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Abstract. In this paper, we analyze a predator-prey chemostat system with internal

storage, in which the predator not only competes for a single inorganic nutrient with

the prey species but also consumes the prey for growth. The outcome for the corre-

sponding model without intraguild predation is that the competitive exclusion holds,

that is, the superior species will win the competition, and coexistence will not happen.

When the mechanism of intraguild predation is added into the system, our analysis

indicates that coexistence can be possible.

1. Introduction

In this paper we shall analyze a well-mixing chemostat model with intraguild predation

and internal storage, which was proposed in [20]. For the system with intraguild predation,

predators not only feed upon prey species but also compete against the prey for the same

inorganic nutrients [1, 11, 14]. Therefore, intraguild predators represent a combination of

predation and competition in an ecosystem, and may play a central role in the structure

of ecological communities [5, 10,19,22].

Next, we describe the chemostat model proposed in [20], where two species, Ochromonas

(a mixotrophic organism) and Microcystis (an autotrophic prey), compete for ammonium

(a nitrogen resource), and Ochromonas also consumes Microcystis for growth. The nutri-

ent (ammonium) is supplied at the rate D, and the input concentrations is R(0). There

is a compensating outflow also at rate D of the well-stirred contents of the chemostat.

Let R(t) be the nutrient (ammonium) concentration at time t; N1(t) and N2(t) denote

the population densities of the autotroph and mixotroph, respectively; Qi(t) represents

the average amount of stored nutrient per cell of i-th population at time t, i = 1, 2. We

also assume that the chemostat is well mixing, and the factors affecting growth are kept
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constant. Then we consider the following ODE system [20]:

dR

dt
= (R(0) −R)D − f1(R,Q1)N1 − f2(R,Q2)N2,

dN1

dt
= [µ1(Q1)−D]N1 − g(N1)N2,

dQ1

dt
= f1(R,Q1)− µ1(Q1)Q1,

dN2

dt
= [µ2(Q2)−D]N2,

dQ2

dt
= f2(R,Q2)− µ2(Q2)Q2 + g(N1)Q1,

R(0) ≥ 0, Ni(0) ≥ 0, Qi(0) ≥ Qmin,i, i = 1, 2.

(1.1)

Here µi(Qi) is the growth rate of species i as a function of cell quota Qi; fi(R,Qi) is the

per capita nutrient uptake rate, per cell of species i as a function of nutrient concentration

R and cell quota Qi; Qmin,i denotes the threshold cell quota below which no growth of

species i occurs. The term g(N1)Q1 describes the assimilation of nutrients from ingested

prey [20].

The authors in [20] assume that the predation rate, g(N1), of the mixotroph feeding

on the autotroph is a Holling type III functional response. Thus, g(N1) takes the forms

(1.2) g(N1) =
gmaxN

b
1

Kb
max +N b

1

,

where b > 1. The growth rate µi(Qi) takes the forms [2–4,20]:

µi(Qi) = µi∞

(
1− Qmin,i

Qi

)
or

µi(Qi) = µi∞
(Qi −Qmin,i)+

ai + (Qi −Qmin,i)+
,

or

(1.3) µi(Qi) = µmax,i

(
1− Qmax,i −Qi

Qmax,i −Qmin,i

)
,

where µi∞ is the maximal growth rate at infinite quotas (i.e., as Qi →∞) of the species i;

(Qi−Qmin,i)+ is the positive part of (Qi−Qmin,i); µmax,i is the maximum specific growth

rate of species i; Qmin,i is the minimum cellular quota content required for growth of the

species i; Qmax,i is the maximum cellular quota content of the species i.

According to [7, 13], the uptake rate fi(R,Qi) takes the form:

fi(R,Qi) = ρmax,i(Qi)
R

Ki +R
,

ρmax,i(Qi) = ρhigh
max,i − (ρhigh

max,i − ρ
low
max,i)

Qi −Qmin,i

Qmax,i −Qmin,i
,
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where Qmin,i ≤ Qi ≤ Qmax,i. Cunningham and Nisbet [2, 3] took ρmax,i(Qi) to be a

constant. The uptake rate in [20] takes the form

(1.4) fi(R,Qi) =
umax,iR

Ki +R

(
Qmax,i −Qi

Qmax,i −Qmin,i

)
,

where Qmin,i ≤ Qi ≤ Qmax,i.

Motivated by these examples, we assume that µi(Qi) is defined and continuously dif-

ferentiable for Qi ≥ Qmin,i > 0 and satisfies

(1.5) µi(Qi) ≥ 0, µ′i(Qi) > 0 and is continuous for Qi ≥ Qmin,i, µi(Qmin,i) = 0.

We assume that fi(R,Qi) and ∂fi(R,Qi)
∂R are Lipschitz continuous for R ≥ 0 andQi ≥ Qmin,i;

∂fi(R,Qi)
∂R ≥ 0, ∂fi(R,Qi)

∂Qi
≤ 0 and fi(R,Qi) ≥ 0 for a.e. R ≥ 0 and Qi ≥ Qmin,i; there exists

QBi ∈ (Qmin,i,+∞] such that

fi(R,Qi) > 0,
∂fi(R,Qi)

∂R
> 0 in (R,Qi) ∈ R+ × [Qmin,i, QBi),

fi(R,Qi) = 0 in {(R,Qi) ∈ R+ × [Qmin,i,+∞) : R = 0 or Qi ≥ QBi}.
(1.6)

(When QBi = +∞, it is understood that fi(R,Qi) = 0 if and only if R = 0.)

The organization of the rest of this paper is as follows. The mathematical analysis is

presented in the next section. Basically, we show that if both semitrivial equilibria for

the system are invasible then there is at least one coexistence equilibrium. In Section 3,

we compare the system (1.1) with the model without predation. Brief discussions are

presented in Section 4.

2. Mathematical analysis

The following set is the region of interest for the system (1.1):

Ω = {(R,N1, Q1, N2, Q2) ∈ R5
+ : Qi ≥ Qmin,i, i = 1, 2}.

It is easy to show that Ω is positively invariant for (1.1) and any solution of (1.1) with

initial value in Ω exists globally on [0,∞).

