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Arbitrary High-order EQUIP Methods for Stochastic Canonical Hamiltonian

Systems

Xiuyan Li, Chiping Zhang, Qiang Ma* and Xiaohua Ding

Abstract. This paper is concerned with arbitrary high-order energy-preserving nu-

merical methods for stochastic canonical Hamiltonian systems. Energy and quadratic

invariants-preserving (EQUIP) methods for deterministic Hamiltonian systems are ap-

plied to stochastic canonical Hamiltonian systems and analyzed accordingly. A class

of stochastic parametric Runge-Kutta methods with a truncation technique of random

variables are obtained. Increments of Wiener processes are replaced by some trun-

cated random variables. We prove the replacement doesn’t change the convergence

order under some conditions. The methods turn out to be symplectic for any given

parameter. It is shown that there exists a parameter α∗
n at each step such that the

energy-preserving property holds, and the energy-preserving methods retain the order

of the underlying stochastic Gauss Runge-Kutta methods. Numerical results illustrate

the effectiveness of EQUIP methods when applied to stochastic canonical Hamiltonian

systems.

1. Introduction

Stochastic differential equations (SDEs) have been widely used in modelling many physi-

cal and social systems [24]. Since most SDEs cannot be solved explicitly, it is important

to design numerical methods for solving them. Many efforts have been made to develop

effective numerical methods for SDEs (see [9,20,21,25,33] and so on). Generally, it is nat-

ural to look forward to numerical methods which preserve as much as possible the intrinsic

properties of the original system. Those numerical methods are called structure-preserving

methods. Many numerical experiments have demonstrated the significant superiority of

structure-preserving numerical methods in comparison with general-purpose ones in long-

time numerical simulations.
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Symplecticity is an intrinsic property of Hamiltonian systems. Numerical methods

that can preserve the symplectic structure are called symplectic methods. Symplectic

methods for deterministic Hamiltonian systems have been studied by many scholars (see

[15,17,30,32] and references therein), and symplectic methods for stochastic Hamiltonian

systems also have sprung up in recent years [2, 10, 22, 23, 26, 27, 29, 31]. Milstein proves

the flow of stochastic Hamiltonian systems can preserve the symplectic structure, and

proposes symplectic methods for stochastic Hamiltonian systems with multiplicative noise

and stochastic Hamiltonian systems with additive noise in [26,27]. Symplectic conditions

of stochastic Runge-Kutta methods and stochastic partitioned Runge-Kutta methods for

stochastic Hamiltonian systems are studied in [22, 23, 36]. Symplectic methods based on

stochastic generating function are constructed in [1,31]. Stochastic variational integrators

for preserving symplectic structure are proposed in [2]. Symplectic schemes for stochastic

Hamiltonian dynamical systems through composition methods are proposed in [29].

Energy conservation is also an important intrinsic property of some systems. Great

efforts have been made to look for numerical methods that can inherit the property.

Many energy-preserving numerical methods for deterministic problems have been studied,

for example, [3–8,12,16] and references therein. However, less research has been done for

stochastic cases. Examples of energy-preserving methods for stochastic problems are found

in literatures such as the conservative stochastic difference method [28], discrete gradient

method [19], projection method [35] and stochastic average vector field method [13].

In this paper, we consider the stochastic canonical Hamiltonian systems in the sense

of Stratonovich of the form [28]

(1.1) dy = J−1∇H(y)(dt+ λ ◦ dWt), y(0) = y0,

where y is an m-dimensional (m = 2l) column vector, λ ∈ R is a constant factor and Wt

is a one-dimensional standard Wiener process, defined on a complete filtered probability

space (Ω,F ,P, {Ft}t≥0) which fulfills the usual conditions. y0 is an F0-measurable random

variable with E‖y0‖2 <∞, where ‖·‖ denotes the Euclidean norm. The sufficiently smooth

real-valued function H(y) is the Hamiltonian which is usually called energy function. J =(
0 Il
−Il 0

)
is an m-dimensional skew-symmetric matrix with Il denoting an identity matrix.

The system (1.1) arises frequently in applications that usually describes a Hamiltonian

motion perturbed by a multiplicative white noise.

All results in the present work can be extended to the following stochastic canonical

Hamiltonian systems with multiple Wiener processes

dy = J−1∇H(y)

(
dt+

r∑
i=1

λi ◦ dW i
t

)
, y(0) = y0,
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because this case can be reduced to (1.1) by introducing λ :=
√∑r

i=1 λ
2
i and Wt :=

1
λ

∑r
i=1 λiW

i
t according to [14].

System (1.1) has properties of both symplecticity and energy conservation. It is natural

for us to search for numerical methods that inherit the properties. Unfortunately, the

symplectic schemes do not preserve the energy function H(y) generally [34]. Brugnano

et al. [7] propose a new family of symplectic methods depending on a parameter α for

deterministic Hamiltonian systems, and show the parameter α may be properly tuned

at each step so as to guarantee energy conservation. The methods are called energy

and quadratic invariants-preserving (EQUIP) methods in [7]. The present paper mainly

applies EQUIP methods along with a truncation technique of Wiener increments to the

class of stochastic problems (1.1) and analyzes the symplecticity, energy conservation and

mean-square convergence order.

