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Biderivations and Commutative Post-Lie Algebra Structures on the Lie

Algebra W(a, b)

Xiaomin Tang

Abstract. For a, b ∈ C, the Lie algebra W(a, b) is the semidirect product of the Witt

algebra and a module of the intermediate series. In this paper, all biderivations of

W(a, b) are determined. Surprisingly, these Lie algebras have symmetric (and skew-

symmetric) non-inner biderivations. As an application, commutative post-Lie algebra

structures on W(a, b) are obtained.

1. Introduction

Derivations and generalized derivations (including biderivations) have become more and

more powerful tools in the structure study of rings and algebras. Besides their own

interests, they have wide applications to other related problems. Recently, there are

many efforts on this, see [3,6,9,10,16,20–22]. In his remarkable paper [3], Brešar showed

that all biderivations on commutative prime rings are inner biderivations, and determined

the biderivations of semiprime rings. The notion of biderivations was introduced to Lie

algebras in [21]. Later super-biderivations on some super-algebras were introduced in

[7,22]. For the last few years many authors computed only skew-symmetric biderivations

of some Lie (super)algebras due to their close relation to commuting maps, see [6, 7,

10, 20–22]. Non-skew-symmetric biderivations should not be ignored. Actually non-skew-

symmetric biderivations can be used to study post-Lie algebras structures on Lie algebras.

This is addressed only quite recently. For example, all biderivations of finite-dimensional

complex simple Lie algebras, all biderivations of some W-algebra, all biderivations of the

twisted Heisenberg-Virasoro algebra, all biderivations of Block algebras, and all the super-

biderivations of classical simple Lie superalgebras were given in [11,15–17,23] respectively.

The present paper is to find efficient ways to determine all biderivations of the Lie

algebrasW(a, b) for all a, b ∈ C, to recover and generalize results in the papers [10,15,17].

The Lie algebras W(a, b) is a class of interesting ones including many important Lie

algebras as special cases. Let us first recall the Lie algebras W(a, b).
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Throughout the paper, we denote by C and Z the sets of complex numbers and integers,

respectively. All vector spaces and algebras are over C. For a, b ∈ C, the Lie algebra

W(a, b) = spanC{Lm, Im | m ∈ Z} has the following brackets:

[Lm, Ln] = (m− n)Lm+n, [Lm, In] = −(n+ a+ bm)Im+n, [Im, In] = 0

for all m,n ∈ Z. Note that W(a, b) contains a subalgebra W = spanC{Lm | m ∈ Z}
isomorphic to the well-known Witt algebra, and that the space spanC{Im | m ∈ Z} is

a W-module of the intermediate series. The algebras W(a, b) were considered in the

mathematical physics in [13]. We know that the universal central extension of W(0, 0) is

the so-called twisted Heisenberg-Virasoro algebra in [1], which plays an important role in

the representation theory of toroidal Lie algebras in [2]. The universal central extension

of W(0,−1) is the Lie algebra W (2, 2) whose representations have been studied in [24] in

terms of vertex operator algebras.

In [10], the authors determined skew-symmetric biderivations for all W(a, b). All

biderivations of W(0,−1) and W(0, 0) were later obtained in [15, 17]. In the present

paper, we shall use the methods in [11] to determine all biderivations of W(a, b) for all

a, b ∈ C.

The paper is organized as follows. In Section 2, we give general results on biderivations

and some lemmas which will be used to our proof. In Section 3, we completely characterize

the biderivations without the skew-symmetric condition of the Lie algebra W(a, b) for all

cases of a, b. In Section 4, by using the biderivations we characterize the forms of the

commutative post-Lie algebra structures on W(a, b).

2. General results on biderivations and some lemmas

Let L be a Lie algebra. Recall that a linear map φ : L → L is called a derivation if

φ([x, y]) = [φ(x), y]+ [x, φ(y)] for all x, y ∈ L. For any x ∈ L, we have the inner derivation

adx : L→ L, y 7→ adx(y) = [x, y], ∀ y ∈ L.

Denote by Der(L) and by Inn(L) the space of all derivations and the space of all inner

derivations of L respectively. Now let us recall the definition of a biderivation of a Lie

algebra as follows.

