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Abstract. In this paper, we analyze a predator-prey chemostat system with internal
storage, in which the predator not only competes for a single inorganic nutrient with
the prey species but also consumes the prey for growth. The outcome for the corre-
sponding model without intraguild predation is that the competitive exclusion holds,
that is, the superior species will win the competition, and coexistence will not happen.
When the mechanism of intraguild predation is added into the system, our analysis

indicates that coexistence can be possible.

1. Introduction

In this paper we shall analyze a well-mixing chemostat model with intraguild predation
and internal storage, which was proposed in [20]. For the system with intraguild predation,
predators not only feed upon prey species but also compete against the prey for the same
inorganic nutrients |1,/11,|14]. Therefore, intraguild predators represent a combination of
predation and competition in an ecosystem, and may play a central role in the structure
of ecological communities [5}/10,/19,22].

Next, we describe the chemostat model proposed in [20], where two species, Ochromonas
(a mixotrophic organism) and Microcystis (an autotrophic prey), compete for ammonium
(a nitrogen resource), and Ochromonas also consumes Microcystis for growth. The nutri-
ent (ammonium) is supplied at the rate D, and the input concentrations is R©. There
is a compensating outflow also at rate D of the well-stirred contents of the chemostat.
Let R(t) be the nutrient (ammonium) concentration at time t¢; Ny(t) and Na(t) denote
the population densities of the autotroph and mixotroph, respectively; Q;(t) represents
the average amount of stored nutrient per cell of i-th population at time ¢, ¢ = 1,2. We

also assume that the chemostat is well mixing, and the factors affecting growth are kept
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constant. Then we consider the following ODE system [20]:

% = (R”) = R)D — f1(R,Q1)N1 — fo(R, Q2) N>,
B (@) ~ DING — (N
d
- d%l = A1(R,Q1) — 1 (Q)@,
ditz = [12(Q2) — D] N2,
dd%? = 2(R.Q2) — 12(Q2)Qa + g(N) Q1.

R(0) >0, N;(0)>0, Qi0)> Qmuini, =12

Here 1;(Q;) is the growth rate of species i as a function of cell quota Q;; fi(R,Q;) is the
per capita nutrient uptake rate, per cell of species 7 as a function of nutrient concentration
R and cell quota @Q;; Qmin,; denotes the threshold cell quota below which no growth of
species i occurs. The term g(N1)Q1 describes the assimilation of nutrients from ingested
prey [20].

The authors in [20] assume that the predation rate, g(/N1), of the mixotroph feeding
on the autotroph is a Holling type III functional response. Thus, g(/N;) takes the forms

gmaxN{)
1.2 Ny) = —Jmaxl
(12) 9N = 7 + Nb

max

where b > 1. The growth rate u;(Q;) takes the forms [2(-4}20]:

i (Qi) = Hico (1 — Qmm’i>

Qi
or (Qi — Qmin,i)
. N i — Wmin,i )+
MZ(QZ) Hico a; + (Qz - Qmin,i)"r’
or
‘ N ' _ Qmax,i - QZ
(13) ’LLZ(QZ) Mmax,z (1 Qmax,i - Qmin,i) 7

where 11, is the maximal growth rate at infinite quotas (i.e., as Q; — o0) of the species i;
(Qi — Qmin,i)+ is the positive part of (Q; — Qmin,i); fimax,i 18 the maximum specific growth
rate of species 7; Qmin,; is the minimum cellular quota content required for growth of the
species 4; Qmax,; 1S the maximum cellular quota content of the species 7.

According to [7,[13], the uptake rate f;(R,Q;) takes the form:

R

fz‘(R, Qz) = pmax,i(@i)ma

_ high high ! Qi — Qmin,i
pmax,i(Qi) = Pmax;i — (pmax,z’ - pr?l‘iavx,i) ] )
Qmax,z - lenﬂ
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where Qmini < Qi < Qmax,. Cunningham and Nisbet [2,[3] took pmax,i(Q:) to be a

constant. The uptake rate in [20] takes the form

(1'4) fz(R, Qz) — umax,iR < Qmax,z‘ _ Qz > 7

Ki +R Qmax,i - Qmin,i

where Qmin,i S Qz S Qmax,i-
Motivated by these examples, we assume that u;(Q;) is defined and continuously dif-
ferentiable for Q; > Qmin; > 0 and satisfies

(1.5) pi(Qi) = 0, pi(Q;) > 0 and is continuous for Q; > Qmin,i, #i(Qmin,i) = 0.

We assume that f;(R, @Q;) and % are Lipschitz continuous for R > 0 and Q; > Qminy;
w >0, %&Qi) <0 and fi(R,Q;) > 0 for a.e. R > 0 and Q; > Qmin,i; there exists

QBi € (Qmin,i, +00] such that

(1.6) fl(R7 Qz) > 0, OR >0 in (R, Qz) S RJr X [len,vaBZ)a

fi(R, Qi) =0 in {(R,Q;) € Ry X [Qmin,i, +00) : R=0o0r Q; > @i}

(When @Qp; = +0o0, it is understood that f;(R,Q;) = 0 if and only if R = 0.)

The organization of the rest of this paper is as follows. The mathematical analysis is
presented in the next section. Basically, we show that if both semitrivial equilibria for
the system are invasible then there is at least one coexistence equilibrium. In Section
we compare the system with the model without predation. Brief discussions are

presented in Section [4]

2. Mathematical analysis

The following set is the region of interest for the system (|1.1)):
Q={(R,N1,Q1,N2,Q2) € R : Qi > Quins, 7 = 1,2}

It is easy to show that 2 is positively invariant for (1.1) and any solution of ([1.1)) with

initial value in €2 exists globally on [0, o).

