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Dynamics of Riemannian 1-foliations on 3-manifolds

Jaeyoo Choy and Hahng-Yun Chu*

Abstract. In this paper we study several dynamical properties of a Riemannian 1-

dimensional foliation L on an oriented closed 3-manifold M . Carrière [6] classified

such pairs (M,L). Using the classification we describe in detail recurrence points, ω-

limit sets and attractors. Finally, using the fact that the Poincaré map on a transversal

surface for a Riemannian 1-dimensional foliation is an isometry, we show the nonhy-

perbolicity of (M,L).

1. Introduction

This paper aims to understand dynamics of Riemannian 1-dimensional foliations (1-

foliations for short) on 3-manifolds. We focus on the notions of hyperbolicity, recurrence

and limit sets, especially ω-limit sets and attractors, of the foliations on the phase spaces.

The study of the above concepts is quite classic and important in the field of dynamical

systems.

Let L be a 1-foliation on an oriented closed connected 3-manifold M . We say that L is

Riemannian if there is a Riemannian metric on the normal bundle in the sense of Carrière

(see Definition 2.5 for the precise definition). In [6], Carrière classifies all the oriented

closed 3-manifolds equipped with a Riemannian 1-foliations. Using this classification we

prove several dynamical properties of (M,L).

Regarding continuous dynamical systems, we mainly deal with the study of behavior

of 1-foliations in a smooth manifold. On the systems, the notion of hyperbolicity is a

special key to understand the figure of the given 1-foliation. Note that a 1-foliation is

called Anosov 1-foliation on a manifold M if the manifold M is uniformly hyperbolic for

the 1-foliation [1]. Under the assumption of uniform hyperbolicity, there are abundant

information about the 1-foliation to describe the behavior. See [3] for details. Therefore

we pursue direction towards dynamics equivalent to the concept of hyperbolicity on some
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region of a given manifold. For the purpose we approach through the concept of partially

hyperbolic 1-foliations in generic dynamics. In recent years, there appear plenty of results

about this notion. See [2, 16].

To be specific, recurrence and ω-limit set are central properties in dynamical systems.

In analysis of the behavior of the orbits of 1-foliations, they play important roles. In the

theorems listed in the below, we first see that for a Riemannian 1-foliation on an oriented

closed 3-manifold M , the whole manifold M turns out to be recurrence. And then we

classify the ω-limit sets of the phase space (M,L).

Theorem 1.1. Assume that L is a Riemannian 1-foliation on an oriented closed 3-

manifold M . Then every point of M is a recurrence point.

To study dynamical systems, another important aspect which is dealt with in this

paper is attractor. In this paper, we follow Conley’s definition of attractors. For the

detail, see [9]. In [14], it is proved that in compact 3-manifolds, the nontrival attractor

is mixing for a generic 3-dimensional 1-foliations. In [15], the authors describe the robust

transitivity for 3-manifolds. In our paper we will see that a robust transitive set containing

singularities of a 1-foliation on a closed 3-manifold is either a proper attractor or a proper

repeller. Hence we conclude the nonexistence of proper attractor for a Riemannian 1-

foliation on closed 3-manifolds as follows.

Theorem 1.2. Let (M,L) be as in Theorem 1.1. Then the ω-limit sets are diffeomorphic

to either a circle S1 or a 2-torus T 2 or M itself. And there does not exist any proper

nonempty attractor.

In fact the above submanifolds S1, T 2 in Theorem 1.2 will become clearer in §3.1

because these depend on the examples in Carrière’s list.

Our study on the Riemannian 1-foliations on 3-manifolds is partly motivated by the

classification theory of Brunella [5] and Ghys [10]. In their works L is assumed to be

transversely holomorphic (see Definition 2.7 for the precise definition). This notion was

studied by Haefliger-Sundararaman [11, §1] in more general context. In [5, 10], Brunella

and Ghys classify all the transversely holomorphic 1-foliations on closed 3-manifolds in

detail. Specifically when H2(M,O) 6= 0, Ghys shows that all the transversely holomorphic

1-foliations are Riemannian. Here O denotes the sheaf of functions on M constant along

the leaves of L and homomorphic in a transverse direction (see Definition 4.2). So our

results are also true for any transversely holomorphic 1-foliation with H2(M,O) 6= 0

(Corollary 4.3).