Let

W (t) = R(0) −R−Q1N1 −Q2N2.
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Then we can rewrite (1.1) as follows:

dN1

dt
= [µ1(Q1)−D]N1 − g(N1)N2,

dQ1

dt
= f1(R(0) −Q1N1 −Q2N2 −W,Q1)− µ1(Q1)Q1,

dN2

dt
= [µ2(Q2)−D]N2,

dQ2

dt
= f2(R(0) −Q1N1 −Q2N2 −W,Q2)− µ2(Q2)Q2 + g(N1)Q1,

dW

dt
= −DW,

Ni(0) ≥ 0, Qi(0) ≥ Qmin,i, i = 1, 2

(2.1)

with initial values in the domain

(2.2) Σ̃ = {(N1, Q1, N2, Q2,W ) ∈ R5
+ : Qi ≥ Qmin,i, Q1N1 +Q2N2 +W ≤ R(0)}.

Biologically, R(t) := R(0)−Q1N1−Q2N2−W in (2.1) should be nonnegative. Indeed,

if there exists a t0 such that R(0) −Q1(t0)N1(t0)−Q2(t0)N2(t0)−W (t0) = 0 then

R′(t0) = (R(0) −Q1N1 −Q2N2 −W )′(t0)

= −f1(R(0) −Q1(t0)N1(t0)−Q2(t0)N2(t0)−W (t0), Q1(t0))N1(t0)

− f2(R(0) −Q1(t0)N1(t0)−Q2(t0)N2(t0)−W (t0), Q2(t0))N2(t0)

+D[Q1(t0)N1(t0) +Q2(t0)N2(t0) +W (t0)]

= DR(0) ≥ 0,

which implies that R(t) ≥ 0 for all t ≥ 0.

From the equations for Ni and Qi, along with (1.5) and (1.6) imply that Ni(t) ≥ 0

and Qi(t) ≥ Qmin,i for all t ≥ 0, i = 1, 2. Since W satisfies dW
dt = −DW and then

limt→∞W (t) = 0. Therefore Ni(t) ≤ R(0)+ε
Qi(t)

≤ R(0)+ε
Qmin,i

, i = 1, 2.

Therefore, solutions of (1.1) (or (2.2)) are ultimately bounded on Ω (on Σ̃). Putting

W = 0 in (2.1), we arrive at the following reduced system of (1.1):

dN1

dt
= [µ1(Q1)−D]N1 − g(N1)N2,

dQ1

dt
= f1(R(0) −Q1N1 −Q2N2, Q1)− µ1(Q1)Q1,

dN2

dt
= [µ2(Q2)−D]N2,

dQ2

dt
= f2(R(0) −Q1N1 −Q2N2, Q2)− µ2(Q2)Q2 + g(N1)Q1,

Ni(0) ≥ 0, Qi(0) ≥ Qmin,i, i = 1, 2

(2.3)
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with initial values in the domain

(2.4) Σ = {(N1, Q1, N2, Q2) ∈ R4
+ : Qi ≥ Qmin,i, Q1N1 +Q2N2 ≤ R(0)}.

The trivial steady-state solution of (2.3), labeled E0, corresponds to the absence of

both species. It is given by

E0 = (0, Q0
1, 0, Q

0
2)

and it always exists. Here, Q0
i is the unique solution of

(2.5) fi(R
(0), Qi)− µi(Qi)Qi = 0, i = 1, 2.

One of the semi-trivial steady-state solution of (2.3), labeled E1, corresponds to the

presence of species 1 and the absence of species 2. It is given by

E1 = (N∗1 , Q
∗
1, 0, Q

∗∗
2 ),

where

µ1(Q∗1) = D, f1(R(0) −Q∗1N∗1 , Q∗1) = DQ∗1,

f2(R(0) −Q∗1N∗1 , Q∗∗2 )− µ2(Q∗∗2 )Q∗∗2 + g(N∗1 )Q∗1 = 0.
(2.6)

The other semi-trivial steady-state solution of (2.3), labeled E2, corresponds to the

presence of species 2 and the absence of species 1. It is given by

E2 = (0, Q∗∗1 , N
∗
2 , Q

∗
2),

where

µ2(Q∗2) = D, f2(R(0) −Q∗2N∗2 , Q∗2) = DQ∗2,

f1(R(0) −Q∗2N∗2 , Q∗∗1 )− µ1(Q∗∗1 )Q∗∗1 = 0.
(2.7)

The local stability of E0 is determined by the Jacobian matrix of (2.3) at E0, denoted

by

J0 =


µ1(Q0

1)−D 0 0 0

−Q0
1
∂f1(R(0),Q0

1)
∂R a22 −Q0

2
∂f1(R(0),Q0

1)
∂R 0

0 0 µ2(Q0
2)−D 0

−Q0
1
∂f2(R(0),Q0

2)
∂R + g′(0)Q0

1 0 −Q0
2
∂f2(R(0),Q0

2)
∂R a44

 ,

where

a22 =
∂f1(R(0), Q0

1)

∂Q1
− [µ1(Q0

1) + µ′1(Q0
1)Q0

1] < 0,

a44 =
∂f2(R(0), Q0

2)

∂Q2
− [µ2(Q0

2) + µ′2(Q0
2)Q0

2] < 0.
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It is easy to see the eigenvalues of J0 are its diagonal entries and the two eigenvalues

µ1(Q0
1)−D and µ2(Q0

2)−D determine the stability of E0, since the other two eigenvalues

are negative.

Lemma 2.1. The following statements are true:

(i) E0 is locally asymptotically stable if both µi(Q
0
i ) < D, i = 1, 2;

(ii) E0 is unstable if µi(Q
0
i ) > D, for some i;

(iii) Ei exists if and only if µi(Q
0
i ) > D, i = 1, 2.

Proof. From our previous discussions, Parts (i) and (ii) are obvious. Next, we show that

Part (iii) is true. If µ1(Q0
1) > D then, by (1.5), there exists a Q∗1 < Q0

1 such that

µ1(Q∗1) = D. Therefore,

f1(R(0), Q∗1) > f1(R(0), Q0
1) = µ1(Q0

1)Q0
1 > µ1(Q∗1)Q∗1 = DQ∗1.

