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Abstract. Three-dimensional finite-difference frequency-domain analyses of partially
periodic photonic structures result in large-scale ill-conditioned linear systems. Due to
the lack of efficient preconditioner and reordering scheme, existed general-purpose iter-
ative and direct solvers are inadequate to solve these linear systems in time or memory.
We propose an efficient direct solver to tackle this problem. By exploring the physical
properties, the coefficient matrix structure, and hardware computing efficiency, we
extend the concepts of grid geometry manipulation and multi-level Schur method to
propose the Compressed Hierarchical Schur algorithm (CHiS). The proposed CHiS
algorithm can use less memory and remove redundant computational workloads due
to the homogeneity and periodicity of photonic structures. Moreover, CHiS relies on
dense BLAS3 operations of sub-matrices that can be computed efficiently with strong
scalability by the latest multicore processors or accelerators. The implementation and
benchmarks of CHiS demonstrate promising memory usage, timing, and scalability
results. The feasibility of future hardware acceleration for CHiS is also addressed us-
ing computational data. This high-performance analysis tool can improve the design

and modeling capability for various photonic structures.

1. Introduction

Photonics has been an active research topic for decades. It has been widely applied in
scientific and industrial applications, such as high-speed signal transmission, processing,
and sensing, just to name a few. Among the various photonic devices, partially periodic
photonic structures have played an important role in photonics-related developments and
studies. These structures are the building blocks of complete photonic circuits and net-

works. Partially periodic photonic structures are frequently utilized in wavelength filtering,
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wave confinement, and various manipulations of propagation behaviors. For example, fi-
nite structure periodicity, such as the frequency filters shown in Figure can lead to
different wave behaviors, and a rigorous numerical analysis is required. Moreover, pho-
tonic crystal-based devices with partially periodic structures are important components in
photonic designs. For example, point defects in photonic crystals, as shown in Figure[T.1b]
can work as a resonance cavity [11[31]. Linear defects, as shown in Figure can be
used as photonic crystal waveguides . It is even possible to combine multiple linear
and point defects for wavelength filtering .

(a) (b) (c)

Figure 1.1: Photonic structures with partial (finite or imperfect) periodicity are illustrated
by (a) a frequency filter, (b) an L3 photonic crystal resonance cavity, and (c) a photonic

crystal waveguide.

Efficient simulation algorithms for partially periodic photonic structures are in high
demand for rigorous simulations and practical designs for designing future photonic sys-
tems. Several numerical methods and algorithms have been developed to analyze field
behaviors in perfectly periodic structures. Examples include the planewave expansion
method [9/[10,25] and finite difference time domain (FDTD) methods [28]. Time-domain-
based formulations, such as FDTD, are a popular choice for modeling partially periodic
photonic structures because of their feasible computation costs in most cases. However, in
certain analyses, such as high-Q) resonator and extremely narrow-band filters, the FDTD
analysis requires prolonged simulation times to achieve a finer frequency resolution. A
three-dimensional (3D) FDTD simulation can take a considerable amount of time to com-
plete if the simulation requires many time steps.

Alternatively, frequency-domain simulations such as finite difference frequency domain
(FDFD) methods [8] yield wave behavior analysis at specified frequencies. Designers can
simply specify the target frequency range and perform corresponding frequency-domain
analyses. Furthermore, FDFD can be used to rigorously analyze spectral (frequency)
characteristics. A simple implementation of arbitrarily shaped total-field /scattered-field
simulations has also been reported , which allows easy customization of different inci-

dent waves and enables great flexibility of the FDFD method for a wide array of photonic
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simulations. In short, frequency-domain simulation is a vital design tool in photonic device
analysis and component characterization, and it is complementary to FDTD simulations.
An efficient FDFD simulation can be beneficial to the photonic research community and
industry.

However, in general FDFD simulation, multiple lattices must be modeled, and their
full-vectorial 3D rigorous analyses require tremendous computational resources while mod-
eling partially periodic photonic structures. In particular, the key computational compo-
nent in the FDFD method is a linear system solver and there are three challenges for
solving the linear systems. First, the dimension of the linear systems in the 3D FDFD
simulations can be very large, and tremendous computational resources are required. Sec-
ond, the matrices corresponding to these problems are mostly ill-conditioned when the
computational domain is considerably larger than the wavelength scale and a perfectly
matched layer (PML) is applied [29]. Third, novel algorithms are required to efficiently
take advantage of the latest computing capacities, such as multicore parallelism, to reduce
the computation time. To overcome these three challenges, we propose an efficient direct

solver described in the next section.

1.1. CHIS: an efficient direct solver for FDFD simulations

We develop an FDFD simulation tool for modeling partially periodic photonic structures.
The kernel of the simulator is a fast direct linear system solver based on the proposed
compressed hierarchical Schur algorithm (CHiS). The CHiS algorithm has been designed
by exploring the physical properties of partially periodic photonic structures and matrix
structures such that we can reduce workloads, use less memory, and take advantage of the
computing capacities of recent hardware accelerators.

The main concepts of the proposed CHiS are derived from geometry-based nested
dissection method and recursive multi-level Schur method. On top of these dissection and
Schur methods, we further propose two compression schemes to use less memory space and
remove redundant computational workloads. These compressions greatly improve overall
computation efficiency due to a significant reduction of small BLAS3 operations. As a
matrix-free implementation, CHiS avoids complete graph-based partitioning and global
sparse pattern analysis. In the matrix-free setting, CHiS can also quickly identify the
portion to be compressed in less than one second even for large matrices. Last but not
least, CHiS can be accelerated by various modern high-performance processing units that
dense BLLAS3 operations such as ZGEMM and ZGETRS are efficiently executed.

This efficient FDFD analysis tool can facilitate rapid developments of future pho-
tonic circuit designs and networks [2], particularly in component design and optimization.

In addition, the proposed framework is applicable to other numerical simulations with
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Cartesian or staggered Cartesian grids. The effectiveness of this framework depends on
the duplication property of the physical domain after the computational domain decom-
position process. The simulation parameters should be tuned based on physical structures
and grid alignment to expose as many duplicate sub-structures as possible. If the portion
of identical sub-structures is large, then the proposed framework can provide significant
memory and workload savings.

The remainder of this paper is organized as follows. We discuss the governing equa-
tions, the discretization scheme, perfectly matched layer boundary conditions, and the
resulting linear system in Section We propose the hierarchical Schur algorithm in
Section |3| by discussing how the hierarchical Schur matrix is formed and factorized. In
Section 4, we propose the compressed hierarchical Schur algorithm that contains two com-
pression schemes, allowing us to solve the linear system by using less memory storage
and performing fewer computational tasks. We present the numerical simulation results
of several photonic structures and analyze the computational performance in Section

Finally, we conclude this paper with a discussion of future works in Section [6]

2. Problem formulation

We derive the target linear system from the following time-harmonic Maxwell equations.

wt

Assuming the time-varying term e™*"  we have the equations

(2.1) VxE=wpH, VxH=J-weE,
Ve(eE)=p, V-(uH)=0

Here, E is the electric field, H is the magnetic field, J is the electric current, p is the
charge source, and w, p, and € are the angular frequency, permeability, and permittivity,
respectively. If we further assume nonmagnetic materials in our simulations with u = ug

and £ = gg&,, the vector wave equation
(2.2) — VXV XE+ke,E = fae

can be derived from . The constants pg and g are vacuum permeability and vacuum
permittivity, respectively, e, is relative permittivity, fsrc = —zw,ugj’, ko = wy/pogo =
27 /X0, Ao is the vacuum wavelength, and .J is the current source [26,27].

