Erratum to: Two Optimal Inequalities for Anti-holomorphic Submanifolds and Their Applications

Falleh R. Al-Solamy, Bang-Yen Chen* and Sharief Deshmukh
Abstract. Theorem 4.1 of (1] is not correctly stated. In this erratum we make a correction on Theorem 4.1. As a consequence, we also make the corresponding correction on Theorem 5.2 of (1).

We follow the notation from the original article [1]. Theorem 4.1 of [1] is not correctly stated. The correct statement shall read as follows.
Theorem 4.1. Let N be an anti-holomorphic submanifold of a complex space form $\widetilde{M}^{h+p}(4 c)$ with $h=\operatorname{rank}_{\mathbf{C}} \mathcal{D} \geq 1$ and $p=\operatorname{rank} \mathcal{D}^{\perp} \geq 2$. Then we have

$$
\begin{equation*}
\delta(\mathcal{D}) \leq \frac{(2 h+p)^{2}}{2} H^{2}+\frac{p}{2}(4 h+p-1) c-\frac{3 p^{2}}{2(p+2)}\left|H_{\mathcal{D}^{\perp}}\right|^{2} . \tag{4.3}
\end{equation*}
$$

The equality sign of (4.3) holds identically if and only if the following three conditions are satisfied:
(a) N is \mathcal{D}-minimal, i.e., $\vec{H}_{\mathcal{D}}=0$,
(b) N is mixed totally geodesic, and
(c) there exists an orthonormal frame $\left\{e_{2 h+1}, \ldots, e_{n}\right\}$ of \mathcal{D}^{\perp} such that the second fundamental σ of N satisfies

$$
\begin{cases}\sigma_{r r}^{r}=3 \sigma_{s s}^{r} & \text { for } 2 h+1 \leq r \neq s \leq 2 h+p \tag{4.4}\\ \sigma_{s t}^{r}=0 & \text { for distinct } r, s, t \in\{2 h+1, \ldots, 2 h+p\}\end{cases}
$$

This correction shall be made since the last formula (4.13) in the proof of Theorem 4.1 contains an error. The corrected (4.13) shall read as

$$
\begin{align*}
& \frac{(2 h+p)^{2}}{2} H^{2}+\frac{p}{2}(4 h+p-1) c-\delta(\mathcal{D}) \\
\geq & 2 h^{2}\left|\vec{H}_{\mathcal{D}}\right|^{2}+\sum_{i=1}^{2 h} \sum_{r=2 h+1}^{2 h+p}\left\|\sigma\left(e_{i}, e_{r}\right)\right\|^{2}+\frac{3 p^{2}}{2(p+2)}\left|H_{\mathcal{D}^{\perp}}\right|^{2} \tag{4.13}\\
\geq & \frac{3 p^{2}}{2(p+2)}\left|H_{\mathcal{D}^{\perp}}\right|^{2} .
\end{align*}
$$

Received January 8, 2018; Accepted April 17, 2018.
Communicated by Tai-Chia Lin.
2010 Mathematics Subject Classification. 53C40.
Key words and phrases. anti-holomorphic submanifolds, optimal inequality, CR δ-invariant.
*Corresponding author.

Consequently, Theorem 5.2 in [1] shall be replaced by
Theorem 5.2. Let N be an anti-holomorphic submanifold in a complex space form $\widetilde{M}^{1+p}(4 c)$ with $h=\operatorname{rank}_{\mathbf{C}} \mathcal{D}=1$ and $p=\operatorname{rank} \mathcal{D}^{\perp} \geq 2$. Then we have

$$
\begin{equation*}
\delta(\mathcal{D}) \leq \frac{(p+2)^{2}}{2} H^{2}+\frac{p(p+3)}{2} c-\frac{3 p^{2}}{2(p+2)}\left|H_{\mathcal{D}^{\perp}}\right|^{2} . \tag{5.4}
\end{equation*}
$$

The equality case of (5.4) holds identically if and only if $c=0$ and either
(i) N is a totally geodesic anti-holomorphic submanifold of \mathbf{C}^{h+p} or,
(ii) up to dilations and rigid motions, N is given by an open portion of the following product immersion:

$$
\phi: \mathbf{C} \times S^{p}(1) \rightarrow \mathbf{C}^{1+p} ; \quad(z, x) \mapsto(z, w(x)), \quad z \in \mathbf{C}, x \in S^{p}(1)
$$

where $w: S^{p}(1) \rightarrow \mathbf{C}^{p}$ is the Whitney p-sphere.

References

[1] F. R. Al-Solamy, B.-Y. Chen and S. Deshmukh, Two optimal inequalities for antiholomorphic submanifolds and their applications, Taiwanese J. Math. 18 (2014), no. 1, 199-217.

Falleh R. Al-Solamy
Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia E-mail address: falleh@hotmail.com

Bang-Yen Chen
Department of Mathematics, Michigan State University, 619 Red Cedar Road, East Lansing, MI 48824-1027, USA
E-mail address: chenb@msu.edu

Sharief Deshmukh
Department of Mathematics, King Saud University, Riyadh 11451, Saudi Arabia E-mail address: shariefd@ksu.edu.sa