Hence, there exists a N∗1 > 0 such that f1(R(0) −Q∗1N∗1 , Q∗1) = DQ∗1. On the other hand,

it is easy to see that

G(Q2) := f2(R(0) −Q∗1N∗1 , Q2)− µ2(Q2)Q2 + g(N∗1 )Q∗1

is strictly decreasing in Q2, G(Qmin,2) = f2(R(0) − Q∗1N∗1 , Qmin,2) + g(N∗1 )Q∗1 > 0, and

limQ2→∞G(Q2) = −∞. This implies that there is a unique Q∗∗2 ≥ Qmin,2 such that

G(Q∗∗2 ) = 0, and hence, E1 exists. Conversely, if E1 exists then

f1(R(0), Q∗1) > f1(R(0) −Q∗1N∗1 , Q∗1) = DQ∗1 = µ1(Q∗1)Q∗1.

This implies that

µ1(Q0
1)Q0

1 − f1(R(0), Q0
1) = 0 > µ1(Q∗1)Q∗1 − f1(R(0), Q∗1).

By using the monotonicity of µ1(Q)Q − f1(R(0), Q), it follows that Q0
1 > Q∗1 and conse-

quently,

µ1(Q0
1) > µ1(Q∗1) = D.

Similarly, we can show that µ2(Q0
2) > D if and only if E2 exists.

The local stability of E1 is determined by the Jacobian matrix of (2.3) at E1, denoted

by

J1 =


c11 µ′1(Q∗1)N∗1 −g(N∗1 ) 0

c21 c22 c23 0

0 0 c33 0

c41 c42 c43 c44

 ,
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where

c11 = µ1(Q∗1)−D = 0, c21 = −Q∗1
∂f1(R(0) −Q∗1N∗1 , Q∗1)

∂R
< 0,

c41 = −Q∗1
∂f2(R(0) −Q∗1N∗1 , Q∗∗2 )

∂R
+ g′(N∗1 )Q∗1,

c22 = −N∗1
∂f1(R(0) −Q∗1N∗1 , Q∗1)

∂R
+
∂f1(R(0) −Q∗1N∗1 , Q∗1)

∂Q1
− [µ1(Q∗1) + µ′1(Q∗1)Q∗1] < 0,

c42 = −N∗1
∂f2(R(0) −Q∗1N∗1 , Q∗∗2 )

∂R
+ g(N∗1 ), c23 = −Q∗∗2

∂f1(R(0) −Q∗1N∗1 , Q∗1)

∂R
,

c33 = µ2(Q∗∗2 )−D, c43 = −Q∗2
∂f2(R(0) −Q∗1N∗1 , Q∗∗2 )

∂R
,

c44 =
∂f2(R(0) −Q∗1N∗1 , Q∗∗2 )

∂Q2
− [µ2(Q∗∗2 ) + µ′2(Q∗∗2 )Q∗∗2 ] < 0.

It is not hard to see that the eigenvalues of J1 are c33, c44 and the eigenvalues of

J̃1 =

c11 µ′1(Q∗1)N∗1

c21 c22

 .

Since c11 = 0, c21 < 0 and c22 < 0, it follows from the Routh-Hurwitz criterion (see,

e.g., [12, Chapter 3]) that the real part of the eigenvalues of J̃1 are negative. Thus, the

sign of c33 = µ2(Q∗∗2 )−D determines the stability of E1. A parallel arguments shows that

the stability of E2, if it exists, is determined by the sign of µ1(Q∗∗1 )−D. We summarize

our above discussions in next lemma.

Lemma 2.2. Suppose that E1 and E2 exist.

(i) E1 is locally asymptotically stable if µ2(Q∗∗2 ) − D < 0, and unstable if µ2(Q∗∗2 ) −
D > 0.

(ii) E2 is locally asymptotically stable if µ1(Q∗∗1 ) − D < 0, and unstable if µ1(Q∗∗1 ) −
D > 0.

Before we state our main results, we consider the following system which is necessary

for subsequent discussions:

dNi

dt
= [µi(Qi)−D]Ni,

dQi
dt

= fi(R
(0) −QiNi, Qi)− µi(Qi)Qi,

Ni(0) ≥ 0, Qi(0) ≥ Qmin,i

(2.8)

with initial values in the domain

Yi = {(Ni, Qi) ∈ R2
+ : Qi ≥ Qmin,i, QiNi ≤ R(0)}.

By [17, Theorem 8.2.1], we have the following result which describes the dynamics of (2.8).
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Lemma 2.3. Assume that Q0
i is given by (2.5). Then the following statements are true:

(i) If µi(Q
0
i )−D < 0, then every solution of (2.8) satisfies

lim
t→∞

(Ni(t), Qi(t)) = (0, Q0
i );

(ii) If µi(Q
0
i )−D > 0, then every solution of (2.8) with Ni(0) > 0 satisfies

lim
t→∞

(Ni(t), Qi(t)) = Ei,

where E1 = (N∗1 , Q
∗
1) and E2 = (N∗2 , Q

∗
2) are given by the first two equations in (2.6)

and (2.7), respectively.

In contrast to the model without predation in [17, Chapter 8] or [16], we are able

to show that stable coexistence is possible for the system (2.3) (or (1.1)) under suitable

conditions. We give the following assumptions:

(A0) Both E1 and E2 exist, that is, µi(Q
0
i ) > D, i = 1, 2.

(A1) E1 is unstable, that is, µ2(Q∗∗2 )−D > 0.

(A2) E2 is unstable, that is, µ1(Q∗∗1 )−D > 0.

Let

Σ0 = {(N1, Q1, N2, Q2) ∈ Σ : N1 > 0, N2 > 0}, ∂Σ0 := Σ \ Σ0.

Theorem 2.4. Let (A0), (A1) and (A2) hold. Then system (2.3) is uniformly per-

sistent with respect to (Σ0, ∂Σ0) in the sense that there is an η > 0 such that for any

(N1(0), Q1(0), N2(0), Q2(0) ∈ Σ0, the solution (N1(t), Q1(t), N2(t), Q2(t)) of (2.3) satis-

fies

lim inf
t→∞

Ni(t) ≥ η, i = 1, 2.

Further, system (2.3) admits at least one positive (coexistence) solution.

Proof. Suppose Ψt : Σ→ Σ are the solution flows associated with system (2.3), that is,

Ψt(N1(0), Q1(0), N2(0), Q2(0)) = (N1(t), Q1(t), N2(t), Q2(t)),

where (N1(0), Q1(0), N2(0), Q2(0)) ∈ Σ. Let ω(x) be the omega-limit set of the orbit of

Ψt with initial values x ∈ Σ. It is easy to see that Ψt(Σ0) ⊂ Σ0. Since solutions of the

system (2.3) are ultimately bounded, it follows that Ψt is point dissipative and compact.