The double-curl operator in can be discretized using Yee’s scheme with central
differences [32]. By using the uniform grid sizes Az, Ay, and Az, can be discretized
as shown in f of the appendix. By letting N, Ny, and N, be the grid numbers
and packing the z-, y-, and z-field components together, we can rewrite f as a
linear system Ax = b, where x is defined in and b is the corresponding vector of

discretized fgc.
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A perfectly matched layer (PML) based on stretched coordinates has been proposed
for the frequency-domain formulation [4] to handle the truncation near domain boundaries
such that the artificial reflection from the domain boundary can be effectively suppressed.
When using stretched-coordinate-based PML to absorb outward wave propagation, the
grid sizes in the PML region are chosen to be nonuniform to achieve optimal absorption.

The vector wave equation equipped with stretched-coordinate-based PML is expressed as

P

(2.3) — VpMmL X VpuL X E + kjer B = foe,

where V =710 4510 4210 2 & and 7 are the unit vectors in the Cartesian
PML — sz OT ysy Ay s, 020 Y,

coordinate system, the stretching factors s, = 1 + 25—5"0 for n = z,y,2, and o,s are

position- and problem-dependent variables. Because of the scaling distribution of o,,s, the
computational domain has nonuniform grids.

In short, by using Yee’s scheme and PML, we can derive the linear system
(2.4) APMLQZ =b.

The matrix Appy, is derived from , and it includes stretched-coordinate-based PML.
The matrix Apyy, is complex and non-Hermitian as shown in [3]. The unknown vector x
is defined in , and b is the discrete right-hand-side vector corresponding to f;rc. In
the next sections, we focus on how the linear system can be solved efficiently.

To the best of our knowledge, little efficient iterative or direct methods have been pro-
posed to solve the linear system . First, iterative methods can handle large sparse lin-
ear systems in general. However, finding an efficient preconditioner for the ill-conditioned
target problems is non-trivial. For example, iterative methods are used to solve some
specific problem settings with PML in [26], but no preconditioner is used. The condition
numbers of several test linear systems are improved by a modification of the formula-
tions [27]. However, the convergence performance varies, and the performance depends
on the simulation parameters, such as physical parameters, excitation current, and other
numerical settings. Several iterative linear system solvers such as STRUMPACK [6] with
hierarchical semi-separables method and algebraic recursive multi-level solver [13,[19] are
also reported, while their convergence properties for the general FDFD photonic simula-
tion are not fully investigated yet. In other words, these existing methods are designed
to solve the specific problems, and they are not efficient for the target problem. Second,
direct methods do not involve preconditioning, and they are robust to solve ill-conditioned
problems. Consequently, a direct approach has been used to perform 3D geophysical anal-
ysis by FDFD [15]. However, significant fill-ins typically occur in the eliminations that
may greatly slow down the solver. Third, computer architectures evolve rapidly, and the

latest processors are generally equipped with multiple or many (lightweight) computing
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cores. Algorithms must be redesigned to fully use these computational capacities. Hard-
ware accelerated sparse linear system solvers have been reported [20-22},33]. However, how
we can use the computing capacities along the trend of the latest and coming processors

to solve the target problems remains an open problem.

3. Hierarchical Schur algorithm (HiS)

The goal of this section is to derive the hierarchical Schur method (HiS) to solve the
linear system . The concept is a variation of recursive multi-level solver [13}/19], while
we perform exact factorization instead of an approximated one. We first discuss how we
decompose the computational domain, and then we form the hierarchical Schur coefficient
matrix in Section [3.1] This hierarchical Schur coefficient matrix is denoted as Ayg and
defined in . The matrix Ayg is a reorder of Apyir,; however, Ays has a particular form
that leads to a balanced binary elimination tree. By taking advantage of these properties
of the coefficient matrix, we discuss how we can factorize the matrix in Section [3.2] The

algorithm and its main computational workloads are presented in Section [3.3

3.1. Hierarchical Schur coefficient matrix and the elimination tree

Because Yee’s mesh is geometrically and regularly structured in a cuboid computational
domain, we can decompose the domain and order the grid points to obtain the hierarchical
Schur coefficient matrix by exploring the geometric and Yee’s discretization properties on
the computational domain directly [14,24]. This approach effectively reduces the work-
loads of global sparse pattern analysis and fill-reduction reordering. Furthermore, Agg
can be implicitly defined. We can quickly compute the entries of Apg on-the-fly when
we need them during the computations without explicitly storing the whole Agpg before-
hand. In other words, because the grid geometry and the sparse pattern are regular, we
can directly order the matrix elements in a way that we prefer rather than analyzing the
complete sparse pattern of the matrix efficiently.

In contrast, the matrix Apg can be (approximately) obtained by applying the nested
dissection approach [12,|16] to the matrix Apyr,. However, the nested dissection approach
needs to analyze the sparse pattern of the matrix and perform graph partitioning to
reorder the matrix. This procedure may be time consuming, particularly when a high-
quality partitioning is required. Moreover, some partitioning parameters and schemes
generally need careful tuning for efficient computing.

For the sake of simplicity and clarity, we use an example to describe how we can derive
the hierarchical Schur coefficient matrix. We consider the cuboid computational domain

shown in Figure The grid numbers of this cuboid computational domain example are
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(Nz, Ny, N.) = (19,39,19). As shown in Figure[3.1b] the entire domain is partitioned into
16 subdomains evenly by the separators recursively. Each subdomain contains 9 x 9 x 9
grids. The subdomains are denoted as D1 to D1g. The separators are denoted as S; ;, and
the indices 7 and j stand for the separator level and separator index in the elimination

tree (to be discussed later), respectively.

Figure 3.1: A schema of customized domain decomposition. (a) The sample computa-
tional domain with (N, Ny, N;) = (19,39,19) grid points. (b) The subdomains D, and

separators Sy .

Next, based on the decomposition, we group the grid points in the subdomains and sep-
arators together to form the subdomain sub-matrices and separator sub-matrices. These
sub-matrices contain the grid points that are ordered in the same manner locally. Fur-
thermore, these sub-matrices are ordered globally such that the corresponding subdomain
sub-matrices D, and separator sub-matrices S, 4 are located in the diagonal blocks of the
hierarchical Schur coefficient matrix Ayg as shown in Figure[3.2al The off-diagonal rectan-
gular sub-matrices of Apg are the interface sub-matrices, which involve the discretization
of the grid points in the subdomain and separators. We will define these interface sub-
matrices in detail after introducing the elimination tree.