Let

W(t)=R® — R—QN; — QaNo.
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Then we can rewrite (1.1)) as follows:

d
C]Z\tfl [111(Q1) — DNy — g(N1) N2,
dQl = IR — Q1 Ny — QaNy — W, Q1) — 111(Q1)Q1,
dNQ
21) ? = [p2(Q2) — D]Na,
& = f2(RY — QN1 — QaNo — W, Qa) — 112(Q2)Q2 + g(N1)Q1,
dW
- PW

Nl(o) 2 07 Ql(o) Z Qmin,i7 1= 172

with initial values in the domain
(2.2) % = {(Ny,Q1, Na, Qa, W) € R : Qi > Qumini, Q1N + Q2No + W < RO}

Biologically, R(t) := R R©) Q1N1 Q2N2 — W in (2.1)) should be nonnegative. Indeed,
if there exists a tg such that R — Qy(to)N1(to) — Q2(to)N2(to) — W (to) = 0 then

R'(to) = (R©) — Qi N1 — QaNy — W) (tg)
= —f1(RY) = Q1 (to) N1 (to) — Q2(to) Na(to) — W (to), Q1 (to)) Ni(to)
— f2(R — Q1(to) N1 (to) — Qa2(to)Na(to) — W (tn), Qa(to)) Na(to)
+ D[Q1(to)N1(to) + Q2(to)Na(to) + Wi(to)]
= DR >0,

which implies that R(t) > 0 for all £ > 0.
From the equations for NV; and @;, along with (1.5) and (1.6)) imply that N;(t) > 0

and Q;(t) > Qmin; for all ¢ > 0, i = 1,2. Since W satisfies c%/ = —DW and then
limy_,oo W (t) = 0. Therefore N;(t) < RC;O_)('T < g(o)+e =1,2.

Therefore, solutions of (L.I)) (or (2.2)) are ultimately bounded on © (on 3)). Putting
W =0 in (2.1]), we arrive at the following reduced system of (|1.1]):

dNy

o = (@) = DIN1 — g(N1)Na,
B (RO~ QiNy — @2N2, Q1) — i (@11,
(23 B = [1a(@) - DIV,
02 (RO~ QuN: — QaNa,Q2) — 1a(@2)Qs + (N,

Ni(0) >0,  Qi(0) = Qmin; @=1,2
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with initial values in the domain
(2.4) S = {(N1,Q1, N2,Q2) € RL : Qi > Quings Q1 N1 + QaNy < RO},

The trivial steady-state solution of ([2.3)), labeled Ejy, corresponds to the absence of
both species. It is given by

EO = (07 Q(lJv 07 Qg)
and it always exists. Here, Q? is the unique solution of
(2.5) Fi(R,Q:) — 1i(Q:1)Qi =0, i=1,2.

One of the semi-trivial steady-state solution of ([2.3)), labeled E7, corresponds to the

presence of species 1 and the absence of species 2. It is given by

El — (NikaQTaOaQ;*)a
where
p(Q7) =D, fi(RY —QiNT,Q}) = D@7,
F2(RO — QINT, Q3") — 12(Q3") Q5" + g(NT)QF = 0.

The other semi-trivial steady-state solution of (2.3), labeled Fs, corresponds to the

presence of species 2 and the absence of species 1. It is given by

(2.6)

Ey = (0,Q17, N, Qs),
where
12(Q3) =D, fo(R” — Q3N3,Q3) = DQs,
ARY - Q5N3, Q) — m(QT")QT™ = 0.
The local stability of Ey is determined by the Jacobian matrix of at Fy, denoted
by

(2.7)

p(QY) — D 0 0 0
0 0 0 0
o QP 6f1(1;(R Q) az —QY afl(zgR Q)
0 0  mw(@)-D 0
~QEER 0@ 0~ a

where
0f1 (R, Q)
g = ———~——— —
0Q1
8f2 (R(0)7 Q(Z))
0Q2

[11(QF) + 1y (@@} < 0,

aq4q = — [12(Q3) + 15(Q2)Q3] < 0.
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It is easy to see the eigenvalues of Jy are its diagonal entries and the two eigenvalues
p1(QY) — D and p2(QY) — D determine the stability of Fy, since the other two eigenvalues

are negative.

Lemma 2.1. The following statements are true:
(i) Eo is locally asymptotically stable if both 11;(Q%) < D, i = 1,2;
(ii) Eo is unstable if 1;(QY) > D, for some i;

(iii) B; ewists if and only if u;(QY) > D, i =1,2.

Proof. From our previous discussions, Parts (i) and (ii) are obvious. Next, we show that
Part (iii) is true. If p1(QY) > D then, by (L.5]), there exists a QF < QY such that
u1(Q7) = D. Therefore,

ARD, Q1) > ARY, Q) = m QDO > m (@)@ = DQI.

Hence, there exists a Ni > 0 such that f;(R®) — Q*N;, Q%) = DQ*. On the other hand,

it is easy to see that

G(Q2) = f2(RY — QINF, Qo) — 112(Q2)Q2 + g(N7) Q%

is strictly decreasing in Q2, G(Qmin2) = f2(RO) — QiN{, Qmin2) + g(N])Q7 > 0, and
limg, 300 G(Q2) = —oo. This implies that there is a unique Q3* > @Qmin,2 such that
G(Q5*) =0, and hence, E; exists. Conversely, if E; exists then

ARD,Q7) > fi(RY - QINT, Q1) = DQ] = m(Q7)Q;.

This implies that

1 (QNQY — LR, QY) = 0> 1m(Q1)Q; — AR, Q).

By using the monotonicity of u1(Q)Q — f1(R®,Q), it follows that Q) > Qf and conse-
quently,

Nl(Q?) > u1(Q1) = D.