Definition 2.1. [21] A bilinear map f : L× L→ L is called a biderivation of L if it is a

derivation with respect to both components. Namely, for all x, y, z ∈ L,

f([x, y], z) = [x, f(y, z)] + [f(x, z), y],

f(x, [y, z]) = [f(x, y), z] + [y, f(x, z)].
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For any λ ∈ C, the bilinear map f : L×L→ L given by f(x, y) = λ[x, y] for all x, y ∈ L
is a biderivation of L. Such biderivations are said to be inner. Denote by Bid(L) the set of

all biderivations of L which is clearly a vector space. An f ∈ Bid(L) is called symmetric if

f(x, y) = f(y, x) for all x, y ∈ L, and is called skew-symmetric if f(x, y) = −f(y, x) for all

x, y ∈ L. Denote by Bid+(L) and Bid−(L) the subspaces of all symmetric biderivations

and all skew-symmetric biderivations on L respectively. If f ∈ Bid(L), then it is easy to

see that the bilinear map fop : L × L → L given by fop(x, y) = f(y, x) for all x, y ∈ L
is also a biderivation of L. Let f− = 1

2(f − fop) and f+ = 1
2(f + fop). It follows that

f− ∈ Bid−(L) and f+ ∈ Bid+(L) if f ∈ Bid(L). In view of f = f− + f+, the following

result established in [11] is very useful for our later arguments.

Lemma 2.2. Let L be any Lie algebra. Then Bid(L) = Bid−(L)⊕ Bid+(L).

In view of Lemma 2.2, to determine Bid(L) we only need to determine Bid−(L) and

Bid+(L). The following lemmas are easy to verify by direct computations.

Lemma 2.3. Suppose that L and L̃ are two Lie algebras and σ : L→ L̃ is an isomorphism

of Lie algebras. For any bilinear map f : L× L→ L, let the bilinear map fσ : L̃× L̃→ L̃

be determined by

fσ(σ(x), σ(y)) = σ(f(x, y)) for all x, y ∈ L.

Then f is a biderivation of L if and only if fσ is a biderivation of L̃.

Lemma 2.4. Let k ∈ Z, a, b ∈ C. Then the linear map σ : W(a, b) → W(a + k, b) given

by σ(Lm) = Lm, σ(Im) = Im−k is an isomorphism of Lie algebras.

Lemma 2.5. [15] Suppose that k
(n)
i , h

(m)
i ∈ C satisfy

(i−m)k
(n)
i = (2n−m− i)h(m)

m−n+i for all m,n, i ∈ Z.

Then there exists λ ∈ C such that k
(m)
i = h

(m)
i = δm,iλ.

3. Biderivations of W(a, b)

In this section, we shall determine all biderivations of W(a, b). Thanks to Lemma 2.4,

we may assume that 0 ≤ a < 1. First we define three classes of biderivations for various

W(a, b). The verifications are straightforward.

Definition 3.1. Let Ω = (µk)k∈Z be a sequence which contains only finitely many nonzero

entries.
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• The biderivation ΨΩ : W(a, 0)×W(a, 0)→W(a, 0) is given by

ΨΩ(Lm, Ln) =
∑
k∈Z

µkIm+n+k,

ΨΩ(Lm, In) = ΨΩ(In, Lm) = ΨΩ(Im, In) = 0 for all m,n ∈ Z.

• The biderivation Υa
Ω : W(a, 1)×W(a, 1)→W(a, 1) is determined by

Υa
Ω(Lm, Ln) =

∑
k∈Z

(m+ n+ k + a)µkIm+n+k,

Υa
Ω(Lm, In) = Υa

Ω(In, Lm) = Υa
Ω(Im, In) = 0 for all m,n ∈ Z.

• The biderivation Θa
µ : W(a,−1)×W(a,−1)→W(a,−1) for a ∈ Z is determined by

Θa
µ(Lm, Ln) = (m− n)µIm+n−a,

Θa
µ(Lm, In) = Θa

µ(In, Lm) = Θa
µ(Im, In) = 0 for all m,n ∈ Z.