The hierarchical Schur coefficient matrix Apg and its corresponding elimination tree
of this particular example are illustrated in Figures and respectively. The
leaf-level nodes of the elimination tree consist of the subdomain sub-matrices D to D1s.
Their parent nodes are the first-level separator sub-matrices Si .. The elimination tree
also shows the second-, third-, and fourth-level separators Sg ., 53, and Sy ., respectively.
Let A be a subdomain or a separator sub-matrix, and we assume that it is a child of a
sub-matrix B in the elimination tree. We use Zr, (A, B) (or Z7(A, B)) to denote interface
sub-matrices between A and B that belong to the lower (or upper) off-diagonal part of
the matrix Ags. The Schur complement of a matrix M is denoted as M*®°. For example,

the Schur complement of Apg is Ajfg.
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4th level

3rd level

2nd level

S S S S S S S S 1st level

YT Y LY Y Y 2 Y L

D, D; D3 Dy Ds D¢ D; Dg Dy Dy Dy Dy Dy Dyy Dis Dyg

(b)

Figure 3.2: (a) The hierarchy of recursive Schur complement matrices Sjg = Ans, S)1) =
Affss S, Sjg), and Sy (b) The corresponding elimination tree of the computational
domain shown in Figure [3.1] The nodes within the red box are associated with the sub-

matrices of Spyj.

The aforementioned customized domain decomposition and grid point ordering scheme
suggest that we should rewrite the target linear system (2.4) as

(3.1) AHS{L’ = b,
where z = [xD1,$D2,...,wa,:rs[l]]T and b = [bDl,bDQ,...,me,bs[l]]T. Note that the

unknown vectors z’s and the right-hand-side vectors b’s in (2.4)) and (3.1)) are equivalent
up to a permutation. In (3.1]), the hierarchical Schur coefficient matrix is

[ D Iy(Dy, Sig) |
Dy Iy (D2, Sp))
(3.2) Aps = :
D1 Iy (D1s, Sj))
| Ir(D1,Sp) Ie(D2,Sp) -+ In(Dis, Sp) At

The lower-right block of Apg is the Schur complement Affq. It consists of the sepa-
rator sub-matrices in the diagonal and the corresponding interface sub-matrices in the
off-diagonal, as shown in Figure This figure also suggests that the hierarchical Schur
coefficient matrix has a recursive block arrow matrix structure. As shown in Figure [3.:2D]
the corresponding binary elimination tree is perfectly balanced in the sense that all of the
subdomain sub-matrices and the separator sub-matrices in the same level of the elimina-

tion tree have identical dimensions and matrix entry orderings.
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3.2. Factorization of the Hierarchical Schur matrix

The LU factorization of the matrix Apg can be computed by the three-stage operations
recursively. These operations include factorization, solve, and update. Take Ayg shown
in Figure as an example; the matrix has four levels of Schur complement hierarchy,
and we need to perform such operations four times plus a final factorization of the matrix
Sa1.

The first-level factorization involves the sub-matrices D, S1 .+, S2.4, 53, S4,«, and the
mutually interacting interface sub-matrices. In particular, for i = 1,...,16, we (i) fac-
torize the subdomain sub-matrices D; = L;U;; (ii) solve the linear system with mul-
tiple right-hand-side vectors to compute Zr,(D;, Af$q)U;* and L; 'y (D, AfSs), or only
D; 1IU(Di, lig) with an equivalent result; and (iii) update the first-level Schur comple-

ment
16
(3.3) Sy = Sig) — D> Zu(Dy, Si5) Dy ' Tu(Di, S)),
i=1
where S = Aps and S[SS] = Ajjg. In other words, by performing these three-stage

operations, we complete the first-level factorization and factor Agg = L{;)Upyj, where

_ . -
Lo
(34) Ly =
Lig
_IL(Dl,S[O])Ufl I (D2, Sio)Us b -+ Ip(Dis, S ) Uyt I
and
1, L7 Zy(Dy, S)) |
Us Ly Ty (D2, Sp))
(3.5) Uy = :

Ui Lig Zu(Dis, )
Sy

Note that S[SOC] (= Affg) and Spj have the same block sparsity, and both of them are
arrowhead block matrices, as shown in Figure

The second-level factorization involves the updated S1s, S2.4, 53+, Six, and the
mutual interface sub-matrices. In the second-level factorization, we apply the three-

stage operations on Schur complement Sj;) to complete the second-level factorization
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and obtain the second-level Schur complement matrix Spy. In particular, we (i) fac-
torize the updated Sy, = L;U;, (ii) solve the multiple right-hand-side systems to obtain
I1.(S1,, [Sﬁ)Ui_1 and L;1IU(SM,S[S{3]), and (iii) update the second-level Schur comple-
ment Spg) = S} — Z§:1 Zr,(51,i [sf])SiilIU(SU, [Sf]) These operations are similar to the
operations shown in f by replacing Sjo (= Ans) with Sp;.

We continue such three-stage operations recursively to complete the third- and fourth-
level factorizations. The final task is to perform LU-factorization of Sy, which is the
updated S41. See Figure for the matrices Sy}, Spgj, and Sz and Figure for the
matrices involved in the first-, second-, third-, fourth-, and final-level factorizations. The
block sparsity of the matrix Apg and the factored lower and upper triangular matrices
remains unchanged. That is, there is no fill-in in terms of block sub-matrices during the
entire LU factorization. Moreover, S| (= Anps), Spys Spys S, and Spy) are all block

arrowhead matrices, and they are computed recursively.

3.3. The HiS algorithm and its computational tasks

We have discussed how the matrix Apg can be factorized. The proposed factorization
scheme is summarized conceptually in Algorithm [3.I] The operations that consume the

majority of the computation time in the algorithm are Steps 3 and 4.

Algorithm 3.1 HiS: Hierarchical Schur Factorization of Apg defined in ({3.1))

1: For each subdomain sub-matrix Dj;, perform sparse factorization and solve multiple right-hand-side

linear systems D;le(Dj, ) corresponding to its adjacent interfaces.

2: Perform sparse matrix multiplications Zr,(Dj, *)D;lly (Dj, ) for all j and update S to Sp.

3: For the level-i separators, factorize the dense sub-matrices S;; = L; ;U;; and solve the multiple
right-hand-side linear systems Si_’jllu(Si,j, ) related to interface sub-matrices.

4: Perform dense matrix multiplications of Zpr,(.S;,;, *)S;;IU (Si,;,*) and update S[Si(]: to Sfit1)-

5: Move to level-(i + 1) and perform Steps until the final level of the elimination tree.