The paper is organized as follows. In Section 2, we review a family of parametric

Gauss Runge-Kutta (RK) methods for ordinary differential equations (ODEs). In Sec-

tion 3, the stochastic parametric Gauss RK methods with truncated random variables

are applied to (1.1). We prove the methods are symplectic and discuss the mean-square

convergence order. Then we prove there exists a parameter at each step such that the

energy conservation is satisfied. In Section 4, some numerical experiments are presented to

verify the theoretical results and show the effectiveness of EQUIP methods when applied

to stochastic canonical Hamiltonian systems.

2. The parametric Gauss RK methods

Brugnano et al. [7] introduce a family of parametric Gauss RK methods for solving de-

terministic Hamiltonian systems, and based on the parametric Gauss RK methods they

propose EQUIP methods. This section is mainly a review of the parametric Gauss RK

methods. Consider the deterministic autonomous Hamiltonian system

(2.1) ż = J−1∇H(z), z(0) = z0 ∈ Rm.

Recall the shifted and normalized Legendre polynomials [18]

Pk(x) =

√
2k + 1

k!

dk

dxk
(xk(x− 1)k), k = 1, 2, . . . .

These polynomials satisfy the following formulas∫ 1

0
Pk(x)Pl(x) dx = δkl,

∫ x

0
P0(t) dt = ξ1P1(x) +

1

2
P0(x),∫ x

0
Pk(t) dt = ξk+1Pk+1(x)− ξkPk−1(x), k = 1, 2, . . . ,
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where δkl is the Kronecker symbol and ξk = 1/(2
√

4k2 − 1).

Let W = (wij)s×s be the matrix defined by

wij = Pj−1(ci), i = 1, . . . , s, j = 1, . . . , s,

and (c, A, b) be the coefficients of Gauss RK method of order 2s, with ci the distinct

abscissae and bi the weights. Then the W -transformation for the Gauss RK method with

coefficients (c, A, b) is

XG = W−1AW =



1
2 −ξ1 0

ξ1 0 −ξ2

ξ2 0 −ξ3

. . .
. . .

. . .

ξs−2 0 −ξs−1

ξs−1 0


.

Based on XG, we consider the following perturbed matrix

X̃G =



1
2 −ξ1 − α1 0

ξ1 + α1 0 −ξ2 − α2

ξ2 + α2 0 −ξ3 − α3

. . .
. . .

. . .

ξs−2 + αs−2 0 −ξs−1 − αs−1

ξs−1 + αs−1 0



= XG +



0 −α1 0

α1 0 −α2

α2 0 −α3

. . .
. . .

. . .

αs−2 0 −αs−1

αs−1 0


= XG +Xper.

Here α1, α2, . . . , αs−1 are s− 1 real parameters. Applying the W -transformation and X̃G,

we define a family of parametric Gauss RK methods for solving (2.1), denoted by the

Butcher tableau [11]

(2.2)
Ã

bT
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where

(2.3) Ã = WX̃GW
−1 = (ãij)s×s.

Lemma 2.1. The family of parametric Gauss RK methods (2.2) for solving Hamiltonian

system (2.1) are symplectic.

Proof. Let

b = (b1, b2, . . . , bs)
T , B = diag(b1, b2, . . . , bs).

According to [17], the family of RK methods denoted by (2.2) are symplectic if the fol-

lowing condition

(2.4) BÃ+ ÃTB = bbT

holds. By a straightforward computation we have

Ã = WX̃GW
−1 = W (XG +Xper)W

−1

= WXGW
−1 +WXperW

−1 = A+WXperW
−1.

Then we get

BÃ+ ÃTB = B(A+WXperW
−1) + (A+WXperW

−1)TB

= BA+ATB +BWXperW
−1 + (W−1)TXT

perW
TB.

(2.5)

Since the method with coefficients (c, A, b) is Gauss RK method, so it satisfies the symplec-

tic condition, i.e., BA+ ATB = bbT , meanwhile, it satisfies W TBW = I [18]. Therefore,

(2.5) is equal to

bbT +BW (Xper +XT
per)W

−1 = bbT ,

where Xper + XT
per is equal to 0 because Xper is skew-symmetric. Hence (2.4) holds and

the proof is completed.