Note that ΨΩ, Υa
Ω are symmetric and Θa

µ is skew-symmetric, and they are non-

inner if they are nonzero. We know that the spaces Bid(W(0,−1)), Bid(W(0, 0)) and

Bid−(W(a, b)) were determined in [15], [17] and [10], respectively:

(i) If f ∈ Bid(W(0, 0)), then there exist λ ∈ C and a sequence Ω = (µk)k∈Z which

contains only finitely many nonzero entries such that

f(x, y) = λ[x, y] + ΨΩ(x, y) for all x, y ∈ W(0, 0);

(ii) If f ∈ Bid(W(0,−1)), then there exist λ, µ ∈ C such that

f(x, y) = λ[x, y] + Θ0
µ(x, y) for all x, y ∈ W(0,−1);

(iii) If f ∈ Bid−(W(a, b)), then there exist λ, µ ∈ C such that

f(x, y) =

λ[x, y] + Θa
µ(x, y) if a ∈ Z, b = −1,

λ[x, y] otherwise

for all x, y ∈ W(a, b).

Now we present our main result in this section.

Theorem 3.2. Any biderivation f of W(a, b) is of the form

f(x, y) =



λ[x, y] + ΨΩ(x, y) if b = 0,

λ[x, y] + Υa
Ω(x, y) if b = 1,

λ[x, y] + Θa
µ(x, y) if a ∈ Z, b = −1,

λ[x, y] otherwise

for some λ, µ ∈ C and a sequence Ω = (µk)k∈Z which contains only finitely many nonzero

entries.
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The proof of Theorem 3.2 will be completed later. We first recall and establish several

auxiliary results.

Lemma 3.3. [8] The derivation of W(a, b) is determined by the following:

Der(W(a, b)) =



Inn(W(a, b))⊕ CD1 ⊕ CD0,0
2 ⊕ CD3 (a, b) = (0, 0),

Inn(W(a, b))⊕ CD1 ⊕ CD0,1
2 (a, b) = (0, 1),

Inn(W(a, b))⊕ CD1 ⊕ CD0,2
2 (a, b) = (0, 2),

Inn(W(a, b))⊕ CD1 otherwise,

where the derivations D1, D0,0
2 , D0,1

2 , D0,2
2 , D3 are defined as follows for all m ∈ Z,

D1(Lm) = 0, D1(Im) = Im,

D0,0
2 (Lm) = (m− 1)Im, D0,0

2 (Im) = 0,

D0,1
2 (Lm) = (m2 −m)Im, D0,1

2 (Im) = 0,

D0,2
2 (Lm) = m3Im, D0,2

2 (Im) = 0,

D3(Lm) = mIm, D3(Im) = 0.

Lemma 3.4. Suppose that f is a biderivation of W(a, b) with (a, b) 6= (0, 0). Then there

are linear maps φa,b and ψa,b from W(a, b) into itself such that

f(x, y) = ρa,b1 (x)D1(y) + ρa,b2 (x)Da,b
2 (y) + [φa,b(x), y]

= θa,b1 (y)D1(x) + θa,b2 (y)Da,b
2 (x) + [x, ψa,b(y)]

for all x, y ∈ W(2, 2), where ρa,b1 , ρa,b2 and θa,b1 , θa,b2 are linear complex-valued functions

on W(a, b), and D1, Da,b
2 are given by Lemma 3.3, note that Da,b

2 = 0 when (a, b) /∈
{(0, 1), (0, 2)}.

Proof. It is easy to see that, for the biderivation f of W(a, b) and a fixed element x ∈
W(a, b), the linear map φx(y) = f(x, y) is a derivation of W(a, b). Notice that (a, b) 6=
(0, 0), by Lemma 3.3, there are complex-valued functions ρa,b1 , ρa,b2 onW(a, b) and a linear

map φa,b fromW(a, b) into itself such that φx = ρa,b1 (x)D1 +ρa,b2 (x)Da,b
2 +adφa,b(x), where

we provide that Da,b
2 = 0 when (a, b) /∈ {(0, 1), (0, 2)}. Namely, f(x, y) = ρa,b1 (x)D1(y) +

ρa,b2 (x)Da,b
2 (y) + [φa,b(x), y]. Because f is bilinear, the maps ρa,b1 , ρa,b2 are linear. Similarly,

the map ψz(y) = f(y, z) is a derivation of W(a, b), and there are linear complex-valued

functions θa,b1 , θa,b2 on W(a, b) and a linear map ψa,b from W(a, b) into itself such that

f(x, y) = θa,b1 (y)D1(x) + θa,b2 (y)Da,b
2 (x) + ad(−ψa,b(y))(x)

= θa,b1 (y)D1(x) + θa,b2 (y)Da,b
2 (x) + [x, ψa,b(y)].