Fortunately, these dense operations are included in high-performance linear algebra
libraries that are available in almost all of the advanced computing environments. For ex-
ample, matrix multiplication can be executed by the ZGEMM routine from BLAS, while
multiple-RHS solves and LU factorization can be computed by ZGETRS and ZGETRF
from the LAPACK library, respectively. Moreover, these operations greatly rely on BLAS3
operations, which are also optimized for many hardware architectures, such as Intel MKL
for multicore and manycore CPUs and CUBLAS and MAGMA for GPU accelerators.
Consequently, these operations can be executed efficiently on the latest computer archi-

tectures.
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4. Compressed Hierarchical Schur algorithm (CHiS)

We have proposed HiS in Section [3] Motivated by the homogeneity and periodicity of
photonic structures, we further develop two approaches to “compress”’ the hierarchical
Schur coefficient matrix Apg such that we can consume less storage and perform less
computations to solve the linear system . In the first scheme, as shown in Section
we consider the identical subdomains and identical separators. In the second scheme, as
shown in Section [4.2] we focus on the identification of the leaf-level interface sub-matrices.

The overall procedure of CHiS is summarized in Section

4.1. De-duplication of identical subdomains and separators

The first step of the elimination tree de-duplication (ETD) is to identify identical sub-
domains by determining whether there is any difference in the corresponding physical
parameters (e.g., material permittivity and structure locations) and the grid properties
(e.g., grid size uniformity and PML settings). We then apply the same rules to check
the identity of the separator sub-matrices in all levels. Clearly, the children of any two
identical separator sub-matrices must also be the same. For example, if the permittivity
and grid sizes in separators Si; and Sp2 are identical, then we also need Dy = D3 and
Dy = Dy to confirm that Sj o is a duplication of S1,1. After identifying these duplicated
sub-matrices, we can store one representative sub-matrix and perform the correspond-
ing computations once and simply refer those duplicated sub-matrices and the necessary

intermediate numerical results to the representative sub-matrix.

Figure 4.1: The coefficient matrices Apg and their elimination trees with “perfect” com-

pressions (a,b) and with compression containing defects (c,d).

We use two examples to illustrate the effects of the ETD. (i) We assume an ideal case
in which the physical parameters and the grid properties of the subdomain and separator
sub-matrices of the same levels are identical. In this case, there are only one subdomain

type and one separator type in each level. Without loss of generality, we assume that the
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representative subdomain is D1 and that the representative separators are S11, 52,1, 53,1,
and S41. The de-duplicated matrix and the corresponding elimination tree are shown in
Figures and respectively. (ii) We assume that a defect is located in subdomain
D7. According to the Schur complement update procedure, D7 alters its updating contents
for S14, S22, S3.1, and Sy ;1. See Figures and [A.1d] for an illustration of the second
example. The different components of these Schur complements must be stored, and
corresponding operations must be computed.

In short, structure homogeneity and periodicity are common in photonic device simu-
lations. We can take advantage of this particular property to de-duplicate the elimination
tree thanks to the Yee’s discretization and the proposed grid alignment and ordering dis-
cussed in Section Our ETD scheme explores such structures directly and efficiently
without performing matrix structure analysis. This is a major advantage of the ETD
scheme. For example, the identification and de-duplication takes less than one second
to complete in all of the numerical tests in this paper. Furthermore, because the de-
fects in many photonic structures and imperfect periodicity are limited, the ETD remains

beneficial to many other photonic device simulations.

4.2. Compression of leaf-level interface sub-matrices

The matrix storage and computations can be further compressed by the leaf-level interface
sub-matrix compression (LIC), as shown below. To achieve this goal, we first examine the
structure of the interface sub-matrices. As illustrated in Figure each subdomain
interacts with separators in the following 12 directions: 4=z, +y, +2, +x Fy, ty F 2,
and £z F z. A separator adjoins a subdomain via face components (FCs) or edge com-
ponents (ECs). We take subdomain D;3 and separator Sy as an example to illustrate
these notations. As shown in Figure S4,1 contains EC_, . and FC_, of Dy3. The
corresponding D13-Sy; related interface sub-matrices are denoted as Iy (D13, S4,1) and
I1(Dh13,S4,1), which are indicated in the top-right and bottom-left parts of Figure m

respectively. Moreover, Ir7(Dy3,S4,1) is assembled by the sub-matrices Up,, o and

y+z
Up,3,rc_, with a particular column arrangement based on the ordering of Sy 1. Similarly,

I (D13, 84,1) is assembled by the sub-matrices Lp,; rc_,,. and Lp,, rc_, With a partic-

y+z
ular row arrangement based on the ordering of Sy ;. Next, we illustrate the concept of
compressing the interface sub-matrices by considering Dg, D1s, D13, and their correspond-
ing separators. As shown in Figure Dg, D19, and Di3 contain the face components
FC_ys that are also parts of the separators S 2, S2 3, and Sy 1, respectively.

The key concept of the LIC scheme is to recognize that Up, rc_,, Upsrc_,, Upys FC_,,s
and Up,, rc_, are equivalent up to suitable column permutations when the grid sizes are

uniform. Moreover, Dg, D19, and D13 are identical to D1, and only D1 is stored, as shown
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)

Figure 4.2: Conceptual schema of leaf-level interface sub-matrix compression. (a) Separa-
tor components adjacent to a subdomain. (b) Subdomain D13 and its adjacent components
in Sy1. (c) Sub-matrices related to Di3 and Sy 1. (d) Dg, D12, and D;3 and their FC_s.

(e) Updating multiple sub-matrices with a single restructured matrix from FC_,.

in Figure Consequently, there is no need to compute DgluDS,Fcfy, DQIZ/IDIQ,FCW,
and DE,}L{Dch_y because the results can be extracted from Df1L{D17FC_y. Similar tech-
niques can be applied to the sub-matrices associated with £D8’Fc_y, EDH’FC_y, and
£D13,Fcfy because EDI,FCW, £D8,Fcfy, £D127F07y, and £D137Fcfy are equivalent up to

suitable row permutations. This compression scheme is conceptually illustrated in Fig-

ure 126

Note that although there is no FC_, for subdomain D in the original example, we can
construct a virtual FC_, based on Yee’s mesh. Furthermore, under ideal periodicity, we
can simply use interfaces between D; and the twelve possible FCs to describe all interface
sub-matrices between subdomains and any other separators, as shown in Figures and
41D

We conclude this section by emphasizing that with a higher compression rate in the
subdomains, the interface component arrangement greatly reduces the number of right-
hand-side vectors in the sparse triangular solves. Consequently, LIC can significantly save

overall computation time in the leaf-level computations.
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4.3. The CHiS algorithm

We modify Algorithm (HiS) to include the compression schemes ETD and LIC. The
overall procedure for CHiS to factorize the hierarchical Schur coefficient matrix Agg de-
fined in is summarized in Algorithm CHiS greatly reduces the computational
workloads in ZGEMM, ZGETRF, and ZGETRS calls thanks to the co-design of physical
properties, algorithm design, and efficient architectures.