3. The stochastic parametric Gauss RK methods with truncated random variables

In this section, we apply EQUIP methods with a truncation technique of random variables

to the stochastic canonical Hamiltonian system (1.1). Considering the relation between

the drift term and diffusion term in (1.1), a family of stochastic parametric Gauss RK

methods is quite naturally denoted by a tableau as

(3.1)
Ã Ã

bT bT
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where Ã is defined in (2.3) and contains s − 1 parameters α1, . . . , αs−1. Now we present

the following iterated scheme with truncated random variables of (3.1) by

Yi = yn + (h+ λ∆Ŵ (h))
s∑
j=1

ãijJ
−1∇H(Yj), i = 1, . . . , s,

yn+1 = yn + (h+ λ∆Ŵ (h))

s∑
i=1

biJ
−1∇H(Yi),

(3.2)

where h > 0 is the step size. Usually the Wiener increment ∆W (h) = Wtn+1−Wtn = ξ
√
h

is used in common numerical methods, where ξ is an N (0, 1)-distributed random variable,

but here we employ a truncated random variable ∆Ŵ (h) = ζ
√
h, with

ζ = ζh =


ξ if |ξ| ≤ Ah,

Ah if ξ > Ah,

−Ah if ξ < −Ah,

where Ah :=
√

2k| lnh|, and k is a positive integer. The truncation guarantees ∆Ŵ (h) =

ζ
√
h is bounded, for details see [27]. Now we proceed to the symplecticity results.

Theorem 3.1. The family of stochastic parametric Gauss RK methods defined by (3.2)

for solving (1.1) are symplectic.

Proof. According to [23], a general stochastic RK method with a standard Wiener incre-

ment ∆W (h) denoted by

A A

bT b
T

is symplectic if the following four conditions hold

BA+ATB = bbT , BA+A
T
B = bb

T
, BA+A

T
B = bbT , BA+ATB = bb

T
,

where B = diag(b1, b2, . . . , bs), B = diag(b1, b2, . . . , bs). Obviously, the truncation ∆Ŵ (h)

doesn’t affect the symplectic conditions. Since A = A, B = B and b = b in (3.2), the four

symplectic conditions of (3.2) reduce to only one condition, i.e., BÃ+ ÃTB = bbT , which

we have proved in Lemma 2.1. This completes the proof.

Remark 3.2. Since the sufficient conditions of preserving symplectic structure and pre-

serving quadratic invariants coincide for stochastic RK methods, the family of stochastic

parametric Gauss RK methods (3.2) can preserve all quadratic invariants of (1.1).



Arbitrary High-order EQUIP Methods for Stochastic Canonical Hamiltonian Systems 709

The family of methods (3.2) contain s−1 parameters α1, α2, . . . , αs−1, and for arbitrary

αi (i = 1, 2, . . . , s − 1), (3.2) are symplectic. For the discussion of order conditions and

construction of energy-preserving scheme in the remaining part of the work, we make

some simplification by setting α1 = α2 = · · · = αs−2 = 0 and leaving αs−1 the only free

parameter, then denoting the parameter αs−1 by α for brief. Now we derive a family of

methods with one parameter α denoted by

Ã(α) Ã(α)

bT bT

or by the corresponding iterated scheme

Yi = yn + (h+ λ∆Ŵ (h))
s∑
j=1

ãij(α)J−1∇H(Yj), i = 1, . . . , s,

yn+1 = yn + (h+ λ∆Ŵ (h))

s∑
i=1

biJ
−1∇H(Yi),

(3.3)

where Ã(α) = (ãij(α))s×s is Ã in (2.3) with α1 = α2 = · · · = αs−2 = 0 and αs−1 = α. For

example [7], when s = 2,

(3.4) Ã(α) =

 1
4

1
4 −

√
3

6 − α
1
4 +

√
3

6 + α 1
4

 , bT =

(
1

2
,
1

2

)
,

when s = 3,

(3.5)

Ã(α) =


5
36

2
9 −

√
15

15 −
2
3α

5
36 −

√
15

30 + 2
3α

5
36 +

√
15

24 + 5
12α

2
9

5
36 −

√
15

24 −
5
12α

5
36 +

√
15

30 −
2
3α

2
9 +

√
15

15 + 2
3α

5
36

 , bT =

(
5

18
,
4

9
,

5

18

)
,

which will be used in Section 4.

Before discussing the convergence order of (3.3) for solving (1.1), we first prove the

method with truncated random variables (3.3) has the same mean-square order as that of

the corresponding method with standard Wiener increments

Ỹi = ỹn + (h+ λ∆W (h))
s∑
j=1

ãij(α)J−1∇H(Ỹj), i = 1, . . . , s,

ỹn+1 = ỹn + (h+ λ∆W (h))
s∑
i=1

biJ
−1∇H(Ỹi).

(3.6)
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Theorem 3.3. Assume the necessary coefficients of Stratonovich-Taylor expansion of

(1.1) are bounded. Suppose the one-step approximation ỹn+1 of (3.6) for solving (1.1)

satisfies

‖E(y(tn+1)− ỹn+1)‖ = O(hp1),(3.7)

(E‖y(tn+1)− ỹn+1‖2)1/2 = O(hp2),(3.8)

p2 >
1

2
, p1 ≥ p2 +

1

2
,

where y(tn+1) represents the exact solution at tn+1. Then the method with truncated

random variables (3.3) and the corresponding method with standard Wiener increments

(3.6) have the same mean-square convergence order p2 − 1/2 for solving (1.1) if k ≥
max{2p1 − 1, 4p2 − 2}.