The proof is completed.
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Lemma 3.5. Let f be a biderivation of W(a, b) with (a, b) 6= (0, 0), and φa,b, ψa,b, ρa,bi ,

θa,bi , i = 1, 2 be given as in Lemma 3.4. Then the following equations hold.

f(Lm, Ln) = ρa,b2 (Lm)Da,b
2 (Ln) + [φa,b(Lm), Ln]

= θa,b2 (Ln)Da,b
2 (Lm) + [Lm, ψ

a,b(Ln)],
(3.1)

f(Lm, In) = ρa,b1 (Lm)In + [φa,b(Lm), In]

= θa,b2 (In)Da,b
2 (Lm) + [Lm, ψ

a,b(In)],
(3.2)

f(In, Lm) = ρa,b2 (In)Da,b
2 (Lm) + [φa,b(In), Lm]

= θa,b1 (Lm)In + [In, ψ
a,b(Lm)],

(3.3)

f(Im, In) = ρa,b1 (Im)In + [φa,b(Im), In]

= θa,b1 (In)Im + [Im, ψ
a,b(In)].

(3.4)

Proof. It will follow by Lemmas 3.3 and 3.4.

Let f be a biderivation of W(a, b). In view of Lemma 3.4, we can assume that

φa,b(Ln) =
∑
i∈Z

aa,bi (n)Li +
∑
i∈Z

ba,bi (n)Ii,(3.5)

ψa,b(Ln) =
∑
i∈Z

ca,bi (n)Li +
∑
i∈Z

da,bi (n)Ii,(3.6)

φa,b(In) =
∑
i∈Z

pa,bi (n)Li +
∑
i∈Z

qa,bi (n)Ii,(3.7)

ψa,b(In) =
∑
i∈Z

sa,bi (n)Li +
∑
i∈Z

ra,bi (n)Ii,(3.8)

where aa,bi (n), ba,bi (n), ca,bi (n), da,bi (n), pa,bi (n), qa,bi (n), ra,bi (n), sa,bi (n) ∈ C.

Note that [10] described the sets Bid−(W(a, b)). Therefore, by Lemma 2.2 we only

need to determine the sets Bid+(W(a, b)). That is, we have to study the symmetric

biderivations of W(a, b). It will be divided into several cases based on the values of a, b.

For f ∈ Bid(W(a, b)), the notions given in (3.5)–(3.8) will be applied always.

3.1. The case for (a, b) = (0, 1)

By the definition, W(0, 1) has the following Lie brackets

[Lm, Ln] = (m− n)Lm+n, [Lm, In] = −(m+ n)Im+n, [Im, In] = 0.

In this case, we shall prove the following result.

Proposition 3.6. Let f ∈ Bid+(W(0, 1)). Then there is a sequence Ω = (µk)k∈Z which

contains only finitely many nonzero entries such that f(x, y) = Υ0
Ω(x, y) for all x, y ∈

W(0, 1).
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Proof. The proof will be completed by verifying the following three claims.

Claim 3.7. There is a sequence Ω = (µk)k∈Z which contains only finitely many nonzero

entries such that

f(Lm, Ln) =
∑
k∈Z

(m+ n+ k)µkIm+n+k for all m,n ∈ Z.

By Lemma 3.4, the linear maps φ0,1, ψ0,1 : W(0, 1) → W(0, 1) satisfy (3.1). This,

together with (3.5) and (3.6), yields that f(Lm, Ln) is equal to

ρ0,1
2 (Lm)(n2 − n)In +

∑
i∈Z

(i− n)a0,1
i (m)Ln+i +

∑
i∈Z

(i+ n)b0,1i (m)In+i

= θ0,1
2 (Ln)(m2 −m)Im +

∑
j∈Z

(m− j)c0,1
j (n)Lm+j −

∑
j∈Z

(m+ j)d0,1
j (n)Im+j

= θ0,1
2 (Ln)(m2 −m)Im +

∑
i∈Z

(2m− n− i)c0,1
n−m+i(n)Ln+i −

∑
i∈Z

(i+ n)d0,1
n−m+i(n)In+i.