As proposed in Section[4.1], we use the elimination tree de-duplication scheme to remove
the identical sub-structures. Here, we elaborate the compression scheme with more details.
For the triangular solves in the leaf-level, the ETD is first implemented to remove the
duplicated sparse factorization of subdomains. As illustrated in Figure (and lines
and [8) of Algorithm , the following step is performed to aggregate EC- and FC-
related interface sub-matrices corresponding to each subdomain D; into Ep, (for upper
blocks) and Fp, (for lower blocks). The aggregation eliminates multiple tiny matrix
computations to increase computational efficiency and provides preparation for the LIC
scheme. The aggregated £p, can be handled as multiple-RHS (right-hand-side vectors) for
the sparse linear system Bp, = D; 'Ep,. After we obtain the solution Bp,, sparse matrix
multiplication of Fp, and Bp, is performed in line [I2] of Algorithm [7.1], which is utilized
for the first-level Schur complement update based on the LIC and elimination tree. When
there are many duplicates of subdomain D;, from the LIC scheme, we can apply multiple
updates at different sub-matrices in the Schur complement with the single computation
of Sp,, as illustrated in Figure [4.2¢]

Other details of the algorithm are highlighted below.

e The coefficient matrix Apg is defined implicitly based on ETD and LIC. The matrix

entries in the de-duplicated sub-matrices are accessed by remapping on-the-fly.

e The matrix blocks of non-duplicate subdomains in D and their related interface
blocks in off-diagonal positions are assembled in sparse form. In the hierarchical
Schur complement Affq, we store the sub-matrix corresponding to each separator in
dense format. Mutual interface sub-matrices between separators are also packed in

a dense format.

e Information of non-zero columns and rows are recorded. The non-zero column and
row information are referenced when updating next-level Schur complement sub-
matrices. We use OpenMP to accelerate the permutation of the updating operation.
This technique maintains the performance benefits of BLAS3 operations with higher
arithmetic intensity in the CHiS without significantly increasing the computational

workloads.
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e In the hierarchical Schur complement Affq, the diagonal block of each non-duplicate
separator is factorized by dense LU decomposition. When performing updates to
the successive-level Schur complement, upper interface sub-matrix duplicates are
searched after each multiple-RHS solving of Bg,

is found, the update process is performed by reusing the solving results Bg, ;,. This

u = S;leUC. If an upper duplicate

ensures that the multiple-RHS solves of Bg = Si_’ jIIUC are not repetitive and

irJd
that computation of de-duplication is achieved. Moreover, the workload of matrix

multiplication can be reduced if the update target is de-duplicated.

5. Numerical experiments

We implement the HiS (see Algorithm and CHiS (Algorithm by using the C pro-
gramming language and the BLAS, LAPACK, and sparse linear algebra libraries included
in the Intel Math Kernel Library of the Parallel Studio XE 2016 Update 1 Suite. We use
the sparse direct solver PARDISO [23] to factorize the sparse subdomain sub-matrices D,
and to solve the corresponding linear systems with multiple RHS vectors. The compiler
is the Intel C compiler with the flags of “-O2-openmp”. For comparison, the PARDISO
released in the Intel MKL 11.3 Update 1 is used to solve the entire linear system .
We perform all of the numerical experiments on a workstation equipped with dual Intel
E5-2670 v3 CPUs and 256 GB of main memory. Each CPU has 12 threads.

We use the HiS and CHiS to solve the linear systems arising in the simulations of
photonic structures. In Section 5.1} we introduce the dielectric waveguides and wavelength
filters to be simulated and show that our simulation results are consistent with the results
reported in the literature. In Section we present the performances of HiS and CHiS
in terms of memory usage, timing, multithreading parallelism, and arithmetic intensity.
In Sections and we illustrate how the proposed algorithms can take advantage
of the homogeneous and periodic structures of the photonic structures, respectively. The
features shown in Sections and can be highly beneficial to simulations of massively

homogeneous or periodic photonic structures.

5.1. Test problems for benchmark and simulation

Two sets of test problems are considered here. First, as a set of benchmark problems, we
focus on the linear systems arising from various settings of straight dielectric waveguides.
Figure illustrates the schema of the dielectric waveguide. The refraction indices of
the waveguide core, substrate, and upper cladding are /11, 1.5, and 1.0, respectively.
The height and width of the waveguide core are 0.5 and 0.22 um, respectively. The

wavelength of this simulation case is 1.5 ym. The figure also shows the computed major
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field component R[E,|. In the computational domain, the uniform grid size Az = Ay =
Az = 0.02 pm is used in the non-PML regions. We use a PML thickness of 8 grids on
each side to absorb outward-propagating waves in all computational domain boundaries.
In particular, we consider the following settings of grid numbers corresponding to the

dielectric waveguides with different lengths.

(W1) Dielectric waveguide with (N, Ny, N;) = (79,319,39). The waveguide length in the
y-axis is 6.4 pm, and and the resulting matrix dimension of Ayg is 2,948, 517.

(W2) Dielectric waveguide with (N, Ny, N.) = (79,639,39). We extend the computa-
tional domain along the y-direction by a factor of 2. The waveguide length in the

y-axis becomes 12.8 pym, and the dimension of Ayg is 5,906, 277.

(W3) Dielectric waveguide with (N, Ny, N,) = (79,1279,39). We consider an even longer
waveguide. The waveguide length in the y-axis is 25.6 um, and the dimension of
Aps is 11,821, 797.

Figure 5.1: Schematics and R[E;] field distribution in modeled dielectric straight waveg-

uide. Source current is a point dipole in waveguide core.

Second, as a set of simulation problems, we model a wavelength filter based on a one-
dimensional periodic airhole array on a CdTe ridge waveguide [5] and solve the problems
by CHiS. The schema of such a ridge waveguide is illustrated in Figure [5.2l The CdTe
waveguide is 0.55 pm in width and 0.35 pm in height. The airhole radii are 0.1 pm, and
the lattice of periodic airholes is 0.45 pm. The refraction indices of CdTe, SiO9 substrate,
and upper air cladding are 2.74, 1.45, and 1.0, respectively. Discretization of the non-
PML domain is (Az = Ay = Az = 0.025) pm. The grid number of each subdomain is
19 x 17 x 11. We assume that two dipoles with wavelengths Ay = 1500 and 1800 nm are
launched in the simulated periodic airhole structures to demonstrate frequency filtering
of the device. Two examples of such periodic airhole structures are simulated, and the
numerical findings are briefly summarized below to demonstrate that our simulation results

are consistent with those in the literature.

(F1) A shorter filter device with 5 air holes and (N, Ny, N;) = (79,287,47). The resulting
matrix dimension of Ayg is 3,196,893. The computed field distributions (i.e., E;)
associated with wavelengths A\g = 1500 and 1800 nm are shown in Figures
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and [5.2B] respectively. Figure [5.2a] suggests that such a structure provides limited
filtering, and wave leakage through the hole array is visible. Conversely, Figure [5.2b
suggests that the guided wave with Ay = 1800 nm successfully propagates through
the hole array, as shown in Figure [5.2bl The results are consistent with the band
analysis reported in . As suggested by , the wavelength A\g = 1500 nm is in a
band gap of the periodic structure, and the guided waves cannot propagate through

the airhole array.