Finally the following theorem of the paper asserts the nonhyperbolicity of the foliations

on 3-dimensional manifolds.
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Theorem 1.3. Let (M,L) be as in Theorem 1.1. Then (M,L) is nonhyperbolic with

respect to any Riemannian metric on M .

In the case H2(M,O) = 0, Brunella classifies all the pairs (M̂, L̂) where M̂ and L̂ are

obtained by ‘complexification of leaves’ of Haefliger-Sundararaman [11, Proposition 2.1].

See §4 for the further details. However at this moment we do not understand the dynamical

properties as in the above case H2(M,O) 6= 0.

Contents of this paper. In §2 we define Riemannian 1-foliation, transversely holomor-

phic 1-foliation and above dynamical properties. In §3 we introduce Carrière’s classifica-

tion and then prove the main theorems on the dynamical properties. In §4 we introduce

some parts of Brunella and Ghys’ works [5,10]. This section itself does not contain a new

result but is required only for the reformulation of the main theorems in terms of trans-

versely holomorphic foliations in our context. Thus we introduce a relevant part of their

results for completeness’ sake although we do not treat Brunella’s case H2(M,O) = 0.

2. Definitions, notations and basic properties

In this section we set up basic definitions and notations and then give related properties.

2.1. Definitions and notations for dynamical properties

Let L : R ×M → M be a 1-foliation on Hausdorff topological space M . We denote by

Lt := L(t, •) : M →M for short. We define the ω-limit set and α-limit set of q by

ω(q) :=
{
x ∈M : x = lim

n→∞
Ltn(q) for some sequence tn →∞ as n→∞

}
,

α(q) :=
{
x ∈M : x = lim

n→∞
L−tn(q) for some sequence tn →∞ as n→∞

}
.

Definition 2.1. A point x ∈ M is ω-recurrent or positively recurrent with respect to Lt

if x ∈ ω(x) and is α-recurrent or negatively recurrent with respect to Lt if x ∈ α(x). A

point x ∈ M is (Poincaré) recurrent with respect to Lt if x is simultaneously positively

and negatively recurrent with respect to Lt.

Definition 2.2. Let L : R × M → M be a 1-foliation on a finite dimensional smooth

manifold M . A compact L-invariant set, Λ ⊂ M , is called a hyperbolic set for the 1-

foliation L if there exist C > 0 and 0 < λ < 1 such that for each element x of Λ, there

exists a decomposition

TxM = Essx ⊕ Euux ⊕ Ecx

such that ∂tL(t, x)|t=0 ∈ Ecx − {0}, dim(Ec(x)) = 1, DxL(t, x)(Eix) = Eix with i = ss, uu,
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and

‖DxL(t, x)|Essx ‖ ≤ Cλt for t ≥ 0,

‖DxL(t, x)|Euux ‖ ≤ Cλt for t ≤ 0

where ‖ · ‖ is a norm induced by the Riemannian metric. If the whole manifold M is a

hyperbolic set for L, then the C1 1-foliation L is called an Anosov 1-foliation.

Let L be an Anosov 1-foliation on a compact connected manifold M . The bundle Ess

and Euu are called strong stable bundle and strong unstable bundle of L, respectively. So

one may say that a derivative DxL of a 1-foliation L is eventually contracting on Essx and

eventually expanding on Euux .

On a closed manifold M , an Anosov 1-foliation Lt means that it is uniformly hyperbolic

on the whole manifold M . Note that the hyperbolicity for diffeomorphisms is similarly

defined by replacing Lt into f for 0 < t � 1. See Definition 2.2. The above choice of t

depends on v ∈M .

As aforementioned, another important part in the study of dynamical system is to

understand the structures of the attractors and ω-limit sets of the dynamical system

(see, e.g., [8, 13]). We basically follow Conley’s definition of attractors in [9] but slightly

modified. Note that even before Conley’s definition many other definitions of attractor

can be found in several papers (cf. [13]). See also [7] for relations among them. Now we

define an attractor.