(3.9)

Because f is symmetric which implies f(Lm, Ln) = f(Ln, Lm), comparing both sides of

the above equations, we obtain

(3.10) (i− n)a0,1
i (m) = (n− i)c0,1

i (m) = (2m− n− i)c0,1
n−m+i(n) for all m,n, i ∈ Z

and for any m 6= n with i 6= 0,m− n,

(i+ n)b0,1i (m) = −(i+ n)d0,1
i (m) = −(i+ n)d0,1

n−m+i(n),(3.11)

ρ0,1
2 (Lm)(n2 − n) + nb0,10 (m) = −nd0,1

n−m(n),(3.12)

θ0,1
2 (Ln)(m2 −m)−md0,1

0 (n) = mb0,1m−n(m).(3.13)

By Lemma 2.5 with (3.10) and (3.11), one has a0,1
i (m) = c0,1

i (m) = 0 and

(3.14) b0,1i (m) = −d0,1
i (m), d0,1

j (m) = d0,1
n−m+j(n) for all i 6= 0, j 6= 0,−n,m− n.

Denote J1 = {−2, 1, 3}, J2 = {−3, 3, 0} and J3 = {−3, 1, 4}. In view of (3.14), we have

(3.15)


d0,1
−2−m(−2) = d0,1

3−m(3) if m /∈ J1,

d0,1
3−m(3) = d0,1

−3−m(−3) if m /∈ J2,

d
(−3)
−3−m = d

(4)
4−m if m /∈ J3.

Take n = −2, 3,−3 and 4 in (3.12), respectively, we obtain

6ρ0,1
2 (Lm)− 2b0,10 (m) = 2d0,1

−2−m(−2) if m 6= −2,(3.16)

6ρ0,1
2 (Lm) + 3b0,10 (m) = −3d0,1

3−m(3) if m 6= 3,(3.17)

12ρ0,1
2 (Lm)− 3b0,10 (m) = 3d0,1

−3−m(−3) if m 6= −3,(3.18)

12ρ0,1
2 (Lm) + 4b0,10 (m) = −4d0,1

4−m(4) if m 6= 4.(3.19)
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According to (3.15), it follows by (3.16) and (3.17) that ρ0,1
2 (Lm) = 0 if m /∈ J1; by (3.17)

and (3.18) that ρ0,1
2 (Lm) = 0 if m /∈ J2 and by (3.18) and (3.19) that ρ0,1

2 (Lm) = 0 if

m /∈ J3. Note that J1 ∩ J2 ∩ J3 = ∅, we get ρ0,1
2 (Lm) = 0 for all m ∈ Z. Similarly,

according to (3.13) we have θ0,1
2 (Ln) = 0 for all n ∈ Z. This, together with (3.9), implies

that for any m,n, i ∈ Z,

(3.20) (i+ n)b0,1i (m) = −(i+ n)d0,1
i (m) = −(i+ n)d0,1

n−m+i(n).

It is not difficult to see by (3.20) that d0,1
m+k(m) = d0,1

n+k(n) = −b0,1m+k(m) for all m,n, k ∈ Z.

Denote d0,1
k (0) = −µk, we have d0,1

m+k(m) = −b0,1m+k(m) = −µk for all m, k ∈ Z. All these

with (3.9) yield that

f(Lm, Ln) =
∑
i∈Z

(i+ n)b0,1i (m)In+i

=
∑
k∈Z

(m+ k + n)b0,1m+k(m)In+m+k

=
∑
k∈Z

(m+ k + n)µkIn+m+k.

Note that the sequence Ω
.
= (µk)k∈Z which contains only finitely many nonzero entries for

which the above equation makes sense. This completes the proof of the claim. In addition,

the above proof also implies

(3.21) φ0,1(Ln) = ψ0,1(Ln) =
∑
k∈Z

µkIn+k for all n ∈ Z.

Claim 3.8. f(Lm, In) = 0 for all m,n ∈ Z.

By Lemma 3.4, the linear maps φ0,1, ψ0,1 : W(0, 1) → W(0, 1) satisfy (3.2) and (3.3).

This, together with (3.7), (3.8) and (3.21), yields that f(Lm, In) and f(In, Lm) are of the

following forms respectively:

ρ0,1
1 (Lm)In = θ0,1

2 (In)(m2 −m)Im +
∑
j∈Z

(m− i)s0,1
i (n)Lm+i −

∑
i∈Z

(m+ i)r0,1
i (n)Im+i,

(3.22)

θ0,1
1 (Lm)In = ρa,b2 (In)(m2 −m)Im +

∑
j∈Z

(i−m)p0,1
i (n)Li+m +

∑
i∈Z

(m+ i)q0,1
i (n)Im+i.

