency-domain Analysis of Photonic Structures 501

[26] W. Shin and S. Fan, Choice of the perfectly matched layer boundary condition for

frequency-domain Maxwell’s equations solvers, J. Comput. Phys. 231 (2012), no. 8,

3406–3431.

[27] , Accelerated solution of the frequency-domain Maxwell’s equations by engi-

neering the eigenvalue distribution of the operator, Opt. Express 21 (2013), no. 19,

22578–22595.

[28] A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-difference

Time-domain Method, Artech House, Boston, MA, 2005.

[29] P. Tsuji and L. Ying, A sweeping preconditioner for Yees finite difference approxi-

mation of time-harmonic Maxwell’s equations, Front. Math. China 7 (2012), no. 2,

347–363.

[30] Y. A. Vlasov, M. O’Boyle, H. F. Hamann and S. J. McNab, Active control of slow

light on a chip with photonic crystal waveguides, Nature 438 (2005), no. 7064, 65–69.

[31] J. Vučković and Y. Yamamoto, Photonic crystal microcavities for cavity quantum

electrodynamics with a single quantum dot, Appl. Phys. Lett. 82 (2003), no. 15, 2374–

2376.

[32] K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s

equations in isotropic media, IEEE Trans. Antenn. Propag. 14 (1966), no. 3, 302–

307.

[33] C. D. Yu, W. Wang and D. Pierce, A CPU-GPU hybrid approach for the unsymmetric

multifrontal method, Parallel Comput. 37 (2011), no. 12, 759–770.

Cheng-Han Du

Institute of Applied Mathematical Sciences, National Taiwan University, Taiwan

E-mail address: b92006@csie.ntu.edu.tw

Yih-Peng Chiou

Graduate Institute of Photonics and Optoelectrionics, Graduate Institute of

Communication Engineering, and Department of Electrical Engineering, National

Taiwan University, Taiwan

E-mail address: ypchiou@ntu.edu.tw

Weichung Wang

Institute of Applied Mathematical Sciences, National Taiwan University, Taiwan

E-mail address: wwang@ntu.edu.tw

	Introduction
	CHiS: an efficient direct solver for FDFD simulations

	Problem formulation
	Hierarchical Schur algorithm (HiS)
	Hierarchical Schur coefficient matrix and the elimination tree
	Factorization of the Hierarchical Schur matrix
	The HiS algorithm and its computational tasks

	Compressed Hierarchical Schur algorithm (CHiS)
	De-duplication of identical subdomains and separators
	Compression of leaf-level interface sub-matrices
	The CHiS algorithm

	Numerical experiments
	Test problems for benchmark and simulation
	Algorithmic performance evaluations
	Memory usage
	Total time
	Multi-thread parallelism of dense matrix operations
	A short summary

	Memory and time savings due to homogeneous structures
	Performance gains due to periodicity

	Conclusion
	Appendix