Definition 2.3. Let (X, d) be a metric space, and φt be a continuous 1-foliation on X.

A nonempty open subset U of X is an attractor block for φt if φt(U) ⊆ U for every t > 0.

A proper subset A of X is called an attractor for φt if there exists an attractor block U

satisfying

A =
⋂
t≥0

φt(U).

2.2. Definitions and basic properties for Riemannian 1-foliations and transversely

holomorphic 1-foliations

In this subsection we define and study Riemannian 1-foliations, transversely holomorphic

1-foliations and related properties. We reemphasize that the readers can skip ‘transversely

holomorphic’ if they are not interested in the reformulations of the main theorems in terms

of transversely holomorphic foliations.

Let M be a smooth manifold. Let L be a nondegenerate 1-foliation on M , i.e., a

nowhere vanishing smooth section of the tangent bundle TM . The corresponding 1-

foliation Lt has nowhere vanishing derivative with respect to t.
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We set up notation for Poincaré (first-return) map. For simplicity we assume M is

of dimension 3 from now on. Our argument also works for any dimension. Fix a point

x ∈ M . Let Dx be any embedded unit disk in M centered at x. We further assume any

tangents of Dx are transverse to L. Let t0 > 0 such that Lt0(x) ∈ Dx but Lt(x) /∈ Dx

for any t ∈ (0, t0). Then there is an open neighborhood U of x in Dx such that the map

assigning y ∈ U to the first touching point Lt(y) in D (t > 0) is a diffeomorphism from U

onto the image. We denote this map by

ρDx : U → Dx

(called the Poincaré map).

To define Riemannian 1-foliations, first we need to introduce a pseudo-group. Let D0

be the unit disk in R2 and ιx : D0 → Dx be the diffeomorphism for the above embedded

disk Dx for each x ∈M . Let εx > 0 such that ιx extends to an (unique) open embedding

ι̃x : D0 × (−εx, εx)→M with ι̃x(y, t) = Lt(ιx(y)), t ∈ (−εx, εx)

for all y ∈ D0. That is, the (−εx, εx)-direction is parallel to the 1-foliation of L. We

denote by Ux the ι̃x-image open subset of M . It is clear that {Ux}x∈M is an open cover

of M . Let px : Ux → D0 be the composite of ι̃x|−1Ux
with the projection to D0. Let γxy be

the composite px ◦ ιy. We need a care here: this composition is not well-defined over D0

but only over the (possibly empty) subset ι−1y (Ux).

We define the composition γzx ◦ γxy (= pz ◦ ιx ◦ px ◦ ιy) by shrinking domains appro-

priately.

Lemma 2.4. By shrinking domains appropriately as above we have pz = pz ◦ ιx ◦ px.

Proof. We notice that under the identification via ι̃x, px maps any point x′ to the unique

intersection point x′′ in Dx with the leaf containing x′. Similarly pz maps x′′ to another

intersection point in Dz with the leaf containing x′′. It is clear that both leaves are same

as they contain x′′. Therefore we obtain the equivalence of the maps in the lemma.

By this lemma the composite γzx ◦ γxy coincides with γzy over an open subset in D0.

Consequently we have the group law in the set

Γ := {γxy}x,y∈M

with the obvious identity and inverses. This is called a (holonomy) pseudo-group. The

name ‘holonomy’ pseudo-group will become clearer due to Lemma 2.6.

Definition 2.5. We say L is Riemannian if there exist embeddings ιx : (D0, 0)→ (M,x)

(x ∈ M) and a Riemannian metric on D0 invariant under all the locally defined diffeo-

morphisms in the associated pseudo-group Γ.
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We construct a fibre-wise metric of the normal bundle N of L when L is Riemannian.

First note that D0 forms a disk bundle on M using the transitions γxy. Since γxy preserves

the metric g on D0, the disk bundle has the induced fibre-wise metric. Since Dx transverses

the 1-foliation direction of L for each x ∈ M , the disk bundle is naturally isomorphic to

N .

Lemma 2.6. If L is Riemannian, there is the induced smoothly varying fibre-wise metric

on N .

Proof. The unproven part is the smoothness. But this is clear by giving the same metric

g on t×D0 for each t ∈ (−εx, εx).