Similarly, we can show that u2(Q9) > D if and only if E» exists. O

The local stability of E; is determined by the Jacobian matrix of (2.3 at Ej, denoted
by
cin p(QT)NT —g(NT) 0

o1 C22 23 0
Jl )

0 0 C33 0

C41 C42 C43 C44
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where

01 (R — QiNT, Q})

ci1 =m(Q7) — D=0, co1=-Q7 <0,

OR
L0f2(RO — Q1N Q3" .
041:_Q1 f2( agl 1 Q2)+gl(N1)Q1,
*8 R(O)_ *N* QF o R(O)_ *N* QF . .
ey = Ny PN QUG Q1) ORI NG Q1) 1) + st @i)et] <0,
OR oQ
*af RO _ *NF, QL i **af RO) _ *NF, QF
¢y = —Nj 2( 8Rl 1 2)+g(N1), Co3 = — Q3 1( 3R1 1 1)7
* Af (RO — £NF Q%
33 = p2(Q3°) — D, a3 = —@Q3 ol agl 1 Q2)7

_ 0f2(RO — Q1N Q%)
Cq4 = -
0Q2

It is not hard to see that the eigenvalues of J; are css3, c44 and the eigenvalues of

[12(@57) + 15(Q37)Q3"] < 0.

~ cin ph(Q7)NT
J1 =

21 €22
Since ¢;1 = 0, c21 < 0 and co2 < 0, it follows from the Routh-Hurwitz criterion (see,
e.g., [12, Chapter 3|) that the real part of the eigenvalues of Ji are negative. Thus, the
sign of ¢33 = p2(Q%*) — D determines the stability of Ej. A parallel arguments shows that
the stability of E», if it exists, is determined by the sign of u1(Q7*) — D. We summarize

our above discussions in next lemma.
Lemma 2.2. Suppose that E1 and Es exist.

(i) Eq is locally asymptotically stable if pa(Q5*) — D < 0, and unstable if p2(Q5*) —
D> 0.

(ii) Ey is locally asymptotically stable if p1(Q7*) — D < 0, and unstable if p1(Q7*) —
D> 0.

Before we state our main results, we consider the following system which is necessary

for subsequent discussions:

R Rl

dc% = fi(RO — QiNi, Qi) — 1i(Qi)Qi,

N;(0) >0, Qi(0) > Qmuin,i

with initial values in the domain

Yi = {(N;, Qi) € R% : Qi > Quinyi, QiN; < RO},

By [17, Theorem 8.2.1], we have the following result which describes the dynamics of ([2.8)).
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Lemma 2.3. Assume that Q? is given by (2.5). Then the following statements are true:
(1) If i(QY) — D < 0, then every solution of ([2.8)) satisfies

Jlim (N (t), Qi(t)) = (0,Q7);
(ii) If i (QY) — D > 0, then every solution of (2.8) with N;(0) > 0 satisfies

hm( i(1), Qi(t)) = &,

where & = (N7,Q7) and & = (N5, Q%) are given by the first two equations in (2.6)
and ((2.7)), respectively.
In contrast to the model without predation in |17, Chapter 8] or [16], we are able
to show that stable coexistence is possible for the system (2.3)) (or ([L.1))) under suitable

conditions. We give the following assumptions:
(A0) Both F; and Fj exist, that is, 1;(QY%) > D, i = 1,2.
(A1) Ej is unstable, that is, u2(Q%*) — D > 0.
(A2) E, is unstable, that is, u1(Q7*) — D > 0.
Let
Yo = {(N1,Q1,N2,Q2) € ¥ : Ny >0,No >0}, 0%g := X\ Xo.

Theorem 2.4. Let (A0), (Al) and (A2) hold. Then system is uniformly per-
sistent with respect to (X9,0%0) in the sense that there is an n > 0 such that for any
(N1(0),Q1(0), N2(0), Q=2(0) € Xg, the solution (N1(t),RQ1(t), Na(t), ) of ([2.3) satis-
fies

ligl_l)(i)ngi(t) >n, i=1,2.

Further, system (2.3)) admits at least one positive (coexistence) solution.

Proof. Suppose ¥;: 3 — ¥ are the solution flows associated with system (12.3)), that is,

Wi (N1(0), Q1(0), N2(0), Q2(0)) = (N1(t), Q1(t), Na(t), Q2(t)),

where (N1(0),Q1(0), N2(0),RQ2(0)) € X. Let w(x) be the omega-limit set of the orbit of
U, with initial values x € X. It is easy to see that WU;(Xg) C ¥g. Since solutions of the
system are ultimately bounded, it follows that W, is point dissipative and compact.

Recall that Ey, Eq and E3 are fixed points of ;. Further, {Ep}, {E1} and {E>} are
pairwise disjoint, compact and isolated invariant sets for WUy in 9%y. We are going to show

the following property

(29) U w(l‘) C {Eo,El,EQ}.

TEIY
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In the case where N1(0) > 0 and N3(0) = 0, we have Ni(t) > 0 and Na(t) =0, V¢t > 0.
Then (N1(t),Q1(t)) satisfies system ([2.8)) with ¢ = 1, and initial values are in the domain
Y;. By (A0) and Lemma it follows that

(N1(t), @1(t)) = (NT, Q1)

lim
t—o00
Then, the equation for Q2(¢) in (2.3) is asymptotic to

a0z

o= = F(RY — QINT, Q2) — 12(Q2)Q2 + g(N)) Q7.

From the theory for asymptotically autonomous semiflows (see, e.g., [18, Corollary 4.3]),
it follows that

*k

tliglo @a2(t) = Q3"

where Q5" is given in (2.6). It then follows that
Jim W, (N1(0),Q1(0), N2(0), Q2(0)) = Ex.