(F2) A longer filter device with 28 air holes and (N, Ny, N;) = (79,575,47). The resulting
matrix dimension of Apg is 6,404, 925. Figure [5.2c| suggests that there is no visible
guided wave at the end of the hole arrays, and the filtering effect is very effective.

Meanwhile, wave propagation with Ay = 1800 nm is also correctly simulated.

(a) (b) () (d)

Figure 5.2: Illustration and calculated R[E;] field distribution of periodic airhole array
on CdTe ridge waveguides. Parts (a) and (b) correspond to a short waveguide with 5 air
holes and wavelengths A\g = 1500 and 1800 nm, respectively. Parts (¢) and (d) correspond
to a doubled-length waveguide with 28 air holes and wavelengths Ao = 1500 and 1800 nm,

respectively.

In short, these observations imply that the proposed algorithm can be a useful simu-

lation tool for partially periodic structure designs.

5.2. Algorithmic performance evaluations

We solve the linear system (W1), i.e., simulation of a dielectric waveguide with (N,, N, N>)
= (79,319, 39), to evaluate the performances of HiS and CHiS. In HiS and CHiS, the size of
the subdomain sub-matrices is one tunable parameter that significantly affects the perfor-
mances of HiS and CHiS. In particular, we consider the settings in which each subdomain
contains 4 X 4 x4, 9 x 9 x 9, and 19 x 19 x 19 grids, and the corresponding elimination
trees include 13, 10, and 7 levels, respectively. The main reasons for why the subdomain
size affects the computational tasks are discussed below. With more grid points in each
subdomain, the dimension of the corresponding sparse linear system and the number of
right-hand-side vectors in the interface sub-matrices are increased. However, the hier-

archy levels and corresponding dense matrix computations are reduced. Consequently,



490 Cheng-Han Du, Yih-Peng Chiou and Weichung Wang

we use different subdomain sizes (and thus different Schur complement hierarchy levels)
for performance analysis regarding the trade-off between sparse and dense linear algebra.
With different subdomain sizes, we discuss the performance evaluation results in terms of

memory usage, timing, and multithreading parallelism.

Subdomain size 4x4x4 9%x9x%x9 19 x 19 x 19
Algorithm HiS CHiS HiS CHiS HiS CHiS
Memory in GB | 172.2 (1) 103.7 (0.60) | 171.5 (1) 99.9 (0.58) | 141.5 (1) 90.9 (0.64)

No. of D. 8192 (1) 205 (.025) | 1024 (1) 54 (.053) | 128 (1) 24 (.19)
No. of S 4096 (1) 130 (.032) | 512 (1) 36 (.070) 64 (1) 12 (.19)
No. of Sa,. 2048 (1) 78 (.038) 256 (1) 36 (.14) 32 (1) 12 (.38)
No. of Ss.. 1024 (1) 54 (.053) 128 (1) 24 (.19) 16 (1) 6 (.38)
No. of Sy . 512 (1) 36 (.070) 64 (1) 12 (.19) 8 (1) 6 (.75)
No. of S . 256 (1) 36 (.14) 32 (1) 12 (.38) 4 (1) 3 (.75)
No. of S 128 (1) 24 (.19) 16 (1) 6 (.38) 2 (1) 2 (1)
No. of S7. 64 (1) 12 (.19) 8 (1) 6 (.75) 1(1) 1(1)

No. of Ss.. 32 (1) 12 (.38) 4(1) 3 (.75)
No. of So . 16 (1) 6 (.38) 2 (1) 2 (1)
No. of S10.« 8 (1) 6 (.75) 1(1) 1(1)
No. of S11,« 4 (1) 3 (.75)
No. of Si2,« 2 (1) 2 (1)
No. of Si3,« 1(1) 1(1)

Table 5.1: Memory usage compression for the dielectric straight waveguide simulations
described in Section [5.2} The table shows memory usage in GB and the compression
ratios (within the parentheses) for different settings. In addition, the number of sub-
matrices and the corresponding compression ratios in each level of the elimination tree are

listed. Note that PARDISO requests 126.4 GB of main memory to factorize the problem.

5.2.1. Memory usage

Table presents an overall comparison of memory usage. The memory usage is counted
as the highest memory usage size in the entire factorization procedure. In the three cases,
the sizes of memory usage in the CHiS are approximately 60% of the HiS. Note that the
full factorization for Apg performed by PARDISO requires 126.4 GB of main memory.
Table[5.1] also lists the number of sub-matrices and the compression ratios in each level
of the elimination tree. These results suggest that significantly high compression ratios

occur in the lower levels of the elimination tree (e.g., Dy, Six, and Sz .), particularly
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for the sub-matrices due to smaller subdomains (e.g., 4 x 4 x 4). For example, in the
4 x 4 x 4 case, the compression ratio of the subdomain sub-matrices D, due to CHiS is
205/8192 ~ 0.025.

5.2.2. Total time

Figure presents the timing results of the main computational tasks performed by HiS
and CHiS. We use two CPUs and all of the 24 threads to achieve multi-thread parallelism.
To factor Ags in numerically, HiS takes 741, 678, and 918 seconds in total for the
4x4x4,9%x9%x9, and 19x19x 19 cases, respectively. Conversely, CHiS takes approximately
500 seconds in all three subdomain settings. In other words, CHiS is 1.47X, 1.37X, and
1.83X faster than HiS in each of the cases. For comparison, PARDISO takes 898.3 seconds

to perform the numerical factorization.

Factorization time
1000
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Subdomain grid size
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mmmm ZGETRF mmmm= | eaf factorize

Figure 5.3: Total factorization time of HiS and CHiS with different subdomain grid sizes.
In comparison, direct factorization of the same problem by PARDISO from Intel MKL is

completed in 898.3 seconds.

Note that we count only numerical factorization timing here. Unlike graph-based
reordering schemes, our CHiS implementation can efficiently construct the matrix elements
and the corresponding elimination tree directly from the computational domain. Take
Problem (W1) as an example; PARDISO calls METIS and takes 16.2 seconds to perform
symbolic factorization of Apwmr, by using 24 threads. In contrast, the construction
of the matrix elimination dependency, all memory allocation, and restructuring can be
completed in less than 4.7 seconds by CHiS.

CHiS is faster mainly because of (i) elimination tree de-duplication of subdomain and



492 Cheng-Han Du, Yih-Peng Chiou and Weichung Wang

separators (Section[4.1)) and (ii) leaf-level interface sub-matrices compression (Section [4.2)).
At the leaf-level, approximately 98%, 95%, and 81% of subdomain sub-matrices D, are
repeated and thus removed from the computations in CHiS, as shown in Table There-
fore, CHiS achieves significant savings in the leaf-level factorizations and multiple RHS
solves.