(3.23)

For any m 6= n, from (3.22) we get

(m− i)s0,1
i (n) = 0,(3.24)

nr0,1
n−m(n) = ρ0,1

1 (Lm),(3.25)

θ0,1
2 (In)(m2 −m)−mr0,1

0 (n) = 0.(3.26)
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It is easy to see by (3.24) that s0,1
i (n) = 0 for all i, n ∈ Z. Take m = 2, 3, 4 and 5 in (3.26),

respectively, then we have

2θ0,1
2 (In)− 2r0,1

0 (n) = 0 if n 6= 2,(3.27)

6θ0,1
2 (In)− 3r0,1

0 (n) = 0 if n 6= 3,(3.28)

12θ0,1
2 (In)− 4r0,1

0 (n) = 0 if n 6= 4,(3.29)

20θ0,1
2 (In)− 5r0,1

0 (n) = 0 if n 6= 5.(3.30)

It follows by (3.27) and (3.28) that θ0,1
2 (In) = 0 if n /∈ {2, 3}, and by (3.29) and (3.30)

that θ0,1
2 (In) = 0 if n /∈ {4, 5}. In view of {2, 3} ∩ {4, 5} = ∅, we obtain θ0,1

2 (In) = 0 for all

n ∈ Z. In addition, by letting n = 0 in (3.25) we obtain ρ0,1
1 (Lm) = 0 for all m 6= 0. But

we also have ρ0,1
1 (L0) = 0 by taking m = n = 0 in (3.22). Now, it is already shown that

f(Lm, In) = 0 for all m,n ∈ Z, which proves the claim.

On the other hand, the results above together with (3.22) yield (m+ i)r0,1
i (n) = 0 for

any integers m, n, i. This implies r0,1
i (n) = 0 for all n, i ∈ Z. Similarly, by (3.23) we have

p0,1
i (n) = q0,1

i (n) = 0 for all i, n ∈ Z. Hence, we get the following useful result:

(3.31) φ0,1(In) = ψ0,1(In) = 0 for all n ∈ Z.

Claim 3.9. f(Im, In) = 0 for all m,n ∈ Z.

By Lemma 3.4, the linear maps φ0,1, ψ0,1 : W(0, 1) → W(0, 1) satisfy (3.4). This,

together with (3.31), yields

f(Im, In) = ρ0,1
1 (Im)In = θ0,1

1 (In)Im.

Let m, n run over all integers with m 6= n in the above equation, then ρ0,1
1 (Im) = θ0,1

1 (In) =

0 and the conclusion is proved.

Finally, the proof of the proposition is completed by Claims 3.7, 3.8 and 3.9.

3.2. The case for (a, b) = (0, 2)

By the definition, W(0, 2) has the following Lie brackets

[Lm, Ln] = (m− n)Lm+n, [Lm, In] = −(2m+ n)Im+n, [Im, In] = 0.

In this case, we shall prove the following result.

Proposition 3.10. Let f ∈ Bid+(W(0, 2)). Then f(x, y) = 0 for all x, y ∈ W(0, 2).

Proof. We shall complete the proof by verifying the following three claims.

Claim 3.11. f(Lm, Ln) = 0 for all m,n ∈ Z.
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By Lemma 3.4, there are linear maps φ0,2, ψ0,2 : W(0, 2) → W(0, 2) satisfying (3.1).

This, together with (3.5) and (3.6), yields that f(Lm, Ln) is equal to

ρ0,2
2 (Lm)n3In +

∑
i∈Z

(i− n)a0,2
i (m)Ln+i +

∑
i∈Z

(2n+ i)b0,2i (m)In+i

= θ0,2
2 (Ln)m3Im +

∑
j∈Z

(m− j)c0,2
j (n)Lm+j −

∑
j∈Z

(2m+ j)d0,2
j (n)Im+j

= θ0,2
2 (Ln)m3Im +

∑
i∈Z

(2m− n− i)c0,2
n−m+i(n)Ln+i −

∑
i∈Z

(m+ n+ i)d0,2
n−m+i(n)In+i.