In the case where Ni(0) = 0 and N2(0) > 0, we can use the similar arguments to show
that

Jim Wy (N1(0), Q1(0), N2(0), Q2(0)) = Eo.
In the case where N;(0) = 0 and N2(0) = 0, we can also show that
Jim Wy (N1(0), @1(0), N2(0), @2(0)) = Eo.

Consequently, W;: ¥ — X satisfies the property . It is obvious that no subset of
{Ey, E1, B} forms a cycle in 9%.

Claim: For j = 0,1,2, Ej; is a uniform weak repeller for ¥ in the sense that there
exists a §; > 0 such that

(2.10) limsup ||V (z) — Ej|| > 95,
t—00

for any = € Y.
In the case where j = 2, from (1.2]), we rewrite the first equation of (2.3)) as follows

AN
(211) i = Q) = D= (N, o)y,
where
XNb—l
(2.12) o(Ny, Np) = Tmaxl o >
Krbnax + Nl
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Let €3 := 5(u1(Q3*)— D) > 0. Then it follows from the continuity of 411 (Q1) and ¢(Ny, N2)
that there exists d2 > 0 such that

*k 1 * %k
(2.13) 1 (Q1) — m(Q717)] < €2 V|Q1 — Q1| < d2
and
1
(2.14) |c(N1, N2) — ¢(0, N3)| < g€V [(N1, N2) — (0, N3)|| < d2.

We next show that
limsup ||V (z) — Ea|| > 62, Vaz € 3.

t—00
Suppose not. Then there exists an xg € ¥ such that limsup,_, [|¥¢(xo) — E2|| < do.
Thus, there exists to > 0 such that

|Q1(t,l‘0) — T*| < &y and H(Nl(t,l’o),NQ(t,fL'o)) — (O,NQ*)” < 52, Vit > to.
Using ¢(0, N5) = 0, together with (2.13)) and (2.14)), it follows that

|[11(Q1 (¢, 0)) — D — (N1 (t, x0), Na(t, 20))] — (111 (Q7") — D]

1 1
< 5624—562:62, Vit > ts.

Then
p1(Q1(t,x0)) — D — c¢(Ni(t,z0), No(t, z0)) > [11(Q7") — D] —e2 = €2, Vi > to.

This inequality and (2.11]) imply that

dN1(t, o)

> eaNy(t,xg), Vt>tg,
i 2 N1 (1, 7o) = 12

which shows that lim; o, Ni(t,29) = oo, a contradiction. Similarly, we can show that
is true for j =0, 1.

Therefore, each Ej; is isolated in ¥ and W*#(E;)NXy = (), where W?*(E}) is the stable set
of E; (see [21]). Since ¥;: ¥ — ¥ is point dissipative and compact, we conclude from [21}
Theorem 1.1.3] that there exists a global attractor A for ¥; in ¥. By [21, Theorem 1.3.1]
on strong repellers, U;: ¥ — ¥ is uniformly persistent with respect to (29, 0%¢). It follows
from [21, Theorem 1.3.6] that there exists a global attractor Ay for ¥y in ¥y and ¥; has
at least one fixed point

(N1, Q1, Na, Q2) € %o.

It then follows that (ﬁl,él,]%,@vg) is a positive steady-state solution for (2.3). This
completes the proof. O
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We are going to lift the dynamics of the reduced system ([2.3) to the full system (|1.1)).

Theorem 2.5. Let (A0), (Al) and (A2) hold. Then system (1.1) admits at least one
positive (coexistence) solution, and there is an n > 0 such that for any initial value
(R(0), N1(0),@Q1(0), N2(0), Q2(0)) € Q2 with N1(0) > 0 and N2(0) > 0, the correspond-
ing solution of (1.1)) satisfies

liminf N;(¢t) >n, i=1,2.

t—o00

Proof. Since systems (1.1)) and (2.1)) are equivalent, it suffices to study system ({2.1).
Assume that

io = {(Nl,Ql,NQ,QQ,W) c i : N1 >0,Noy > O}, aio = i \ io,

where ¥ is given by (2.2). Let TU;: ¥ — 3 be the solution flows associated with Sys-
tem ([2.1]), that is,

fI}t(Nl(O)a Q1(0)7 N2(0)7 Q2(0)7 W(O)) = (Nl(t)v Ql(t)a NQ(t)7 QZ(t)J W(t))v

where (N1(0), Q1(0), N2(0), Q2(0), W(0)) € . Recall that ¥,: ¥ — X are the solution

flows associated with system (2.3]). Let w := w(x) be the omega-limit set of the orbit of

\fft with initial values z € 3. From the fifth equation of the system (2.1, it follows that
lim W(t) = 0.

t—o00

Thus, there exists a set Z C R} such that © = T x {0}.

Since ¥ is closed, it follows that & C . For any given (N1,Q1, N2, Q2) € I, we have
(N1,Q1,N2,Q2,0) € & C S. By the definition of ¥, it follows that (Ni,Q1, N2, Q2) € .
Thus, Z C ¥. By [21, Lemma 1.2.1'], @ is a compact, invariant and internal chain transitive
set for U;. Moreover, if 20 := (N, @Y, N9, Q9) € R with (2°,0) € @, there holds

Wy (a°,0) = (¥(a”),0),

where W;(2?) are the solution maps associated with on X. It then follows from the
definition of internally chain transitive sets that Z is a compact, invariant and internal
chain transitive set for ¥;: ¥ — X.