We define transversely holomorphic 1-foliations following [11, §1].

Definition 2.7. We identify R2 with C and thus D0 is an analytic open subset. L is

transversely holomorphic if it is nondegenerate and there exist embeddings ιx : (D0, 0)→
(M,x) (x ∈M) satisfying γxy of the pseudo-group Γ are all holomorphic maps.

Remark 2.8. Due to the orientations of C and R, any transversely holomorphic 1-foliation

induces orientation of M .

3. Dynamical properties of transversely holomorphic 1-foliations

We prove the various dynamical properties of transversely holomorphic 1-foliations stated

in §1.

3.1. Proofs of Theorems 1.1 and 1.2 via the classification of Carrière

Now we prove Theorems 1.1 and 1.2 using Carrière’s classification of the pairs (M,L) of

a closed 3-manifold and a Riemannian flow. We need a lemma:

Lemma 3.1. Let (M̃, L̃) be a pair of a smooth manifold and a 1-foliation. Suppose that a

discrete group G acts freely on M̃ . Let M := M̃/G be the group quotient and φ : M̃ →M

be the quotient map. Assume also that there is a 1-foliation L on M such that φ maps the

flow L̃t to Lt. Then we have the following:

(1) The φ-image of a recurrence point of (M̃, L̃) (resp. an ω-limit set and an attractor)

is also a recurrence point (M,L) (resp. an ω-limit set and an attractor). And any

attractor of (M,L) is given as the φ-image of some attractor of (M̃, L̃).

(2) Moreover if G is a finite group, an ω-limit set of (M,L) is the φ-image of some

ω-limit set of (M̃, L̃).
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Proof. The former item (1) is clear. We prove the latter item (2). Let A be an attractor

of (M,L). Since φ is a covering map, φ−1(A) is also an attractor. We consider an ω-limit

set ω(x) where x ∈ M . We choose any y ∈ φ−1(x). We claim that the φ-image of ω(y)

coincides with ω(x). First we observe that φ(ω(y)) ⊂ ω(x). Indeed for any point z ∈ ω(y)

there exists a sequence tn with z = limn→∞ L̃tn(y). Thus φ(z) = limn→∞ Ltn(x). We

prove the opposite inclusion φ(ω(y)) ⊃ ω(x). Let z ∈ ω(x). Then there exists a sequence

tn with z = limn→∞ Ltn(x). By the unique lifting property of covering space of a path,

Lt(x) lifts to L̃t(y) for any given y ∈ φ−1(x). Since a φ-fibre is a finite set, there exists a

subsequence tnk
with a limit limn→∞ L̃tnk (x). Since φ is a local isomorphism, it is clear

that the φ-image of the limit coincides with z.

Any pair (M,L) of a closed 3-manifold and a Riemannian flow is one of the following

list [6]:

(1) M is a 3-torus T 3 and L is linear with an irrational slope on T 3 (i.e., the correspond-

ing flow gives translation of T 3).

(2) M is also T 3. But there are precisely two possibilities of L as follows:

(2a) Let L′ be a linear 1-foliation on a 2-torus T 2 with an irrational slope. Let

M := T 2 × S1. Then L is the foliation such that for each x ∈ S1, the induced

flow Lt of L lies in T 2 × {x} and it coincides with (L′)t.

(2b) We fix any a ∈ SL2(Z) with eigenvalues λ, λ−1 where λ > 1. We denote the

corresponding eigenvectors by v, v′ ∈ R2 respectively. We consider the linear

foliation L′ on R2 whose time-1 map maps 0 to v. Since λ is known to be an

irrational number, L′ has an irrational slope. We consider a Z2-action and a

Z-action on R3 = R2 × R1 as follows: The Z2-action comes from the standard

affine translation group action on the first factor R2 and the Z1-action is defined

by n · (m, t) = (an(m), t+ n). The (Z2 n Z)-quotient of R3 becomes a 3-torus.

Let M be this 3-torus. Let us construct a 1-foliation L on M as follows: Let

L′′ be the foliation such that for each x ∈ R1, its flow (L′′)t lies in R2 × {x}
and it coincides with (L′)t. Now L is set to the induced 1-foliation from L′′ on

the discrete group quotient M .