For lower level separators, e.g., Si« and S ., compressions are more significant, and
CHiS can save many computational tasks. In contrast, in the higher level separators (e.g.,
S10,+ to S13 in the case of the 4 x 4 x 4 subdomain), little or none of the sub-matrices
are identical and de-duplicated. In this case, there is little difference between the HiS and

CHiS timing results.

5.2.3. Multi-thread parallelism of dense matrix operations

The efficiency of the dense BLAS3 operation can be improved by increasing the arithmetic
intensity (AI) with larger matrices. A higher AI ensures that the overall computation is
computing-bound, which indicates that these operations are not bottlenecked by band-
width and that computational efficiency is likely maintained in future computer hardware.

Analysis of Al and computational performance will be discussed below.

- N 25 T T
Operation time ratio Total -~

e Other %gg—?gg
£ Sparse MatMult 20 | ZGEMM
'''''' * Leaf solve RHS Leaf factorize o
mew L eaf factorize Leaf solve RHS X
w— ZGEMM Y = :
i ZGETRS 15 /’/
= ZGETRF / .
10

1 2 4 8 1216 20 24 0 5 10 15 20 25
Number of threads Number of threads

(a) (b)

Speedup

% of total

Figure 5.4: (a) Workload ratio comparisons with respect to the number of threads and
(b) strong scalability of the workloads in CHiS for solving a linear system with 9 x 9 x 9

subdomains.

Figure[5.3]suggests that the dense operations ZGEMM, ZGETRS, and ZGETRF in HiS
and CHiS require the majority of the computational time. These operations are associated
with the larger separators and sub-matrices in higher levels. Fortunately, computations
of these large dense matrix operations can be efficiently performed on a multicore CPU
with SIMD arithmetic units. Even better, these operations can be accelerated by, for

example, NVIDIA GPU and Intel Xeon Phi. Next, we investigate internal computational
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performance of CHiS in terms of strong scalability of multi-threading and arithmetic
intensity.

Figures. and present the breakdown cost analysis of CHiS in normalized
timing and the results of strong scalability, respectively. In these figures, different numbers
of threads are used to solve the linear system with 9 x 9 x 9 subdomains. Figure shows
that ZGEMM and ZGETRS dominate the performance of CHiS, and these two operations
are highly scalable for multi-threading, as shown in Figure [5.4b

We further study the performance of ZGEMM and ZGETRS in terms of GFLOP per
second (GFLOPS) by using 24 threads of the testing workstation. Figure shows the
performance of all ZGEMM and ZGETRS calls in CHiS by using 24 threads of the testing
workstation, and the arithmetic intensities of ZGEMM and ZGETRS are also shown. The
FLOP of ZGEMM C = C + A(xk)B(kxn) is counted as 8M KN. For ZGETRS, the
FLOP count for solving Ay« anXmxn) = Baurxny is 8M2N. The figures suggest that
the GFLOPS performance of ZGEMM is highly correlated to the subdomain size. Larger
sub-matrices corresponding to larger subdomains yield better GFLOPS performance. For
example, the sizes of the sub-matrices corresponding to the 4 x 4 x 4 subdomain are
typically too small to achieve high GFLOPS performance. In contrast, the sub-matrices
corresponding to the 19 x 19 x 19 subdomain are larger, and nearly all dense matrix
operations achieve more than 650 GFLOPS, which is approximately 83% of the peak
performance from Intel Optimized LINPACK LU factorization benchmark (780 GFLOPS).
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Figure 5.5: (a) GFLOPS performance of ZGEMM and ZGETRS in CHiS for solving the
linear systems with 4x4x4, 9x9x9, and 19x19x 19 subdomains. The best Intel Optimized
LINPACK benchmark result (LU factorization) of the testing workstation is approximately
780 GFLOPS. (b) Arithmetic intensity statistics of the ZGEMM with 4 x 4 x 4, 9 x 9 x 9,
and 19 x 19 x 19 subdomains. Each dot indicates a dense linear algebra function call. The
black, blue, and red dots are associated with the 4 x 4 x 4, 9 x 9 x 9, and 19 x 19 x 19

subdomains, respectively.
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In short, the aforementioned results suggest that CHiS can be easily accelerated by
modern hardwares such as NVIDIA GPU or Intel Xeon Phi because these hardwares have

higher GFLOPS performance for dense matrix computations.

5.2.4. A short summary

These numerical experiments suggest that the overall timing performance of CHiS is an
interplay of (i) the size of the subdomain and thus the size of the separator and interface
sub-matrices and the number of elimination tree levels, (ii) the performance of sparse lin-
ear system solvers for multiple right-hand sides in the leaf level, and (iii) the performance
of the dense operations such as ZGEMM, ZGETRS, and ZGETRF in the separator levels
of the elimination tree. Furthermore, when subdomains are highly compressed, the inter-
face component arrangement greatly reduces the number of right-hand-side vectors in the

sparse linear system solvers and the overall computation time.

5.3. Memory and time savings due to homogeneous structures

We analyze the performance of CHiS for solving Problems (W1), (W2), and (W3) defined
in Section to demonstrate how CHiS can achieve memory and time savings due to
homogeneous structures. In these three problems, the domains along the y-direction are
doubled such that N, = 319, 639, and 1,279 in (W1), (W2), and (W3), respectively. If
no compression scheme is used, we expect that the memory usage and the execution time
will increase by a factor of larger than 2 because of the double-sized elimination tree and
a new root node in the highest level of the elimination tree. However, Figure [5.6] shows
that CHiS uses less memory and time than we expect. This performance improvement is
primarily due to the elimination tree de-duplication (see Section of Schur complement
sub-matrices related to several large separators. We illustrate the effect of elimination tree

de-duplication through the following example.

For the cases with 4 x4 x4, 9x9x 9, or 19 x 19 x 19 subdomains, the largest separator
is the y-normal cross-section with dimensions 3N, N, = 9,243. The most time-consuming
computations are related to these largest separators. If no compression scheme is used,
then the number of such separators is expected to be doubled. However, CHiS finds only
6, 9, and 12 non-identical largest separators in (W1), (W2), and (W3). These separator
number counts show that the workloads do not increase proportionally with respect to
the problem sizes. This improved scaling is primarily due to the compression schemes
proposed in Section {4| in which the homogeneous physical structure of the waveguide

among y-direction is the critical factor.
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Figure 5.6: (a) Memory usage and (b) timing results for solving Problems (W1), (W2),
and (W3) defined in Section[5.1|by CHiS with different subdomain sizes. The black dashed
lines are reference of memory usage and timing, and they are proportional to N, in (W1),
(W2), and (W3).

5.4. Performance gains due to periodicity

Periodicities are common in photonic structures. We consider Problems (F1) and (F2)
introduced in Section [5.1] to show how CHiS can achieve memory and time savings in
periodic structures. By using 19 x 17 x 11 subdomains, CHiS factorizes the coefficient
matrix arising in the shorter filter device with 5 periodic air-holes (F1) by using approxi-
mately 780 seconds and 145.8 GB of main memory. For the longer filter with 28 periodic
air-holes (F2), CHiS consumes 1,299 seconds and 187.3 GB of main memory. That is, for
the double-sized problem with more periodicity, CHiS takes only 1.28X in memory usage
and 1.67X in timing.