Recall that E0, E1 and E2 are fixed points of Ψt. Further, {E0}, {E1} and {E2} are

pairwise disjoint, compact and isolated invariant sets for Ψt in ∂Σ0. We are going to show

the following property

(2.9)
⋃

x∈∂Σ0

ω(x) ⊂ {E0, E1, E2}.
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In the case where N1(0) > 0 and N2(0) = 0, we have N1(t) > 0 and N2(t) = 0, ∀ t ≥ 0.

Then (N1(t), Q1(t)) satisfies system (2.8) with i = 1, and initial values are in the domain

Y1. By (A0) and Lemma 2.3, it follows that

lim
t→∞

(N1(t), Q1(t)) = (N∗1 , Q
∗
1).

Then, the equation for Q2(t) in (2.3) is asymptotic to

dQ2

dt
= f2(R(0) −Q∗1N∗1 , Q2)− µ2(Q2)Q2 + g(N∗1 )Q∗1.

From the theory for asymptotically autonomous semiflows (see, e.g., [18, Corollary 4.3]),

it follows that

lim
t→∞

Q2(t) = Q∗∗2 ,

where Q∗∗2 is given in (2.6). It then follows that

lim
t→∞

Ψt(N1(0), Q1(0), N2(0), Q2(0)) = E1.

In the case where N1(0) = 0 and N2(0) > 0, we can use the similar arguments to show

that

lim
t→∞

Ψt(N1(0), Q1(0), N2(0), Q2(0)) = E2.

In the case where N1(0) = 0 and N2(0) = 0, we can also show that

lim
t→∞

Ψt(N1(0), Q1(0), N2(0), Q2(0)) = E0.

Consequently, Ψt : Σ → Σ satisfies the property (2.9). It is obvious that no subset of

{E0, E1, E2} forms a cycle in ∂Σ0.

Claim: For j = 0, 1, 2, Ej is a uniform weak repeller for Σ0 in the sense that there

exists a δj > 0 such that

(2.10) lim sup
t→∞

‖Ψt(x)− Ej‖ ≥ δj ,

for any x ∈ Σ0.

In the case where j = 2, from (1.2), we rewrite the first equation of (2.3) as follows

(2.11)
dN1

dt
= [µ1(Q1)−D − c(N1, N2)]N1,

where

(2.12) c(N1, N2) =
gmaxN

b−1
1

Kb
max +N b

1

N2, b > 1.
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Let ε2 := 1
2(µ1(Q∗∗1 )−D) > 0. Then it follows from the continuity of µ1(Q1) and c(N1, N2)

that there exists δ2 > 0 such that

(2.13) |µ1(Q1)− µ1(Q∗∗1 )| < 1

2
ε2, ∀ |Q1 −Q∗∗1 | < δ2

and

(2.14) |c(N1, N2)− c(0, N∗2 )| < 1

2
ε2, ∀ ‖(N1, N2)− (0, N∗2 )‖ < δ2.

We next show that

lim sup
t→∞

‖Ψt(x)− E2‖ ≥ δ2, ∀x ∈ Σ0.

Suppose not. Then there exists an x0 ∈ Σ0 such that lim supt→∞ ‖Ψt(x0) − E2‖ < δ2.

Thus, there exists t2 > 0 such that

|Q1(t, x0)−Q∗∗1 | < δ2 and ‖(N1(t, x0), N2(t, x0))− (0, N∗2 )‖ < δ2, ∀ t ≥ t2.

Using c(0, N∗2 ) = 0, together with (2.13) and (2.14), it follows that∣∣[µ1(Q1(t, x0))−D − c(N1(t, x0), N2(t, x0))]− [µ1(Q∗∗1 )−D]
∣∣

<
1

2
ε2 +

1

2
ε2 = ε2, ∀ t ≥ t2.

Then

µ1(Q1(t, x0))−D − c(N1(t, x0), N2(t, x0)) > [µ1(Q∗∗1 )−D]− ε2 = ε2, ∀ t ≥ t2.

This inequality and (2.11) imply that

dN1(t, x0)

dt
> ε2N1(t, x0), ∀ t ≥ t2,

which shows that limt→∞N1(t, x0) = ∞, a contradiction. Similarly, we can show that

(2.10) is true for j = 0, 1.

Therefore, each Ej is isolated in Σ andWs(Ej)∩Σ0 = ∅, whereWs(Ej) is the stable set

of Ej (see [21]). Since Ψt : Σ→ Σ is point dissipative and compact, we conclude from [21,

Theorem 1.1.3] that there exists a global attractor A for Ψt in Σ. By [21, Theorem 1.3.1]

on strong repellers, Ψt : Σ→ Σ is uniformly persistent with respect to (Σ0, ∂Σ0). It follows

from [21, Theorem 1.3.6] that there exists a global attractor A0 for Ψt in Σ0 and Ψt has

at least one fixed point

(Ñ1, Q̃1, Ñ2, Q̃2) ∈ Σ0.

It then follows that (Ñ1, Q̃1, Ñ2, Q̃2) is a positive steady-state solution for (2.3). This

completes the proof.
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We are going to lift the dynamics of the reduced system (2.3) to the full system (1.1).

Theorem 2.5. Let (A0), (A1) and (A2) hold. Then system (1.1) admits at least one

positive (coexistence) solution, and there is an η > 0 such that for any initial value

(R(0), N1(0), Q1(0), N2(0), Q2(0)) ∈ Ω with N1(0) > 0 and N2(0) > 0, the correspond-

ing solution of (1.1) satisfies

lim inf
t→∞

Ni(t) ≥ η, i = 1, 2.

Proof. Since systems (1.1) and (2.1) are equivalent, it suffices to study system (2.1).

Assume that

Σ̃0 = {(N1, Q1, N2, Q2,W ) ∈ Σ̃ : N1 > 0, N2 > 0}, ∂Σ̃0 := Σ̃ \ Σ̃0,

where Σ̃ is given by (2.2). Let Ψ̃t : Σ̃ → Σ̃ be the solution flows associated with sys-

tem (2.1), that is,

Ψ̃t(N1(0), Q1(0), N2(0), Q2(0),W (0)) = (N1(t), Q1(t), N2(t), Q2(t),W (t)),

where (N1(0), Q1(0), N2(0), Q2(0),W (0)) ∈ Σ̃. Recall that Ψt : Σ → Σ are the solution

flows associated with system (2.3). Let ω̃ := ω̃(x) be the omega-limit set of the orbit of

Ψ̃t with initial values x ∈ Σ̃. From the fifth equation of the system (2.1), it follows that

lim
t→∞

W (t) = 0.