(3) there are two cases:

(3a) M is a lenz space Lp,q (p, q ∈ Z\0). It is defined as the quotient of the 3-sphere

S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}

by a Z1-action

n · (z1, z2) = (e2nπi/pz1, e
2nπi/qz2).
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Let λ, µ ∈ R \ Q with λ/µ ∈ R \ Q. Let L′(λ,µ) be the foliation on S3 whose

corresponding flow is given by

Lt(z1, z2) = (eiλtz1, e
iµtz2), t ∈ R.

Note that λ/µ is the slope of L′(λ,µ). Let L be the induced foliation on the

discrete group quotient M from L′(λ,µ).

(3b) Let M = S2×S1. Fixing the north and south poles of S2 we consider any flow

on S2 given by rotation. Let us consider the corresponding foliation L′ on S2.

Let L be the foliation such that for x ∈ S1, its flow Lt lies in S2 × {x} and it

coincides with (L′)t.

(4) M is a Seifert fibration, i.e., an S1-fibration over a smooth 2-manifold. And L is a

foliation such that its flow Lt lies in the fibre direction.

We proceed the proofs of Theorems 1.1 and 1.2 in each case.

In the case (1) all the positive orbits of the corresponding flow Lt to L are dense.

Thus every point of M is a recurrence point. This completes the proof of Theorem 1.1

in this case. By the same reason the ω-limit set of any point coincides with M itself.

Similarly no nonempty proper subset of M can be an attractor. This completes the proof

of Theorem 1.2 in this case.

We prove the case (2b). We observe that M is a (nontrivial) T 2-fibration over S1. To

be precise the projection R2×R1 → R1 induces φ : M = (R2×R1)/(Z2nZ)→ R1/Z where

the Z-action on R1 is the standard translation action. The fibres of the induced map are

T 2 = R2/Z2. By construction of L every positive orbit closure becomes the T 2-fibre itself

containing the orbit. Thus every point of M is a recurrence point. By a similar argument

in the case (1) we also deduce that the ω-limit set of any point is the T 2-fibre containing

the point.

Now we prove that there are no nonempty proper attractors in the case (2b). Let

A be a nonempty proper attractor if any. Let U be an attractor block of A. We take

an open subset V in the base S1 such that φ|φ−1(V ) gives a trivial T 2-fibration φ−1(V )

intersects A but is not contained in A. We denote by A′ and U ′ the intersections of A and

U with φ−1(V ) ∩ A, φ−1(V ) ∩ U respectively. Let p ∈ A′. Since any positive orbit lies in

a T 2-fibre, A′ contains the ω-limit ω(p). Thus A′ should be of the form T 2 × B for some

proper relatively closed subset B in V . Then there exists a proper open subset V ′ in V

with B ⊂ V ′. Thus we have

A′ =
⋂
t≥0
Lt(U) = T 2 ×

⋂
t≥0
Lt(V ′)

 = T 2 × V ′.
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Here we used Lt(V ′) = V ′ for any t ≥ 0 since the flow is parallel to the T 2-fibres. This is

a contradiction because T 2 × V ′ properly contains A′.

The case (2a) is easier because the T 2-fibration is trivial. Thus a similar argument

also works as in the case (2b). This completes the proofs of Theorems 1.1 and 1.2 in the

case (2).

Let us prove the case (3a). Assume first p = q = 0 so that M = S3 (although this is

not a subcase of (3a)). Let

Tk = {(z1, z2) ∈ S3 | |z1|2 = k, |z2|2 = 1− k}

where 0 ≤ k ≤ 1. Note that the flow Lt(x) for any x ∈ Tk lies in Tk for each k. If k = 0, 1

then Tk = S1 and it coincides with the positive orbit. Thus every point of Tk is a recurrence

point and its ω-limit set is Tk itself. If 0 < k < 1 then Tk = T 2 and any positive orbit in

Tk is dense in Tk because Lt has an irrational slope λ/µ by the assumption. Thus every

point of Tk is also a recurrence point and its ω-limit set is Tk itself. Let us show there is no

nonempty proper attractor. Suppose not, so there exists a nonempty proper attractor A.