We examine the reasons responsible for this performance improvement below. From
the non-duplicate elimination tree statistics, (F1) and (F2) have 4 and 3 non-duplicated
large separators Sg .. In other words, the (F2) can be processed with significantly higher
compression in the Sg . level due to more periodicities. This fact contributes to less than
2X scale-up of memory and time consumption. The compression effect of large separators
in these two wavelength filter examples indicates significant scaling advantages of CHiS

for highly periodic devices.

6. Conclusion

We have proposed and implemented the compressed hierarchical Schur algorithm as a
framework for efficient FDFD simulations of photonic structures by presenting the follow-

ing items. (i) We discretize the governing Maxwell equations by Yee’s scheme and then
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partition the computational domain and reorder the grid points by using physical and
geometrical information. (ii) The resulting coefficient matrix has a particular hierarchi-
cal Schur structure that can be efficiently factorized using multicore-processor-accelerated
BLAS3 operations. (iii) The computational performance is further improved by remov-
ing redundant matrix storages and factorization workloads due to the homogeneity and
periodicity of the photonic structures. (iv) The construction of the hierarchical Schur
coefficient matrix and recolonization of the duplicate sub-matrices are achieved in a very
short time (less than one second in our experience) by exploring the physical and geo-
metrical structures without going through graphical and symbolic analysis. (v) Numerical
experiments regarding straight waveguides and periodic air-holes show that CHiS is a fast
solver for FDFD. CHiS can significantly reduce the memory usages and redundant com-
putational workloads. Overall, CHiS factorizes the coefficient quickly with satisfactory

linear scale-up in multicore parallelism.

The proposed CHiS can act as a kernel to enable many other simulations of various
photonic devices. For example, CHiS can be applied to solve eigenvalue problems for
photonic band analysis [7]. That is, if the shift-and-invert technique is applied to solve
the eigenvalue problems, then the proposed linear system solver can be used to solve the
embedded linear systems therein.

Several future works can enhance the performance of CHiS. Although we only imple-
ment a CPU-only CHiS algorithm in this paper, performance analysis of matrix operations
shows great acceleration potentials for modern HPC hardwares such as GPU-accelerated
parallel computers. To remain efficient for even larger scale simulations, CHiS must be
modified to deal with large root-level sub-matrices and take advantage of the multiple
computational nodes. Parameter tuning that balances the effects among subdomain size,
memory use, and computational workload will be a subject for improving the performance.
A satisfactory tuning result is determined by considering the subdomain size, physical
homogeneous and periodic properties, computer hardware performance, and numerical

library features.

7. Appendix
Part 1. Discretization of (2.2)):
Eiik—1  pij-lk  gijtlk  pigk+l 9 9 N
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where E% ’k, E;;j ’k, and E27F are the unknown discretized electric fields along the z-, y-,

and z-axes, respectively. The column vector x has 3N, N, IV, entries and

1,11 1,11 @111 2,11 2,11 2,11 Ng,1,1 72Nz, 1,1 N, 1,1
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Part 2. The CHiS Algorithm:

Algorithm 7.1 CHiS: Compressed Hierarchical Schur Factorization (Part 1)

1: Define physical parameters, f;m subdomain grid number (ps, py,p-), and directional hierarchy levels

(la:7 ly: lz)
2: for i =1 to 2=+t do

3 if D; is a non-duplicate subdomain then

4: > Sparse factorization of non-duplicate subdomains D; as shown in Figure
5: Factorize D;

6 > Ep, and Fp, aggregation as shown in Figure

7 Collect all interfaces €p; = |Ep, re_, b, re,, ]

8: Collect all interfaces Fp, = [ng,FC,l. ng7FC+a; ’

9: > Solve multiple-RHS sparse linear system with factorized D;

10: Solve Bp, = D;'€p,

11: > Prepared for updating the first-level Schur complement as shown in
12: Perform sparse matrix multiplication Sp, = Fp, Bp,

13: for all D;-duplicated subdomains D; do

14: Update all non-duplicate separators and their mutual interfaces related to D; using Sp,
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Algorithm 7.1 CHiS: Compressed Hierarchical Schur Factorization (Part 2)

15: fori=1tol, + 1y, + 1. do
16: for j =1to j = 2l=+wTl==t do

17: if S; ; is a non-duplicate separator then

18: > Factorize of non-duplicate S; ; as shown in Figure 4.1

19: Factorize S; ;

20: for uj =i+ 1tol,+1,+1. do

21: for all S; ;-duplicated separators \S;,;, with parent .S, . ou;—i7 do
22: Identify current fv, = Iu(Sij,, Sy, 1, 2vi-11)

23: if S, [j./2ui—1 is non-duplicate then

24: > Solve multiple-RHS linear system with factorized S; ;

25: Solve Bsw.d = S;;IUC

26: for all subsequent S; j-duplicated separators S ;, do

27: > Find other interface sub-matrices identical to Iy, for updating the Schur complement

in different sub-matrices. Avoid repetitive solving of multiple-RHS.

28: if jo mod 2% ~" = j; mod 2% ™" and Sui iy /2vi=i] = Su, [ja2wi—i1 then

29: forlj=i+1tol.+1,+1. do

30: if u; <l and Sy ;  51,—i7 is not duplicate then

31: > Update target is a lower interface sub-matriz without de-duplication in

successive-level Schur complement.

32: Identify current Ir, = Ir.(S4,, Sli,[jd//Zli‘ﬁ)

33: Perform dense matrix multiplication Iy, Bsm.

34: Update Ir,(us, [jar /2% ") with Ip,Bs,

35: else if u; > [; and Suh[].d,ﬁuri] is not duplicate then

36: > Update target is a upper interface sub-matriz without de-duplication in

successive-level Schur complement.

37: if S;, ;. /21— is not duplicate then

38: Identify current Ir, = Ir.(Si,j, Sli,’—jd//2li—i~|)

39: else

40: > The corresponding lower sub-matriz may be de-duplicated. If so, use the

non-duplicate one to perform the Schur complement update.

41: Look for non-duplicate separator Sy, j; , of Sl%r].d,/Qlﬁi]

42: Identify current Ir, = ]L(Sigli—ijnd_(jd/ mod 2t —)» Sl jna)

43: Perform dense matrix multiplication Ir, Bs; ;

44: Update Iy (i, [ja /2" 7*]) with Ir,Bs,

45: else if u; = [; and Suh[jd//Qurf:] is not duplicate then

46: > Update target is a diagonal sub-matrix without de-duplication in successive-

level Schur complement.
47: Identify current Ir. = I5(Sij, 5, 1, j2ti—17)
48: Perform dense matrix multiplication Iy, Bsi,j
49: Update Sui,ud,/wi*ﬂ with ILCBSM.
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