Thus, there exists a set I ⊂ R4
+ such that ω̃ = I × {0}.

Since Σ̃ is closed, it follows that ω̃ ⊂ Σ̃. For any given (N1, Q1, N2, Q2) ∈ I, we have

(N1, Q1, N2, Q2, 0) ∈ ω̃ ⊂ Σ̃. By the definition of Σ̃, it follows that (N1, Q1, N2, Q2) ∈ Σ.

Thus, I ⊂ Σ. By [21, Lemma 1.2.1′], ω̃ is a compact, invariant and internal chain transitive

set for Ψ̃t. Moreover, if x0 := (N0
1 , Q

0
1, N

0
2 , Q

0
2) ∈ R4

+ with (x0, 0) ∈ ω̃, there holds

Ψ̃t

∣∣∣
ω̃
(x0, 0) = (Ψt(x

0), 0),

where Ψt(x
0) are the solution maps associated with (2.3) on Σ. It then follows from the

definition of internally chain transitive sets that I is a compact, invariant and internal

chain transitive set for Ψt : Σ→ Σ.

In order to use [21, Theorem 1.3.1] with L = I, we must first verify that I 6∈
{{E0}, {E1}, {E2}}. We only prove the claim that I 6= {E2} since other two claims

can be proved in a similar way. Suppose, by contradiction, that I = {E2}, then

ω̃ = (E2, 0) := Ẽ.
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Thus, we have

lim
t→∞

Ψ̃t(N
0
1 , Q

0
1, N

0
2 , Q

0
2,W

0) = (E2, 0).

From this, we have that

lim
t→∞

N1(t) = 0, lim
t→∞

Q1(t) = Q∗∗1 and lim
t→∞

N2(t) = N∗2 .

Let ε2 := 1
2(µ1(Q∗∗1 ) −D) > 0. Then it follows from the continuity that there is a T > 0

such that for all t ≥ T , we have

∣∣[µ1(Q1)−D − c(N1, N2)]− [µ1(Q∗∗1 )−D − c(0, N∗2 )]
∣∣ < ε2, ∀ t ≥ T,

where c(N1, N2) is defined in (2.12). This implies that

µ1(Q1)−D − c(N1, N2) > ε2, ∀ t ≥ T,

and hence

dN1(t, x0)

dt
> ε2N1(t, x0), ∀ t ≥ T,

which shows that limt→∞N1(t, x0) = ∞, a contradiction. Similarly, we can prove I 6=
{E0} and I 6= {E1}. Thus, I 6∈ {{E0}, {E1}, {E2}}.

By using [21, Theorem 1.3.1] with L = I, it follows that there exists a δ > 0 such that

inf
x∈I

d(x, ∂Σ0) ≥ δ.

Since

(N1(t), Q(t), N2(t), Q2(t),W (t))→ ω̃ = I × {0} as t→∞,

it follows that there exists an η, such that

lim inf
t→∞

Ni(t) ≥ η, i = 1, 2.

This implies that the solution flows Ψ̃t : Σ̃ → Σ̃ are uniformly persistent with respect

to (Σ̃0, ∂Σ̃0). By [21, Theorem 1.3.6], it follows that system (2.1) admits at least one

positive (coexistence) solution. Since systems (1.1) and (2.1) are equivalent, we complete

our proof.
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3. Globally asymptotic behavior

Putting g(N1) ≡ 0 into (2.3) (i.e., the reduced system of (1.1)), we have the following

system without predation:

dN1

dt
= [µ1(Q1)−D]N1,

dQ1

dt
= f1(R(0) −Q1N1 −Q2N2, Q1)− µ1(Q1)Q1,

dN2

dt
= [µ2(Q2)−D]N2,

dQ2

dt
= f2(R(0) −Q1N1 −Q2N2, Q2)− µ2(Q2)Q2,

Ni(0) ≥ 0, Qi(0) ≥ Qmin,i, i = 1, 2

(3.1)

with initial values in the domain (2.4). The main purpose in this section is to compare

our system (1.1) with the model (3.1). The trivial steady-state solution of (3.1), labeled

Ẽ0, corresponds to the absence of both species. It is given by

Ẽ0 = (0, Q0
1, 0, Q

0
2),

where Q0
i is the unique solution of (2.5). One of the semi-trivial steady-state solution of

(3.1), labeled Ẽ2, corresponds to the presence of species 2 and the absence of species 1. It

is given by

Ẽ2 = (0, Q∗∗1 , N
∗
2 , Q

∗
2),

whose components are defined in (2.7). The other semi-trivial steady-state solution of

(3.1), labeled Ẽ1, corresponds to the presence of species 1 and the absence of species 2. It

is given by

Ẽ1 = (N∗1 , Q
∗
1, 0, Q̃

∗∗
2 ),

where N∗1 and Q∗1 are defined in the first two equalities of (2.6), and Q̃∗∗2 satisfies

(3.2) f2(R(0) −Q∗1N∗1 , Q̃∗∗2 )− µ2(Q̃∗∗2 )Q̃∗∗2 = 0.

From (2.6) and (3.2), we see that

(3.3) Q̃∗∗2 < Q∗∗2 .

We first discuss the case where species 2 is a better competitor for system (3.1), that

is, the system without predation.

(H1) Assume species N2 is a better competitor in system (3.1), i.e., 0 < λ2 < λ1 < R(0),

where λ2 = R(0) −Q∗2N∗2 , λ1 = R(0) −Q∗1N∗1 .
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By (H1), it follows from [16] or [17, Chapter 8] that Ẽ1 is unstable and Ẽ2 is locally

asymptotically stable for system (3.1), or equivalently

(3.4) µ2(Q̃∗∗2 )−D > 0 and µ1(Q∗∗1 )−D < 0.