Let U be an attractor block of A. Note that the map φ : M = S3 → [0, 1], (z1, z2) 7→ |z1|2

restricts to T 2-fibration over the smaller base (0, 1). Note that Tk = φ−1(k). We denote

by A′ and U ′ the intersection of A and U with this T 2-fibration respectively. Then U ′

is also an attractor block of A′ with respect to the restricted foliation. Note that U ′ is

nonempty since dimU ′ = 3 but M \ φ−1(0, 1) = T0 t T1 has dimension 1. However A′ is

possibly empty. By a similar argument in the product space as in the above proof of (2b),⋂
t≥0 Lt(U ′) properly contains A′ because φ restricts to the trivial fibration in our case.

This contradiction completes the proof of Theorem 1.2 in this case. Now we get back to

the original assumption (p, q) 6= (0, 0). Then M is a finite group quotient of S3 and thus

the same result as above holds after passing to the quotient due to Lemma 3.1.

In the case (3b) it is clear that every point is a recurrence point since the flow is

induced from rotation of the S2-factor. The description of ω-limit sets is also clear: If

p ∈ M = S2 × S1 projects to the north or south pole of S2, ω(p) is S1. Otherwise it is

T 2. There is no nonempty proper attractor by a similar argument in the above proof of

the case p = q = 0. We omit the details.

In the case (4), since Lt(x) for any x ∈M lies in the S1-fibre containing x, the positive

orbit of each p ∈M is the S1-fibre containing p. Thus p is a recurrence point and ω(p) is

the S1-fibre. There is no nonempty proper attractor by a similar argument in the product

space in the above. This completes the proofs of Theorems 1.1 and 1.2.

3.2. Nonhyperbolicity and proof of Theorem 1.3

We first define hyperbolicity for a diffeomorphism from M to itself.
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Definition 3.2. Let (M,f) be a pair of a finite dimensional smooth manifold and a

diffeomorphism on M . We say that M has a hyperbolic structure with respect to f if there

is a Riemannian metric on M and a continuous splitting of TM into the direct sum of

Tf -invariant subbundles Es and Eu such that for some constants A and 0 < λ < 1 and

for all v ∈ Es, w ∈ Eu and n ≥ 0,

(3.1) ‖Tfn(v)‖ ≤ Aλn‖v‖, ‖Tf−n(w)‖ ≤ Aλn‖w‖,

where ‖ · ‖ is a norm induced by the Riemannian metric. Thus one may say that Tf is

eventually contracting on Es and eventually expanding on Eu.

A hyperbolic subset of M with respect to f is a closed invariant subset of M with

hyperbolic structure with respect to the restriction of f .

To prove Theorem 1.3 we need a lemma:

Lemma 3.3. Suppose M is a closed 3-manifold and L is Riemannian. The Poincaré map

ρDx on the embedded disk Dx = ιx(D0) for any x ∈M is an isometry where ιx is given as

in Definition 2.5. Hence it is nonhyperbolic.

Proof. First we notice that the ρDx is not vacuous for some x. This comes from the

generality that the compactness of M implies the existence of recurrent point (see [4,

p. 101]). In fact every point of M is a recurrent point as we will see in §3.1. Thus for any

point x ∈M , ρDx is defined.

By Lemma 2.6 the induced metric Dx does not depend on x. This implies ρDx is an

isometry.

The nonhyperbolicity is clear from isometry.

Let O be a sheaf of germs of functions on M which are constant along the leaves and

holomorphic in the transverse direction.

Theorem 3.4. (Ghys’ theorem [10]) Let L be a transversely holomorphic foliation on a

closed 3-manifold M . If H2(M,O) 6= 0, L is Riemannian.

Combining Lemma 3.3 and Ghys’ theorem we have an immediate corollary:

Corollary 3.5. Let L be a transversely holomorphic foliation on a closed 3-manifold M .

If H2(M,O) 6= 0, the Poincaré map ρDx for each recurrent point x is nonhyperbolic with

respect to the induced Riemannian metric. Hence ρDx is nonhyperbolic with respect to any

Riemannian metric.