Proof. According to [25], the method (3.6) is of mean-square order p2−1/2. Now we prove

the method with truncated random variables (3.3) is also of mean-square order p2 − 1/2

if k ≥ max{2p1 − 1, 4p2 − 2}.
Assume that the numerical solution of the method (3.6) for solving (1.1) has the form

ỹn+1 = yn +

M∑
m=1

dm(yn)µ̃m(h) +R1, µ̃(h) = h+ λ
√
hξ,

and the numerical solution of the method (3.3) for solving (1.1) has the form

yn+1 = yn +
M∑
m=1

dm(yn)µm(h) +R2, µ(h) = h+ λ
√
hζ,

where dm(yn) (m = 1, . . . ,M) are coefficients of Taylor-expansion, satisfying ‖Edm(yn)‖ ≤
M0 and E‖dm(yn)‖2 ≤M0 for some positive constant M0, R1 and R2 are remainder terms

with higher order about µ̃(h) and µ(h), respectively. So there is

yn+1 − ỹn+1 =
M∑
m=1

dm(yn)(µm(h)− µ̃m(h)) +R,

where R = R2 −R1.

Set M = 2p1, then

‖E(yn+1 − ỹn+1)‖ =

∥∥∥∥∥E
(

2p1∑
m=1

dm(yn)(µm(h)− µ̃m(h)) +R

)∥∥∥∥∥
≤

2p1∑
m=1

‖E(dm(yn))‖
m∑
l=1

C lmh
m−l|λ|lhl/2|E(ζ l − ξl)|+R3

≤M0

2p1∑
m=1

m∑
l=1

C lmh
m−l|λ|lhl/2|E(ζ l − ξl)|+R3,

(3.9)
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where R3 = ‖ER‖ = O(hp1+1).

Set M = 2p2, then

E‖yn+1 − ỹn+1‖2 = E

∥∥∥∥∥
2p2∑
m=1

dm(yn)(µm(h)− µ̃m(h)) +R

∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥
2p2∑
m=1

dm(yn)(µm(h)− µ̃m(h))

∥∥∥∥∥
2

+R4

≤ 4p2

2p2∑
m=1

E‖dm(yn)‖2E|µm(h)− µ̃m(h)|2 +R4

≤ 4p2M0

2p2∑
m=1

E|µm(h)− µ̃m(h)|2 +R4

= 4p2M0

2p2∑
m=1

E

∣∣∣∣∣
m∑
l=1

C lmh
m−lλlhl/2(ζ l − ξl)

∣∣∣∣∣
2

+R4

≤ 4p2M0

2p2∑
m=1

m

m∑
l=1

(C lm)2h2m−2lλ2lhlE|ζ l − ξl|2 +R4,

(3.10)

where R4 = 2E‖R‖2 = O(h2p2+1).

Now it remains to check |E(ζ l − ξl)| and E|ζ l − ξl|2 in (3.9) and (3.10).

For l = 1, there is |E(ζ − ξ)| = 0. For l ≥ 2, it holds that

|E(ζ l − ξl)| = |E[(ζ − ξ)(ζ l−1 + ζ l−2ξ + · · ·+ ξl−1)]|

≤ E[|ζ − ξ||ζ l−1 + ζ l−2ξ + · · ·+ ξl−1|]

≤ E[|ζ − ξ|l|ξ|l−1]

≤ l(E|ζ − ξ|2)1/2(E|ξ|2l−2)1/2,

where we use |ζ| ≤ |ξ| and Hölder’s inequality. According to [27], E|ζ − ξ|2 ≤ hk, in

addition, E|ξ|2l−2 is bounded, so

(3.11) |E(ζ l − ξl)| ≤ Chk/2,

where C is a positive constant. For simplicity, unless otherwise specified, we always denote

a positive constant by C throughout this paper, which may be different from line to line.

Similarly, we check E|ζ l− ξl|2. For l = 1, due to [27], there is E|ζ− ξ|2 ≤ hk, for l ≥ 2,

it holds that

E|ζ l − ξl|2 = E[|ζ − ξ|2|ζ l−1 + ζ l−2ξ + · · ·+ ξl−1|2]

= E[|ζ − ξ||ζ − ξ||ζ l−1 + ζ l−2ξ + · · ·+ ξl−1|2]
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≤ E[|ζ − ξ|2l2|ξ|2l−1](3.12)

≤ 2l2(E|ζ − ξ|2)1/2(E|ξ|4l−2)1/2

≤ Chk/2.

Substituting (3.11) into (3.9), we get if k ≥ 2p1 − 1, then

(3.13) ‖E(yn+1 − ỹn+1)‖ = O(hp1).