From (3.3) and (3.4), we have

µ2(Q∗∗2 )−D > 0 and µ1(Q∗∗1 )−D < 0,

which implies that E1 is unstable and E2 is locally asymptotically stable for system (2.3)

(see Lemma 2.2). In fact, we can further show that E2 is globally asymptotically stable

for system (2.3). To this end, we put U1 = Q1N1 and U2 = Q2N2 into system (2.3) and

we arrive at the following system

dN1

dt
=

[
µ1

(
U1

N1

)
−D

]
N1 − g(N1)N2,

dU1

dt
= f1

(
R(0) − U1 − U2,

U1

N1

)
N1 −DU1 − g(N1)

U1

N1
N2,

dN2

dt
=

[
µ2

(
U2

N2

)
−D

]
N2,

dU2

dt
= f2

(
R(0) − U1 − U2,

U2

N2

)
N2 −DU2 + g(N1)

U1

N1
N2,

Ni(0) ≥ 0, Ui(0) ≥ 0, i = 1, 2.

(3.5)

Suppose Φt is the solution flow associated with system (3.5) in an appropriately feasible

domain, and Πt is the solution flow associated with the following system

dN1

dt
=

[
µ1

(
U1

N1

)
−D

]
N1,

dU1

dt
= f1

(
R(0) − U1 − U2,

U1

N1

)
N1 −DU1,

dN2

dt
=

[
µ2

(
U2

N2

)
−D

]
N2,

dU2

dt
= f2

(
R(0) − U1 − U2,

U2

N2

)
N2 −DU2,

Ni(0) ≥ 0, Ui(0) ≥ 0, i = 1, 2.

(3.6)

From system (3.5), it is not hard to see that

dN1

dt
=

[
µ1

(
U1

N1

)
−D

]
N1 − g(N1)N2 ≤

[
µ1

(
U1

N1

)
−D

]
N1,

dU1

dt
= f1

(
R(0) − U1 − U2,

U1

N1

)
N1 −DU1 − g(N1)

U1

N1
N2
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≤ f1

(
R(0) − U1 − U2,

U1

N1

)
N1 −DU1,

dN2

dt
=

[
µ2

(
U2

N2

)
−D

]
N2,

dU2

dt
= f2

(
R(0) − U1 − U2,

U2

N2

)
N2 −DU2 + g(N1)

U1

N1
N2

≥ f2

(
R(0) − U1 − U2,

U2

N2

)
N2 −DU2.

Then the comparison principle implies that

(3.7) Φt(N1(0), U1(0), N2(0), U2(0)) ≤K Πt(N1(0), U1(0), N2(0), U2(0)),

where the partial order≤K (see, e.g., [15]) is induced by the positive coneK := R2
+×(−R2

+)

in R4. Note that systems (3.1) and (3.6) are equivalent under the transformation U1 =

Q1N1 and U2 = Q2N2. Under assumption (H1), species 2 is a better competitor in the

model without predation (i.e., system (3.1), or equivalently, (3.6)), it follows from [16]

or [17, Chapter 8] that

(3.8) lim
t→∞

Πt(N1(0), U1(0), N2(0), U2(0)) = (0, 0, N∗2 , U
∗
2 ),

where U∗2 = N∗2Q
∗
2. By (3.7) and (3.8), we obtain limt→∞(N1(t), U1(t)) = (0, 0). Thus,

the equations for (N2, U2) in (3.5) are asymptotic to the following system

dN2

dt
=

[
µ2

(
U2

N2

)
−D

]
N2 and

dU2

dt
= f2

(
R(0) − U2,

U2

N2

)
N2 −DU2.

Then the theory for asymptotically autonomous semiflows (see, e.g., [18, Corollary 4.3])

implies that

lim
t→∞

(N2(t), U2(t)) = (N∗2 , U
∗
2 ).

The we conclude that

lim
t→∞

Φt(N1(0), U1(0), N2(0), U2(0)) = (0, 0, N∗2 , U
∗
2 ),

which proves that E2 is globally asymptotically stable for system (2.3). Thus we have

Proposition 3.1. Let 0 < λ2 < λ1 < R(0), then the solution of (1.1) satisfies limt→∞R(t)

= λ2, limt→∞N1(t) = 0, limt→∞Q1(t) = Q∗∗1 , limt→∞N2(t) = N∗2 , and limt→∞Q2(t) =

Q∗2.

Next, we consider the case where species 1 is a better competitor for system without

predation (3.1).

(H2) From now on, we assume species N1 is superior in system without predation (3.1),

i.e., 0 < λ1 < λ2 < R(0), where λ1 = R(0) −Q∗1N∗1 , λ2 = R(0) −Q∗2N∗2 .
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By (H2), it follows from [16] or [17, Chapter 8] that Ẽ1 is locally asymptotically stable

and Ẽ2 is unstable for system (3.1), or equivalently

(3.9) µ2(Q̃∗∗2 )−D < 0 and µ1(Q∗∗1 )−D > 0.

Proposition 3.2. Under assumption (H2), the following results are true:

(i) E2 is always unstable;

(ii) there exists a unique ĝmax > 0 such that E1 is locally asymptotically stable if 0 ≤
gmax < ĝmax, and E1 is unstable if gmax > ĝmax.

Proof. Suppose that 0 < λ1 < λ2 < R(0). Then from (3.6) and (3.7), we have

µ1(Q∗1)Q∗1 − f1(λ1, Q
∗
1) = 0

= µ1(Q∗∗1 )Q∗∗1 − f1(λ2, Q
∗∗
1 )

< µ1(Q∗∗1 )Q∗∗1 − f1(λ1, Q
∗∗
1 )

implying that

Q∗1 < Q∗∗1 .

From Q∗1 < Q∗∗1 , we have

µ1(Q∗∗1 )−D > 0,

and we see that E2 is unstable for system (2.3) (see Lemma 2.2).

From Lemma 2.2(i), E1 is locally asymptotically stable if µ2(Q∗∗2 ) < D and E1 is

unstable if µ2(Q∗∗2 ) > D. In fact, we can use the parameter gmax, which is defined in (1.2),

to determine the local stability of E1. From (1.2) and the third equality of (2.6), we have

(3.10) f2(R(0) −Q∗1N∗1 , Q∗∗2 )− µ2(Q∗∗2 )Q∗∗2 + gmax ·
(N∗1 )bQ∗1

Kb
max + (N∗1 )b

= 0.

For convenience, we treat Q∗∗2 as a function of gmax, that is Q∗∗2 = Q∗∗2 (gmax). From (3.10),

it follows that

Q∗∗2 (gmax) is strictly increasing in gmax, Q
∗∗
2 (0) = Q̃∗∗2 , and lim

gmax→∞
Q∗∗2 (gmax) =∞.