In order to use [21, Theorem 1.3.1] with L = Z, we must first verify that Z &
{{Eo},{E1},{E2}}. We only prove the claim that Z # {FE,} since other two claims

can be proved in a similar way. Suppose, by contradiction, that Z = {E2}, then

& = (B»,0) := E.
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Thus, we have
lim U, (N?, Q9 N9, QY, W°) = (E,0).
t—o00

From this, we have that

lim Ni(t) =0, tllglo Qi(t) = Q7" and tllglo Ns(t) = N;.

t—o00

Let €3 := 1(u1(Q7*) — D) > 0. Then it follows from the continuity that there is a 7' > 0
such that for all ¢t > T, we have

[[11(Q1) — D — ¢(N1, No)] — [p1(Q7*) — D — ¢(0, N3)]| < €2, Vit >T,
where ¢(N1, Na) is defined in (2.12). This implies that
p1(Q1) — D — ¢(N1,N2) > €2, VYVt >T,

and hence
dN1(t, )

5 > Ny (t,20), Vt>T,

which shows that lim;_,o, N1(t,2") = oo, a contradiction. Similarly, we can prove 7 #

{Ev} and T# {Er). Thus, T ¢ {{Eo}, {E1}, (E2)).
By using [21, Theorem 1.3.1] with L = Z, it follows that there exists a § > 0 such that

. S5
ixelgd(x,azo) >4

Since

(N1(t), Q(t), Na(t), Q2(t), W(t)) - W =T x {0} ast— oo,

it follows that there exists an 7, such that

liminf N;(t) >n, i=1,2.

t—o00

This implies that the solution flows (Iv/t: Y — % are uniformly persistent with respect
to (io,ﬁio). By [21, Theorem 1.3.6], it follows that system (2.1)) admits at least one
positive (coexistence) solution. Since systems (|1.1)) and (2.1]) are equivalent, we complete

our proof. 0
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3. Globally asymptotic behavior

Putting g(N;) = 0 into (2.3) (i.e., the reduced system of (1.1])), we have the following

system without predation:

% = [u1(Q1) — D]Ny,

% = fi(RY — QN1 — Q2N2, Q1) — 11 (Q)Q1,
(3.1) % = [p2(Q2) — D]Na,

% = f2(RY — QN1 — Q2N Q2) — p2(Q2) Qe

NZ(O) 2 O) Q’L(O) Z Qmin,i) 1= ]-72

with initial values in the domain (2.4). The main purpose in this section is to compare
our system (|1.1)) with the model (3.1)). The trivial steady-state solution of ({3.1]), labeled
E’o, corresponds to the absence of both species. It is given by

EO = (07 Q?a 07 Qg)v

where Q? is the unique solution of . One of the semi-trivial steady-state solution of
, labeled Eg, corresponds to the presence of species 2 and the absence of species 1. It
is given by

Ey = (0,Q1", N3, Q3),
whose components are defined in . The other semi-trivial steady-state solution of
, labeled E‘l, corresponds to the presence of species 1 and the absence of species 2. It
is given by

Ey = (NY,Q7,0,Q3%),

where N7 and Q7 are defined in the first two equalities of ({2.6)), and @3* satisfies

(3.2) F2(B — QINT, Q5) — 12(Q57) Q5" = 0.
From ([2.6)) and , we see that
(3.3) 05 < Q5.

We first discuss the case where species 2 is a better competitor for system (3.1f), that

is, the system without predation.

(H1) Assume species Nj is a better competitor in system (3.1, i.e., 0 < Ao < A1 < RO,
where Ay = RO — Q5Ns, Ay = RO — Q1N
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By (H1), it follows from [16] or [17, Chapter 8] that ) is unstable and E is locally
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asymptotically stable for system (3.1)), or equivalently

(3.4)

p2(Q5) =D >0 and i (QY)—D <0.

From (3.3)) and (3.4), we have

which implies that E; is unstable and Fs is locally asymptotically stable for system ([2.3))
(see Lemma . In fact, we can further show that Fs is globally asymptotically stable
for system (2.3]). To this end, we put U; = Q1 N7 and Us = Q2 N2 into system ([2.3]) and

wa(@Q5) —D >0 and p(Q7")—D <O,

we arrive at the following system

(3.5)

Suppose P, is the solution flow associated with system ([3.5)) in an appropriately feasible

dNq
dt
dU;
dt
dNo
dt
dUs
dt

) - i
= |1 (1) — D| Ny — g(N1)No,

U1 Ul
= RO _ Uy — Uy, == )| Ny — DU — g(Ny)—=N.
f1< 1 2’N1> 1 1—4( 1)N1 2,
U2> |
— Z2) _ D| Ny,
ﬂ2<N2 ] 2
U U
2 — fo (RO — U — Uy, ~2 ) Ny — DUy + g(Ny)~= No,
N2 Nl

domain, and II; is the solution flow associated with the following system

dNq U,
— = — | —D| N
dt [M1<N1> ] 1,

U,
dt

dNy Us
— = — | — D| N
dt [m (N2> ] 2,

U, © Us
=2 = — U — Uy, =2 | Ny— D
o= <R Ur = U, . | No = DU,

U
=1 <R(0) — U1 = Uy, N11> Ny — DU,

From system (3.5)), it is not hard to see that

AN,
dt
U,
dt

)] o () o]
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U

< fi (R<0>—U1 U, 1>N1—DU1,
1

dN

2 Us
i “2) _p|w
dt {Mz (N2> ] 25
dU2 (0 U2 Ul
= — Uy, — | Ny, — DU N1)—N.
g = fo (R Ui 2N, 2 2+ g( 1)N1 2

U-
> fa (R(O) — Uy — Uy, ﬁz

> Ny — DUs.
2

Then the comparison principle implies that

(3.7) ®;(N1(0), U1(0), N2(0), U(0)) <k T(N1(0), U1(0), N2(0), U2(0)),

where the partial order < (see, e.g., [15]) is induced by the positive cone K := R% x (—R?)
in R*. Note that systems and are equivalent under the transformation U; =
@1N1 and Uz = Q2N2. Under assumption (H1), species 2 is a better competitor in the
model without predation (i.e., system , or equivalently, (3.6))), it follows from [16]
or [17, Chapter 8] that