Similarly, inserting (3.12) into (3.10), we see for k ≥ 4p2 − 2, it holds

(3.14) (E‖yn+1 − ỹn+1‖2)1/2 = O(hp2).

Then if k ≥ max{2p1 − 1, 4p2 − 2}, by (3.7), (3.8), (3.13) and (3.14), we derive

‖E(yn+1 − y(tn+1))‖ = ‖E(yn+1 − ỹn+1 + ỹn+1 − y(tn+1))‖ = O(hp1),

and

(E‖yn+1 − y(tn+1)‖2)1/2 = (E‖yn+1 − ỹn+1 + ỹn+1 − y(tn+1)‖2)1/2 = O(hp2).

Consequently, due to [25], the method (3.3) for solving (1.1) has mean-square order p2 −
1/2. The proof is completed.

Theorem 3.3 shows the truncation ∆Ŵ (h) doesn’t change the convergence order if k

satisfies some conditions. In the rest of the paper, we always assume k is suitably chosen.

Next, we want to prove that the method (3.3) for solving (1.1) can achieve arbitrary high

order. Since (1.1) is a single integrand SDE, we may use the results in [14] to prove the

following theorem.

Theorem 3.4. The family of stochastic one-parameter Gauss RK methods with truncated

random variables defined by (3.3) for solving (1.1) are of mean-square order s− 1 for any

fixed α 6= 0.

Proof. On the basis of [14], if the order of a deterministic RK method for ODEs is p, then

the mean-square order of the according stochastic RK method for single integrand SDEs

is bp/2c. Since the family of deterministic RK methods denoted by

Ã(α)

bT

are of order 2s − 2 for any fixed α 6= 0 (see [7] for details), the family of stochastic

RK methods (3.6) are of mean-square order s − 1 for any fixed α 6= 0. Therefore by

Theorem 3.3, the stochastic RK methods (3.3) have the same mean-square order s− 1 for

any fixed α 6= 0. The proof is completed.
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Theorem 3.4 shows the method (3.3) for solving (1.1) can achieve arbitrary high or-

der as long as the stage s is chosen properly. Note that for α = 0, the stochastic RK

method (3.3) is of mean-square order s because the according RK method with coeffi-

cients (c, Ã(0), b) is Gauss method of order 2s.

The family of stochastic symplectic one-parameter Gauss RK methods (3.3) defined

a map y1 = Φ
h,∆Ŵ (h)

(y0, α). We are now in the position to discuss whether there exists

some suitable parameter α∗(y0, µ(h)), where the notation µ(h) = h + λ∆Ŵ (h) is similar

as that used in [14], such that energy preservation holds, i.e., H(y1(α∗, µ(h))) = H(y0).

To this end, we define the energy error function as

(3.15) g(α, µ(h)) = H(y1(α, µ(h)))−H(y0).

Similar to the way in [7], we employ the implicit function theorem with respect to the

energy error function (3.15) to prove the existence of α∗. First, we make the following

mild and reasonable assumptions:

(A1) The function g(α, µ(h)) is analytic near the origin.

(A2) When the underlying method (α = 0) is applied, g(0, µ(h)) satisfies

g(0, µ(h)) = H(y1(0, µ(h)))−H(y0) = c0µ
d(h) +R5,

where y0 is the initial value, d is some positive integer representing the power of

µ(h), c0 6= 0, and R5 is the higher order remainder term. Further, we assume that

for any α ∈ R (α 6= 0),

g(α, µ(h)) = c(α)µd−2(h) +R6,

where c′(0) 6= 0 and R6 is the higher order remainder term.

Theorem 3.5. Suppose the assumptions (A1) and (A2) hold, then there exist a function

α∗ = α∗(µ(h)) and a positive h0, such that

(i) g(α∗(µ(h)), µ(h)) = 0 for all h ∈ (0, h0),

(ii) α∗(µ(h)) = Cµ2(h) + R7, where C is some constant and R7 is the higher order

remainder term.

Proof. From (A1) and (A2), g(α, µ(h)) can be expanded as

(3.16) g(α, µ(h)) =
∞∑
j=d

1

j!

∂jg

∂µ(h)j
(0, 0)µj(h) +

∞∑
i=1

∞∑
j=d−2

1

i!j!

∂i+jg

∂αi∂µ(h)j
(0, 0)µj(h)αi.
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We expect to apply the implicit function theorem to search for a solution to g(α, µ(h)) = 0

in the form α∗(µ(h)) = η(µ(h))µ2(h), where η(µ(h)) is a real-valued function of µ(h).

Following the way in [7], we let α = ηµ2(h) and insert it into (3.16) to obtain

g(α, µ(h)) =
1

d!

∂dg

∂µ(h)d
(0, 0)µd(h) +

1

(d− 2)!

∂d−1g

∂α∂µ(h)d−2
(0, 0)µd(h)η

+
1

(d− 1)!