This implies that µ2(Q∗∗2 )−D := µ2(Q∗∗2 (gmax))−D is strictly increasing in gmax, and

lim
gmax→0+

[µ2(Q∗∗2 (gmax))−D] = µ2(Q̃∗∗2 )−D < 0, lim
gmax→∞

[µ2(Q∗∗2 (gmax))−D] > 0,

where we have used the first inequality in (3.9). Then there exists a unique ĝmax > 0 such

that

(3.11) µ2(Q∗∗2 (gmax))−D

< 0 for all 0 ≤ gmax < ĝmax,

> 0 foe all gmax > ĝmax.

From (3.11), we see that E1 is locally asymptotically stable for system (2.3) if 0 ≤ gmax <

ĝmax, and E1 is unstable for system (2.3) if gmax > ĝmax.
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4. Discussion

This study analyzed the chemostat model (1.1) proposed in [20], where two species (N1(t)

and N2(t)) compete for a nitrogen resource (R(t)), and the species 2 (N2(t)) also consumes

species 1 (N1(t)) for growth. In the assumption (H1), we assume species 2 is a better

competitor for the system without predation, (3.1), then we can prove that species 2

will win the competition in the system with predation, (1.1) (see Proposition 3.1). In

the assumption (H2), we assume species 1 is a better competitor for the system without

predation, (3.1), then we can prove that E2 is always unstable, and E1 becomes unstable

if the maximal predation rate gmax exceeds a critical value (see Proposition 3.2). When E1

and E2 are both unstable, we can show that system (1.1) is permanent, and system (1.1)

admits at least one positive (coexistence) solution by using the abstract theory of uniform

persistence (see Theorems 2.4 and 2.5).

Next, we shall adopt a different approach to discuss the existence and uniqueness of

the positive equilibrium of system (1.1) under the assumption (H2). From (2.6) and (2.7),

we also note that

(4.1) fi(λi, Q
∗
i ) = DQ∗i , i = 1, 2.

In order to find the positive equilibrium of system (1.1), we assume that dR
dt = dNi

dt =
dQi

dt = 0, i = 1, 2, N1 > 0 and N2 > 0 in (1.1). In view of the fourth equation of (1.1), it

follows that Q2 = Q∗2, where Q∗2 is given in (2.7). From the third equation of (1.1), we see

that R = R(Q1) satisfies

(4.2) f1(R(Q1), Q1)− µ1(Q1)Q1 = 0.

Differentiating both sides of the equation (4.2) with respect to Q1, we get

(4.3) R′(Q1) =
µ1(Q1) + µ′1(Q1)Q1 − ∂f1

∂Q1
(R(Q1), Q1)

∂f1
∂R (R(Q1), Q1)

> 0.

From (4.2), it is easy to see that

(4.4) R(Qmin,1) = 0, R(Q∗1) = λ1 and R(Q0
1) = R(0),

where Q0
1 and Q∗1 are given in (2.5) and (2.6), respectively. By (H2), it follows that

(4.5) 0 < λ1 < λ2 < R(0).

In view of (4.3), (4.4) and (4.5), we see that there exists a unique Q̂1 ∈ (Q∗1, Q
0
1) such that

(4.6) R(Q̂1) = λ2.
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In view of the fifth equation of (1.1), it follows that

f2(R(Q1), Q∗2)− µ2(Q∗2)Q∗2 + g(N1(Q1))Q1 = 0.

Then

(4.7) g(N1(Q1)) =
µ2(Q∗2)Q∗2 − f2(R(Q1), Q∗2)

Q1
=
f2(λ2, Q

∗
2)− f2(R(Q1), Q∗2)

Q1
,

where we have used (4.1) with i = 2. Thus

g(N1(Q1)) > 0 ⇐⇒ R(Q1) < λ2 = R(Q̂1) ⇐⇒ Q1 < Q̂1.

From (4.7), it is easy to verify that

N ′1(Q1) =
−g(N1(Q1))− ∂f2

∂R (R(Q1), Q∗2)R′(Q1)

Q1g′(N1(Q1))
< 0.

Furthermore,

N1(Q1) = g−1

(
f2(λ2, Q

∗
2)− f2(R(Q1), Q∗2)

Q1

)
, Q1 < Q̂1.

In view of the second equation of (1.1), we see that

N2 = N2(Q1) =
(µ1(Q1)−D)N1(Q1)

g(N1(Q1))
,

and hence

N2(Q1) > 0 ⇐⇒ Q1 > Q∗1.

Let

(4.8) F (Q1) = (R(0) −R(Q1))D − f1(R(Q1), Q1)N1(Q1)− f2(R(Q1), Q∗2)N2(Q1).

If we can find aQ1c > 0 satisfying F (Q1) = 0, Q∗1 < Q1 < Q̂1, then the positive equilibrium

of system (1.1) takes the form

Ec = (Rc, N1c, Q1c, N2c, Q2c),

where Rc = R(Q1c), N1 = N1(Q1c), and N2 = N2(Q1c). In view of (4.6) and (4.7), we see

that

g(N1(Q̂1)) = 0, or N1(Q̂1) = 0.

Then

N2(Q̂−1 ) = lim
Q1↑Q̂1

N2(Q1) = lim
Q1↑Q̂1

µ1(Q1)−D
g(N1(Q1))/N1(Q1)

= lim
Q1↑Q̂1

µ1(Q1)−D
gmax(N1(Q1))b−1/[Kb

max + (N1(Q1))b]
,

(4.9)
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where b > 1 and we have used (1.2). Since Q̂1 ∈ (Q∗1, Q
0
1), we see that

(4.10) µ1(Q̂1)−D > µ1(Q∗1)−D = 0,

where we have used the first equality in (2.6). In view of (4.9) and (4.10), it follows that

N2(Q̂−1 ) = lim
Q1↑Q̂1

N2(Q1) = +∞.

Thus,

F (Q̂−1 ) = lim
Q1↑Q̂1

F (Q1)

= (R(0) −R(Q̂−1 ))D − f1(R(Q̂−1 ), Q̂−1 )N1(Q̂−1 )− f2(R(Q̂−1 ), Q∗2)N2(Q̂−1 )

= −∞.

(4.11)

Since N2(Q∗1) = 0, it follows from (4.8) that

(4.12) F (Q∗1) = (R(0) − λ1)D − f1(λ1, Q
∗
1)N1(Q∗1).