(3.8) Jim TL(N3 (0), U3 (0), Na(0), Ua(0)) = (0,0, N3, U),

where Uy = N5Q5. By (3.7) and (3.8), we obtain lim; o (N1(t),Ui(t)) = (0,0). Thus,
the equations for (N2, Us) in (3.5)) are asymptotic to the following system

dN, Us dU2 Us
&2 2)_Dp|N — Ny — D
dt {“2<N2> ] 2 and f2< UQ’N) 2= DU

Then the theory for asymptotically autonomous semiflows (see, e.g., [18, Corollary 4.3])
implies that

lim (Na(t), Us(t)) = (Na, Us).

t—o0

The we conclude that
Jlim ®(N1(0), U1(0), N2(0), U2(0)) = (0,0, N3, Uz),
which proves that Fj is globally asymptotically stable for system (2.3)). Thus we have

Proposition 3.1. Let 0 < Ay < A1 < RO, then the solution of (1.1) satisfies limy_,o0 R(t)
= A2, limyoo N1(t) = 0, limyoo Q1(2) = QFF, limy—oo No(t) = N5, and limy_,oo Q2(t) =
Q5.

Next, we consider the case where species 1 is a better competitor for system without

predation ({3.1).

(H2) From now on, we assume species Nj is superior in system without predation (3.1)),
ie., 0< A1 < Ao < RO where \; = RO — QiNy, A\ = RO — Q5N3.
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By (H2), it follows from [16] or [17, Chapter 8] that Ej is locally asymptotically stable
and EQ is unstable for system (3.1)), or equivalently

(3.9) p2(Q5) =D <0 and i (QY)—D >0.
Proposition 3.2. Under assumption (H2), the following results are true:

(i) Es is always unstable;

(ii) there exists a unique gmax > 0 such that Ey is locally asymptotically stable if 0 <

Jmax < Gmax, and E1 is unstable if gmax > Gmax-

Proof. Suppose that 0 < A\; < A2 < R(O). Then from (3.6) and (3.7)), we have

m (@)A1 — fi(A1, Q1) =0

— 1(QP@I" — fi0,Q1)

< m(@)QY — AL Q1)
implying that

Q1 <@
From Q7 < @7, we have
m(Q1") — D >0,

and we see that Es is unstable for system (see Lemma [2.2).

From Lemma [2.2i), E; is locally asymptotically stable if pu2(Q5*) < D and Ej is
unstable if p2(Q%*) > D. In fact, we can use the parameter gmax, which is defined in ,
to determine the local stability of Fy. From and the third equality of , we have
B10) AR - QING Q5 Q)RS+ g s =
For convenience, we treat Q3" as a function of gmax, that is Q3" = Q5*(gmax). From ,
it follows that

Q5* (gmax) is strictly increasing in gmax, @Q3*(0) = Q3*, and . lirgoo Q3" (gmax) = 0.

This implies that pa(Q5*) — D := pu2(Q5" (gmax)) — D is strictly increasing in gmax, and

lim  [2(Q3" (gmax) — D] = p2(Q3") = D <0, lim [p2(Q3 (gmax)) — D] > 0,

gmax—> GJmax—+00

where we have used the first inequality in (3.9)). Then there exists a unique gmax > 0 such
that

<0 forall0< < Gmax,
(3.11) ILLQ( ;*(gmax)) _ _D — gma)/(\ gmax
>0 foe all gmax > Jmax-

From (3.11)), we see that F; is locally asymptotically stable for system (2.3)) if 0 < gmax <
Jmax, and Ej is unstable for system (2.3) if gmax > Gmax- O
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4. Discussion

This study analyzed the chemostat model proposed in [20], where two species (N (t)
and Na(t)) compete for a nitrogen resource (R(t)), and the species 2 (N2(t)) also consumes
species 1 (N1(t)) for growth. In the assumption (H1), we assume species 2 is a better
competitor for the system without predation, , then we can prove that species 2
will win the competition in the system with predation, (see Proposition . In
the assumption (H2), we assume species 1 is a better competitor for the system without
predation, , then we can prove that Es is always unstable, and F; becomes unstable
if the maximal predation rate gmax exceeds a critical value (see Proposition . When E,
and FE5 are both unstable, we can show that system is permanent, and system
admits at least one positive (coexistence) solution by using the abstract theory of uniform
persistence (see Theorems and .

Next, we shall adopt a different approach to discuss the existence and uniqueness of
the positive equilibrium of system under the assumption (H2). From and ,
we also note that

In order to find the positive equilibrium of system (|1.1]), we assume that % = dé\f =
% =0,i=1,2, Ny > 0and Ny > 0 in (1.1). In view of the fourth equation of (1.1)), it
follows that Q2 = Q%, where Q% is given in (2.7). From the third equation of (1.1)), we see

that R = R(Q1) satisfies

(4.2) Ji(R(Q1), Q1) — i (Q1)@1 = 0.
Differentiating both sides of the equation (4.2) with respect to 1, we get

Q1) + 1 (Q1)Q1 — S (R(Q1), Q1)

4.3 R(Qq) = > 0.
- @ (R(Q1), Q1)

From , it is easy to see that

(4.4) R(Qmin1) =0, R(Q}) =X\ and R(Q}) =R,

where QY and Q% are given in (2.5) and (2.6)), respectively. By (H2), it follows that
(4.5) 0<A <A< RO,
In view of (4.3)), (4.4) and (4.5]), we see that there exists a unique @1 € (Q1,QY) such that

(4.6) R(Q1) = As.
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In view of the fifth equation of (1.1)), it follows that

f2(R(Q1), Q3) — 12(Q3)Q3 + g(N1(Q1))@Q1 = 0.