Now we prove Theorem 1.3.
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Proof of Theorem 1.3. We notice that a tubular neighborhood of the path defining ρDx

has the induced Riemannian metric on M as it is diffeomorphic to N along the path.

From this metric we can construct a metric on M such that its restriction to a smaller

tubular neighborhood of the path still has the same induced metric. This is obtained by

using the standard argument of partition of unity, so we omit the detail.

By Lemma 3.3, ρDx is nonhyperbolic and thus so is (M,L) with respect to the metric.

In general the inequality (3.1) is independent of the choice of metric. So (M,L) is also

nonhyperbolic with respect to any Riemannian metric. This completes the proof of the

theorem.

4. Transversely holomorphic 1-foliations

In this section we consider transversely holomorphic 1-foliations instead of Riemannian

foliations and then deduce Corollary 4.3 in the below from Theorems 1.2 and 1.3. The

proof itself was already given in §1 (after the statement of Theorem 1.2) using the known

fact [10]: H2(M,O) 6= 0 implies L is Riemannian. So it remains to explain necessary

notions around the sheaf O. For the purpose we need to introduce relevant parts in

Brunella and Ghys’ works [5, 10].

4.1. Complexification of leaves and the sheaf O

We fix (M,L) where L is a transversely holomorphic 1-foliation. Ghys and Brunella used

the harmonic transition data of (M,L) whose local version appeared as the complexifica-

tion of leaves of Haefliger-Sundararaman [11, Proposition 2.1].

We use the notation in §2.2. We will take soon an open embeddings ι̃x : D0×(−εx, εx)→
M where x ∈M so that they form harmonic atlas of M in the sense of Brunella [5]. But

for any choice of ι̃x we denote the image of ι̃x and the open subset px(Ux ∩ Uy) of D0 by

Ux and Dxy respectively.

Proposition 4.1. [5, §1] If L is a transversely holomorphic 1-foliation, there exist ι̃x

(x ∈M) such that the functions γxy and h̃xy are all holomorphic and harmonic respectively

where

ι̃−1x ◦ ι̃y : Dxy × (−εy, εy) → Dxy × (−εx, εx),

(z, t) 7→ (γxy(z), t+ h̃xy(z)).

Definition 4.2. O denotes the sheaf on M such that for each open subset U of M , O(U)

is the set of functions on U such that f ◦ ι̃x|ι̃−1
x (Ux∩U) is holomorphic on D0 and constant

along (−εx, εx) (the flow direction) for each x ∈M .

By compactness of M we take finitely many xi such that Uxi forms an open cover of M .

Accordingly we change the index x so that γij denotes γxixj , etc. Let ε := mini(εxi). Let
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k̃ij be a harmonic conjugate of h̃ij so that h̃ij +
√
−1k̃ij : (−ε, ε)×S1 → C is holomorphic

where (−ε, ε)× S1 is identified as an annulus in C. Thus we have extension of ι̃−1i ◦ ι̃j as

γ̂ij : Dij × (−ε, ε)× S1 → Dij × (−ε, ε)× S1,

(z, t, s) 7→ (γij(z), t+ h̃ij(z), s+ k̃ij(z))

(see [5, p. 276]).

4.2. Results of Ghys and Brunella

In general γ̂ij do not satisfy the 1-cocycle condition:

γ̂ik = γ̂ij ◦ γ̂jk.

By [5, Proposition 3] if H2(M,O) = 0, they form a 1-cocycle. In other words the compact

complex surface M̂ given by the transitions γ̂ij is naturally an S1-fibration over M . In

addition there is a complexification L̂ of L, i.e., a holomorphic 1-foliation on M̂ . In the

complex surface theory there are fundamental classification results of Kodaira-Enrique

and Inoue [12] for the compact complex surfaces with a non-degenerate holomorphic 1-

foliation. Thus the list of (M,L) in [5, Theorem 1] is obtained.

On the other hand if H2(M,O) 6= 0, L is Riemannian by [10, Theorem 1.1]. This is

how we deduced in §1 the following:

Corollary 4.3. Let (M,L) be a pair of an oriented closed 3-manifold and a transversely

holomorphic 1-foliation on M . If H2(M,O) 6= 0, the assertions of Theorems 1.2 and 1.3

also hold.
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