Using (4.12) and the fact (R(0) − λ1)D = f1(λ1, Q
∗
1)N∗1 , we see that

(4.13) F (Q∗1) = f1(λ1, Q
∗
1)[N∗1 −N1(Q∗1)].

In view of the third equation in (2.6), it follows that

f2(λ1, Q
∗∗
2 ) + g(N∗1 )Q∗1 = µ2(Q∗∗2 )Q∗∗2 .

If Q∗∗2 < Q∗2, it is not hard to see that

f2(λ1, Q
∗
2) + g(N∗1 )Q∗1 < f2(λ1, Q

∗∗
2 ) + g(N∗1 )Q∗1 = µ2(Q∗∗2 )Q∗∗2

< µ2(Q∗2)Q∗2 = DQ∗2 = f2(λ2, Q
∗
2),

and hence,

g(N∗1 )Q∗1 < f2(λ2, Q
∗
2)− f2(λ1, Q

∗
2),

which implies

(4.14) g(N∗1 ) < g(N1(Q∗1)),

where we have used the second identity in (4.4), and (4.7). From (4.14), it follows that

N∗1 < N1(Q∗1), and hence,

(4.15) F (Q∗1) < 0,
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where we have used (4.13). Similarly, if Q∗∗2 > Q∗2, we can show that

(4.16) F (Q∗1) > 0.

From Lemma 2.2, we see that E1 is locally asymptotically stable (resp. unstable) if Q∗∗2 <

Q∗2 (resp. Q∗∗2 > Q∗2), which is equivalent to that (4.15) (resp. (4.16)) holds. If E1 is

unstable, it follows from (4.11) and (4.16) that there exists a Q1c > 0 satisfying Q∗1 <

Q1c < Q̂1 and F (Q1c) = 0, that is, the positive equilibrium of system (1.1), Ec, exists.

This result is consistent with Theorem 2.5. From our extensive numerical simulations, we

conjecture that

F ′(Q1) < 0, ∀Q∗1 < Q1 < Q̂1.

Under the assumption (H2), it follows that E2 is always unstable (see Proposition 3.2),

and we have the following conjecture:

• If E1 is locally asymptotically stable (i.e., (4.15) holds), we conjecture that there is

no positive equilibrium for system (1.1);

• If E1 is unstable (i.e., (4.16) holds), we conjecture that there exists a unique positive

equilibrium for system (1.1).

Here, we further conjecture that if E1 is locally asymptotically stable then E1 is globally

asymptotically stable; if E1 is unstable then the positive equilibrium Ec is unique and it

is globally asymptotically stable.

Quantity Value Quantity Value

D 0.12 day−1 R(0) 2.0× 10−5 mol l−1

umax,1 12.0× 10−14 mol cell−1 day−1 umax,2 24.0× 10−14 mol cell−1 day−1

K1 9.0× 10−7 mol l−1 K2 6.5× 10−7 mol l−1

µmax,1 0.70 day−1 µmax,2 2.2 day−1

Qmin,1 2.6× 10−14 mol cell−1 Qmin,2 1.0× 10−13 mol cell−1

Qmax,1 9.5× 10−14 mol cell−1 Qmax,2 32× 10−13 mol cell−1

gmax 53.0 cells cell−1 day−1 Kmax 4.0× 108 cells l−1

b 2.37

Table 4.1: Default Parameters [20].

Finally, we perform a numerical simulation to show that under the assumption (H2),

the conditions (A0), (A1) and (A2) can be met, and coexistence is possible. Numerical



Mathematical Analysis on a Droop Model with Intraguild Predation 371

simulations of system (1.1) or (2.3) were implemented using (1.3) for growth rate µi(Qi),

and (1.4) for uptake rate fi(R,Qi). The function g(N1) represents the predation rate of

the mixotroph feeding on the autotroph is taken as the form in (1.2). Parameter values

we used are given by [20]. Using the parameter values in Table 4.1, our numerical results

are as follows:

E0 = (0, Q0
1, 0, Q

0
2) = (0, 6.9162× 10−14, 0, 5.7864× 10−13),

E1 = (N∗1 , Q
∗
1, 0, Q

∗∗
2 ) = (5.2756× 108, 3.7829× 10−14, 0, 1.4191× 10−12),

E2 = (0, Q∗∗1 , N
∗
2 , Q

∗
2) = (0, 4.5749× 10−14, 7.3926× 107, 2.6909× 10−13),

Ec = (N1c, Q1c, N2c, Q2c) = (1.2019× 107, 4.5541× 10−14, 7.1898× 107, 2.6909× 10−13),

and
µ1(Q0

1)−D = 0.3179, µ2(Q0
2)−D = 0.2197,

µ2(Q∗∗2 )−D = 0.8162, µ1(Q∗∗1 )−D = 0.0803.

Thus, we numerically show that conditions (A0), (A1) and (A2) can be met, and coex-

istence occurs. Those observations are consistent with our theoretical results in Theo-

rems 2.4 and 2.5. From our simulations, it is likely that if two species can coexist, then

the coexistence steady-state solution is unique, and it is globally asymptotically stable.

Acknowledgments

Hsu is partially supported by Ministry of Science and Technology, Taiwan. Wang is

supported in part by Ministry of Science and Technology, Taiwan; and National Center

for Theoretical Sciences (NCTS), National Taiwan University; and Chang Gung Memorial

Hospital (CRRPD3H0011, BMRPD18 and NMRPD5F0543).

References

[1] M. Arim and P. A. Marquet, Intraguild predation: a widespread interaction related

to species biology, Ecol. Lett. 7 (2004), no. 7, 557–564.

[2] A. Cunningham and R. M. Nisbet, Time lag and co-operativity in the transient growth

dynamics of microalgae, J. Theoret. Biol. 84 (1980), no. 2, 189–203.

[3] , Transients and Oscillations in Continuous Culture, Mathematics in Micro-

biology, Academic Press, New York, 1983.

[4] M. R. Droop, Some thoughts on nutrient limitation in algae, J. Phycol. 9 (1973),

no. 3, 264–272.



372 Sze-Bi Hsu, Yi-hui Ho and Feng-Bin Wang

[5] K. J. Flynn, D. K. Stoecker, A. Mitra, J. A. Raven, P. M. Glibert, P. J. Hansen,
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