Then

p2(Q3)Q5 — f2(R(Q1), Q3) _ fa(A2,Q3) — f2(R(Q1), Q3)
Q1 Q1 ’

where we have used with ¢ = 2. Thus

(4.7) 9(N1(Q1)) =

g(Ni(Q1)) >0 <= R(Q1)<X=RQ) < Qi <Qq.
From (4.7)), it is easy to verify that

—g(N1(Q1)) — Z2(R(Q1), @3)R'(Q1)

M(@) = 01 (N1(@Q1)) <0
Furthermore,
Ni(Q1) =g " (fz()\z,Q§) _fo(R(Ql)7Q§)> . Q1< Q.

In view of the second equation of (1.1)), we see that

(11(Q1) — D)N1(Q1)

No :N2(Q1) = g(Nl(Ql)) )

and hence
NQ(Ql) >0 <~ Ql > QT
Let
(4.8)  F(Q1) = (R — R(Q1))D — f1(R(Q1), Q1) N1(Q1) — f2(R(Q1), Q3)Na(Qn).

If we can find a Q1. > 0 satisfying F(Q1) =0, Qf < Q1 < @1, then the positive equilibrium
of system (|1.1)) takes the form

gc = (Ra Nlc: Qlc7 N207 Q26)7

where R. = R(Q1.), N1 = N1(Q1c), and No = No(Q1.). In view of (4.6 and (4.7, we see
that

9<N1(@1)):0a or N1(@1)=0.

Then

07) = lim C oy (@) -D
W) No(Qy) = QllT@1 N2 (Q1) Q11T@1 g(N1(Q1))/N1(Q1)
| m(Q1) — D

= O e QD)L K + (V1 (@)
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where b > 1 and we have used (|1.2)). Since @1 € (Q1,QY), we see that
(4.10) u(Q1) — D > i (Q;) — D =0,
where we have used the first equality in (2.6)). In view of (4.9) and (4.10)), it follows that

Ny(Q7) = lim No(Q1) = +oc.

Q111
Thus,
F(Qr)= lim F(Q)
Q171G
(4.11) — (RO — R(Q7))D — A(R(Q7), Q7)N(Q7) — f2(R(Q7), Q3) Na(Q7)

= —00.
Since N2(Q7) = 0, it follows from that
(4.12) F(Q}) = (RO = \)D — fi(\, QDN (Q).
Using and the fact (R©) — X\1)D = f1(\1, Q1) N}, we see that
(4.13) F(Q1) = f1(A, @DINT — Mi(Q1)]-
In view of the third equation in , it follows that

fa(A1, Q37) + g(NT)QT = p2(Q3")Q3"

If Q5% < @3, it is not hard to see that

fo(A1,@Q2) + g(NY)QT < fa(Ar1, @3) + g(N7)Q1 = p2(Q57) Q2"
< p2(Q3)Q3 = DQ5 = f2(X2,@3),

and hence,

g(NT)Q1 < f2(N2,Q3) — f2(M, @3),
which implies
(4.14) g(NT) < g(N1(Q1)),

where we have used the second identity in (4.4}, and (4.7)). From (4.14)), it follows that
N{ < N1(Q7), and hence,

(4.15) F(Q1) <0,
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where we have used (4.13). Similarly, if Q%* > @3, we can show that
(4.16) F(Q?) > 0.

From Lemmal|2.2] we see that E; is locally asymptotically stable (resp. unstable) if Q5* <
Q% (resp. Q5* > Q%), which is equivalent to that (resp. (4.16)) holds. If Ey is
unstable, it follows from (4.11)) and (4.16) that there exists a Q1. > 0 satisfying QF <
Q1c < @1 and F(Q1c) = 0, that is, the positive equilibrium of system (L.I), &, exists.

This result is consistent with Theorem From our extensive numerical simulations, we

conjecture that
F'(Q1) <0, VQi<Q1<Q1.
Under the assumption (H2), it follows that E9 is always unstable (see Proposition ,

and we have the following conjecture:

e If F; is locally asymptotically stable (i.e., (4.15)) holds), we conjecture that there is
no positive equilibrium for system (|1.1));

e If F; is unstable (i.e., (4.16]) holds), we conjecture that there exists a unique positive
equilibrium for system (1.1)).

Here, we further conjecture that if F is locally asymptotically stable then FE; is globally
asymptotically stable; if £ is unstable then the positive equilibrium &, is unique and it

is globally asymptotically stable.

Quantity Value Quantity Value
D 0.12 day~! RO 2.0 x 107 mol [~!
Umaa,1 12.0 x 101 mol cell™! day~! Umaz,2 24.0 x 10~ mol cell™! day~—!
K 9.0 x 1077 mol [~} K, 6.5 x 1077 mol /7!
fmaza | 0.70 day 1 fmaz2 | 2.2 day™?
Qmin1 | 2.6 x 10714 mol cell ™! Qmin2 | 1.0 x 10713 mol cell ™!
Qmaz,1 | 95 X% 10~ mol cell ™! Qmaz2 | 32 % 10713 mol cell ™!
Imaz 53.0 cells cell™! day~* Kooz 4.0 x 108 cells I7!
b 2.37

Table 4.1: Default Parameters [20].

Finally, we perform a numerical simulation to show that under the assumption (H2),

the conditions (A0), (A1) and (A2) can be met, and coexistence is possible. Numerical
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simulations of system or were implemented using for growth rate p;(Q;),
and for uptake rate f;(R,Q;). The function g(Np) represents the predation rate of
the mixotroph feeding on the autotroph is taken as the form in . Parameter values
we used are given by [20]. Using the parameter values in Table our numerical results

are as follows:

=(0,Q%,0,Q9) = (0,6.9162 x 1074,0,5.7864 x 10713),

(Ni&hJ)Q *) = (5.2756 x 108,3.7829 x 10714,0,1.4191 x 107'2),

=(0,Q%*, N5, Q3) = (0,4.5749 x 10™,7.3926 x 107,2.6909 x 10~13),
(NRJ%wA@”Q%) (1.2019 x 107,4.5541 x 10714, 7.1898 x 107,2.6909 x 10~ 13),

and
p1(QY) — D =0.3179,  pa(Q9) — D = 0.2197,

p2(Q5*) — D =0.8162, 1 (Q7) — D = 0.0803.