∂dg

∂α∂µ(h)d−1
(0, 0)µd+1(h)η +R8,

(3.17)

where R8 is the higher order term. Dividing by µd(h)/(d − 2)! on the right-hand side of

(3.17) yields

g̃(η, µ(h)) =
1

d(d− 1)

∂dg

∂µ(h)d
(0, 0) +

∂d−1g

∂α∂µ(h)d−2
(0, 0)η

+
1

d− 1

∂dg

∂α∂µ(h)d−1
(0, 0)µ(h)η +R9,

(3.18)

where R9 is the higher order term. Now we turn to g̃(η, µ(h)) for an answer. From

assumption (A2), ∂d−1g
∂α∂µ(h)d−2 (0, 0) = c′(0)(d − 2)! 6= 0, hence we can employ the implicit

function theorem to ensure that there exists a function η = η(µ(h)) such that g̃(η, µ(h)) =

0. For sufficiently small h, η(µ(h)) can be calculated from (3.18) as

η(µ(h)) = −
1

d(d−1)
∂dg

∂µ(h)d
(0, 0) +R9

∂d−1g
∂α∂µ(h)d−2 (0, 0) + 1

d−1
∂dg

∂α∂µ(h)d−1 (0, 0)µ(h)

= − 1

d(d− 1)

∂dg
∂µ(h)d

(0, 0)

∂d−1g
∂α∂µ(h)d−2 (0, 0)

+R10,

where R10 is the higher order remainder term. By assumption (A2), ∂dg
∂µ(h)d

(0, 0) is different

from zero, so the solution α∗(µ(h)) to g(α, µ(h)) = 0 takes the form

α∗(µ(h)) = η(µ(h))µ2(h)

= − 1

d(d− 1)

∂dg
∂µ(h)d

(0, 0)

∂d−1g
∂α∂µ(h)d−2 (0, 0)

µ2(h) +R7 = Cµ2(h) +R7,

where R7 is the higher order remainder term. This completes the proof.

It should be pointed out the truncation ∆Ŵ (h) ensures µ(h) → 0 as h → 0, so that

the implicit function theorem can be applied here. The reason is the standard Wiener

increment ∆W (h) is unbounded for any arbitrarily small h. Theorem 3.5 shows there

exists a suitable parameter at each step such that the method (3.3) preserves the energy

function. We denote the variable-parameter energy-preserving method by a mapping form

yn+1 = Φ
h,∆Ŵ (h)

(yn, α
∗
n). Next we will discuss the convergence order of this method.
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Theorem 3.6. The energy-preserving method yn+1 = Φ
h,∆Ŵ (h)

(yn, α
∗
n) is of mean-square

order s for solving (1.1) under the assumptions (A1) and (A2).

Proof. Let y1(α, µ(h)) be the solution computed by (3.3) at time t0 + h with y0 = y(t0).

Applying the mean value theorem we get

y1(α, µ(h)) = y1(0, µ(h)) + α

∫ 1

0
y′1(tα, µ(h)) dt,

where y′1(tα, µ(h)) = ∂y1(v,µ(h))
∂v

∣∣
v=tα

. Recall that y1(0, µ(h)) is of mean-square order s

while y1(α, µ(h)) is of mean-square order s− 1 when α 6= 0, which implies that∫ 1

0
y′1(tα, µ(h)) dt = C̃1µ

2s−1(h) + C̃2µ
2s(h) + C̃3µ

2s+1(h) + · · · ,

where C̃i (i = 1, 2, . . .) are vector-valued coefficients. DenoteR11 = C̃2µ
2s(h)+C̃3µ

2s+1(h)+

· · · , then ‖ER11‖ = O(hs) and E‖R11‖2 = O(h2s). Thus,

y1(α, µ(h)) = y1(0, µ(h)) + α(C̃1µ
2s−1(h) +R11).

Therefore,

‖E(y1(α, µ(h))− y(t0 + h))‖

= ‖E(y1(0, µ(h)) + α(C̃1µ
2s−1(h) +R11)− y(t0 + h))‖

≤ ‖E(y1(0, µ(h))− y(t0 + h))‖+ ‖E(α(C̃1µ
2s−1(h) +R11))‖

≤ Chs+1 + ‖E(α(C̃1µ
2s−1(h) +R11))‖.

(3.19)

Substituting α = α∗ = Cµ2(h) +R7 into (3.19) yields

‖E(y1(α∗, µ(h))− y(t0 + h))‖ ≤ Chs+1 + Chs+1 = Chs+1.

Hence,

(3.20) ‖E(y1(α∗, µ(h))− y(t0 + h))‖ = O(hs+1).

In addition, it holds

E‖y1(α, µ(h))− y(t0 + h)‖2

= E‖y1(0, µ(h)) + α(C̃1µ
2s−1(h) +R11)− y(t0 + h)‖2

≤ 2E‖y1(0, µ(h))− y(t0 + h)‖2 + 2E‖α(C̃1µ
2s−1(h) +R11)‖2

≤ Ch2s+1 + 2E‖α(C̃1µ
2s−1(h) +R11)‖2.