Thus, we numerically show that conditions (A0), (A1) and (A2) can be met, and coex-
istence occurs. Those observations are consistent with our theoretical results in Theo-
rems [2.4] and From our simulations, it is likely that if two species can coexist, then

the coexistence steady-state solution is unique, and it is globally asymptotically stable.

Acknowledgments

Hsu is partially supported by Ministry of Science and Technology, Taiwan. Wang is
supported in part by Ministry of Science and Technology, Taiwan; and National Center
for Theoretical Sciences (NCTS), National Taiwan University; and Chang Gung Memorial
Hospital (CRRPD3H0011, BMRPD18 and NMRPD5F0543).

References

[1] M. Arim and P. A. Marquet, Intraguild predation: a widespread interaction related
to species biology, Ecol. Lett. 7 (2004), no. 7, 557-564.

[2] A. Cunningham and R. M. Nisbet, Time lag and co-operativity in the transient growth
dynamics of microalgae, J. Theoret. Biol. 84 (1980), no. 2, 189-203.

3] , Transients and Oscillations in Continuous Culture, Mathematics in Micro-

biology, Academic Press, New York, 1983.

[4] M. R. Droop, Some thoughts on nutrient limitation in algae, J. Phycol. 9 (1973),
no. 3, 264-272.



372

[5]

[10]

[11]

[12]

[13]

[16]

[17]

Sze-Bi Hsu, Yi-hui Ho and Feng-Bin Wang

K. J. Flynn, D. K. Stoecker, A. Mitra, J. A. Raven, P. M. Glibert, P. J. Hansen,
E. Granéli and J. M. Burkholder, Misuse of the phytoplankton-zooplankton dichotomy:
the need to assign organisms as mixotrophs within plankton functional types, J. Plank-
ton Res. 35 (2013), no. 1, 3-11.

J. P. Grover, Resource competition in a variable environment: phytoplankton growing
according to the variable-internal-stores model, Amer. Natur. 138 (1991), no. 4, 811—
835.

, Constant- and variable-yield models of population growth: Responses to envi-

ronmental variability and implications for competition, J. Theoret. Biol. 158 (1992),
no. 4, 409-428.

___, Resource Competition, Chapman & Hall, London, 1997.

, Resource storage and competition with spatial and temporal variation in re-
source availability, Amer. Natur. 178 (2011), no. 5, E124-E148.

M. Hartmann, C. Grob, G. A. Tarran, A. P. Martin, P. H. Burkill, D. J. Scanlan
and M. V. Zubkov, Mizotrophic basis of Atlantic oligotrophic ecosystems, Proc. Natl.
Acad. Sci. 109 (2012), no. 15, 5756-5760.

R. D. Holt and G. A. Polis, A theoretical framework for intraguild predation, Amer.
Natur. 149 (1997), no. 4, 745-764.

S.-B. Hsu, Ordinary Differential Equations with Applications, Series on Applied math-
ematics 16, World Scientific, Singapore, 2006.

F. M. M. Morel, Kinetics of nutrient uptake and growth in phytoplankton, J. Phycol.
23 (1987), no. 2, 137-150.

G. A. Polis, C. A. Myers and R. D. Holt, The ecology and evolution of intraguild pre-
dation: potential competitiors that eat each other, Annu. Rew. Ecol. Syst. 20 (1989),
no. 1, 297-330.

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Com-
petitive and Cooperative Systems, Mathematical Surveys and Monographs 41, Amer-

ican Mathematical Society, Providence, RI, 1995.

H. L. Smith and P. Waltman, Competition for a single limiting resouce in continuous
culture: the variable-yield model, STAM J. Appl. Math. 54 (1994), no. 4, 1113-1131.

, The Theory of the Chemostat, Cambridge University Press, Cambridge, 1995.




Mathematical Analysis on a Droop Model with Intraguild Predation 373

[18] H. R. Thieme, Convergence results and a Poincaré-Bendixzson trichotomy for asymp-
totically autonomous differential equations, J. Math. Biol. 30 (1992), no. 7, 755-763.

[19] T. F. Thingstad, H. Havskum, K. Garde and B. Riemann, On the strategy of “eating
your competitor”: a mathematical analysis of algal mizotrophy, Ecology 77 (1996),
no. 7, 2108-2118.

[20] S. Wilken, J. M. H. Verspagen, S. Naus-Wiezer, E. V. Donk and J. Huisman, Com-
parison of predator-prey interactions with and without intraguild predation by manip-
ulation of the nitrogen source, Oikos 123 (2013), no. 4, 423-432.

[21] X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003.

[22] M. V. Zubkov and G. A. Tarran, High bacterivory by the smallest phytoplankton in
the North Atlantic Ocean, Nature 455 (2008), no. 7210, 224-226.

Sze-Bi Hsu and Yi-hui Ho
Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan

E-mail address: sbhsu@math.nthu.edu.tw, oopsxoxolalala@gmail.com

Feng-Bin Wang

Department of Natural Science in the Center for General Education, Chang Gung
University, Guishan Taoyuan 333, Taiwan

and

Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung,
Keelung 204, Taiwan

E-mail address: fbwang@mail.cgu.edu.tw



	Introduction
	Mathematical analysis
	Globally asymptotic behavior
	Discussion