(3.21)

Inserting α = α∗ = Cµ2(h) +R7 into (3.21), similar to the argument of (3.20), we obtain

(3.22) E‖y1(α∗, µ(h))− y(t0 + h)‖2 = O(h2s+1).

By an application of Theorem 1.1 in [25], together with (3.20) and (3.22), we can easily

derive the conclusion and the proof is completed.
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Theorem 3.6 implies the energy-preserving method yn+1 = Φ
h,∆Ŵ (h)

(yn, α
∗
n) retains

the convergence order of the underlying stochastic Gauss RK method (α = 0).

4. Numerical experiments

In this section, we will illustrate the superiority of the parametric numerical method

yn+1 = Φ
h,∆Ŵ (h)

(yn, α
∗
n) when preserving the energy function of the original system for

a long-term simulation by comparing with the corresponding non-parametric ones. With

respect to Ah =
√

2k| lnh|, k = 12 is chosen in the three examples of this section. For

convenience, we introduce the shorthand notations in the following table.

Methods Shorthand notations

2-stage stochastic Gauss RK method (3.3) with

(3.4) and α = 0
SGRK2

3-stage stochastic Gauss RK method (3.3) with

(3.5) and α = 0
SGRK3

Energy-preserving 2-stage stochastic parametric

RK method (3.3) with (3.4)
EPSPRK2

Energy-preserving 3-stage stochastic parametric

RK method (3.3) with (3.5)
EPSPRK3

Example 4.1 (The stochastic mathematical pendulum). Consider the following stochastic

mathematical pendulum

(4.1) d

p(t)
q(t)

 =

− sin(q(t))

p(t)

 (dt+ β ◦ dWt), p(0) = p0, q(0) = q0,

where β denotes the noise intensity and H(p(t), q(t)) = p2/2−cos q is the energy function.

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

p

q

Figure 4.1: Phase space plot of the numerical solution to (4.1) computed by EPSPRK3

with h = 0.1.
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We employ the methods SGRK3 and EPSPRK3 to solve the system (4.1), respectively.

Note that the parameter α∗n is determined at each step by bisection such that the energy

error function g(α∗n, µ(h)) = H(yn+1(α∗n, µ(h))) −H(yn) is equal to zero. We choose the

step size h = 0.1, the initial values p0 = 0, q0 = 0.5, and the noise intensity β = 0.5.

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 Time t

α* n

Figure 4.2: Values of the sequence {α∗n} in EPSPRK3 such that the energy conservation

holds for (4.1) with h = 0.1.
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(p

0,q
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(a) SGRK3

0 50 100 150 200 250 300
−1

−0.5

0

0.5

1

1.5
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(p
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H
(p

0,q
0)

(b) EPSPRK3

Figure 4.3: Energy errors of numerical solutions for solving the system (4.1) with h = 0.1.
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Figure 4.4: Convergence rate of the method EPSPRK3 for solving (4.1).

Figure 4.1 reports the numerical solutions of EPSPRK3 for simulating a sample phase

trajectory of (4.1) on the interval [0, 300]. Figure 4.2 shows the values of the sequence {α∗n},
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such that the energy function is invariant at each step. Figure 4.3 exhibits the energy errors

of SGRK3 and EPSPRK3 on the interval [0, 300], respectively, where we can see EPSPRK3

has greater advantage than SGRK3 in preserving energy function. Figure 4.4 demonstrates

the convergence rate of EPSPRK3 for solving (4.1), where we use 1000 independent sample

paths, and for each path, the method EPSPRK3 is implemented with six different step

sizes: h = 2−1, 2−2, 2−3, 2−4, 2−5, 2−6. Note here the numerical solution computed by

SGRK3 with smaller step size h = 2−10 is used as a reference solution because the exact

solution of (4.1) cannot be expressed explicitly. We calculate the mean-square errors at

the terminal T = 1 by
√(∑1000

i=1 (|p(1, ωi)− pN (ωi)|2 + |q(1, ωi)− qN (ωi)|2)
)
/1000, and

show the results in a log-log plot in Figure 4.4.

Example 4.2 (The stochastic Kepler problem). Consider the stochastic Kepler problem

d


p1

p2

q1

q2

 =


− q1

(q21+q22)3/2

− q2
(q21+q22)3/2

p1

p2

 (dt+ β ◦ dWt),

p1(0) = p10, p2(0) = p20, q1(0) = q10, q2(0) = q20,

(4.2)

where β denotes the noise intensity and H(p1, p2, q1, q2) = 1
2(p2

1 +p2
2)−1/(

√
q2

1 + q2
2) is the

energy function representing the total energy of system (4.2). In addition, system (4.2)

possesses a quadratic invariant I(p1, p2, q1, q2) = q1p2 − q2p1 which represents the angular

momentum.

Apply the methods SGRK2 and EPSPRK2 to solving the system (4.2), respectively.

The parameter α∗n is determined at each step by bisection such that the energy error

function g(α∗n, µ(h)) = H(yn+1(α∗n, µ(h))) − H(yn) is equal to zero. We choose the step

size h = 0.1, the initial values p10 = 0, p20 =
√

(1 + e)/(1− e), q10 = 1− e, q20 = 0 with

e = 0.5, and the noise intensity β = 0.1.
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0.8

1

q
1

q 2

Figure 4.5: Phase space plot of the numerical solution to (4.2) computed by EPSPRK2

with h = 0.1.
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Figure 4.6: Values of the sequence {α∗n} in EPSPRK2 such that the energy conservation

holds for (4.2) with h = 0.1.
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Figure 4.7: Energy errors computed by the two numerical methods for the system (4.2)

with h = 0.1.
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Figure 4.8: Errors in the angular momentum computed by the two numerical methods for

the system (4.2) with h = 0.1. Dashdotted line: SGRK2; Solid line: EPSPRK2.

Figure 4.5 reports the phase portrait by using EPSPRK2 to simulate a sample path

on the interval [0, 300]. Figure 4.6 shows the values of the sequence {α∗n} at each step

such that the energy conservation holds. Figure 4.7 reports the energy errors computed by

SGRK2 and EPSPRK2 on the interval [0, 300], respectively, where we can see EPSPRK2

can preserve the energy function while SGRK2 can not. Figure 4.8 reports the errors in

angular momentum I(p1, p2, q1, q2) = q1p2− q2p1 computed by SGRK2 and EPSPRK2 on

the interval [0, 300], respectively, where we can see the two methods both can preserve
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the angular momentum because the angular momentum is a quadratic invariant of (4.2),

which coincides with Remark 3.2.

Example 4.3 (The stochastic cyclic Lotka-Volterra system). Consider the stochastic

cyclic Lotka-Volterra system

d


x(t)

y(t)

z(t)

 =


x(t)(z(t)− y(t))

y(t)(x(t)− z(t))

z(t)(y(t)− x(t))

 (dt+ σ ◦ dWt),

x(0) = x0, y(0) = y0, z(0) = z0,

(4.3)

where σ is a real-valued constant. Note this system is not a stochastic canonical Hamil-

tonian system, but it possesses an energy function H(x, y, z) = xyz. We try to test how

the energy-preserving method behaves in this case.

Apply the methods SGRK3 and EPSPRK3 to solving the system (4.3), respectively.

The parameter α∗n is determined at each step by bisection such that the energy error

function g(α∗n, µ(h)) = H(yn+1(α∗n, µ(h))) − H(yn) is equal to zero. We choose the step

size h = 0.1, the initial values x0 = 1, y0 = 2, z0 = 3, and the constant σ = 0.5.
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Figure 4.9: Phase space plot of the numerical solution to (4.3) computed by EPSPRK3

with h = 0.1.
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Figure 4.10: Values of the sequence {α∗n} in EPSPRK3 such that the energy function H

is invariant for (4.3) with h = 0.1.
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Figure 4.11: Errors in the energy function H computed by the two numerical methods for

the system (4.3) with h = 0.1.

Figure 4.9 reports the phase portrait by using EPSPRK3 to simulate a sample path

on the interval [0, 300]. Figure 4.10 shows the values of the sequence {α∗n} at each step

such that the energy function H(x, y, z) is invariant. Figure 4.11 reports the errors in the

energy function H(x, y, z) computed by SGRK3 and EPSPRK3 on the interval [0, 300],

respectively, where we can see EPSPRK3 can preserve the energy function while SGRK3

can not. It shows that although the system (4.3) is not a stochastic canonical Hamiltonian

system but a stochastic Poisson system [13], the constructed stochastic parametric method

still behaves well in preserving energy.

At the end of this section, we should point out the numerical solutions of the energy-

preserving methods as well as the parameters {α∗n} in the above tests are derived by

solving nonlinear systems at each step. So how to improve the efficiency of the numerical

methods is still a problem to be settled in our future work.

5. Conclusions

In this paper, EQUIP methods are applied to the stochastic canonical Hamiltonian sys-

tems and analyzed. Standard Wiener increments are replaced by some truncated random

variables. We prove the truncation doesn’t change the convergence order under some

conditions. It is shown that EQUIP methods can preserve the energy and the quadratic

invariants, and retain the mean-square convergence order of the underlying methods when

applied to the stochastic canonical Hamiltonian systems. Numerical results illustrate the

effectiveness of the methods in preserving energy and quadratic invariants, and show the

convergence order results. Furthermore, experimental results indicate the methods are

appropriate for not only stochastic canonical Hamiltonian systems but also stochastic

Poisson systems when preserving energy.
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