Because f is symmetric which implies f(Lm, Ln) = f(Ln, Lm), comparing both sides of

the above equations, we obtain

(3.32) (i− n)a0,2
i (m) = (n− i)c0,2

i (m) = (2m− n− i)c0,2
n−m+i(n) for all m,n, i ∈ Z

and for m 6= n and i 6= 0,m− n,

(2n+ i)b0,2i (m) = −(2n+ i)d0,2
i (m) = −(m+ n+ i)d0,2

n−m+i(n),(3.33)

ρ0,2
2 (Lm)n3 + 2nb0,20 (m) = −(m+ n)d0,2

n−m(n),(3.34)

θ0,2
2 (Ln)m3 − 2md0,2

0 (n) = (m+ n)b0,2m−n(m).(3.35)

It is easy to see by Lemma 2.5 with (3.32) and (3.33) that a0,2
i (m) = c0,2

i (m) = 0 and

(3.36) b0,2i (m) = −d0,2
i (m) for all i 6= 0.

By taking i = −2n in (3.33), we get (n −m)d0,2
−m−n(n) = 0 if −2n 6= 0,m− n. It follows

that

(3.37) d0,2
k (n) = 0 for all n 6= 0, k 6= 0,−2n.

Let m = 0 and i = n 6= 0 in (3.33), then one has d0,2
n (0) = 2

3d
0,2
2n (n). Note that 2n 6= 0,−2n,

by (3.37) we have d0,2
2n (n) = 0, which yields d0,2

n (0) = 0 for all n 6= 0. By taking n = 0 and

m 6= 0 in (3.35), notice that b0,2m (m) = −d0,2
m (m) = 0 according to (3.36) and (3.37), we

obtain θ0,2
2 (L0)m3 − 2md0,2

0 (0) = 0. This implies d0,2
0 (0) = 0. Now, we have shown that

(3.38) b0,2s (0) = d0,2
s (0) = b0,2k (n) = d0,2

k (n) = 0 for k, s, n ∈ Z with k 6= 0,−2n.

Then, from (3.38) we know b0,2m−n(m) = 0 if m− n 6= 0,−2m. This, together with (3.35),

deduces

θ0,2
2 (Ln)m3 − 2md0,2

0 (n) = 0 for all n 6= m, 3m.
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Taking m = 1, 2, 4 and 5 in the above equation, respectively, we obtain

θ0,2
2 (Ln)− 2d0,2

0 (n) = 0 if n 6= 1, 3,(3.39)

8θ0,2
2 (Ln)− 4d0,2

0 (n) = 0 if n 6= 2, 6,(3.40)

64θ0,2
2 (Ln)− 8d0,2

0 (n) = 0 if n 6= 4, 12,(3.41)

125θ0,2
2 (Ln)− 10d0,2

0 (n) = 0 if n 6= 5, 15.(3.42)

It follows by (3.39) and (3.40) that θ0,2
2 (Ln) = 0 if n /∈ {1, 2, 3, 6}, by (3.41) and (3.42)

that θ0,2
2 (Ln) = 0 if n /∈ {4, 5, 12, 15}. Note that {1, 2, 3, 6} ∩ {4, 5, 12, 15} = ∅, we get

θ0,2
2 (Ln) = 0 for all n ∈ Z. Similarly, according to (3.34) we have ρ0,2

2 (Lm) = 0 for all

m ∈ Z. This, together with (3.9), implies that (3.33) holds for any m,n, i ∈ Z. By letting

i = 0 and n = −m 6= 0 in (3.33), we have d0,2
0 (m) = 0 for all m 6= 0. This, together

with (3.38), gives that b0,2k (n) = d0,2
k (n) = 0 for all k, n ∈ Z with k 6= −2n if n 6= 0. This

completes the proof of the claim. In addition, the above proof also implies

(3.43) φ0,2(Ln) = ψ0,2(Ln) = 0 for all n ∈ Z.

Claim 3.12. f(Lm, In) = 0 for all m,n ∈ Z.

By Lemma 3.4, the linear maps φ0,2, ψ0,2 : W(0, 2) → W(0, 2) satisfy (3.2) and (3.3).

This, together with (3.43), (3.7) and (3.8), yields that f(Lm, In) and f(In, Lm) are of the

following forms respectively:

ρ0,2
1 (Lm)In = θ0,2

2 (In)m3Im +
∑
i∈Z

(m− i)s0,2
i (n)Lm+i −

∑
i∈Z

(2m+ i)r0,2
i (n)Im+i,(3.44)

θ0,2
1 (Lm)In = ρ0,2

2 (In)m3Im +
∑
i∈Z

(i−m)p0,2
i (n)Lm+i +

∑
i∈Z

(2m+ i)q0,2
i (n)Im+i.(3.45)

From (3.44) we get (m− i)s0,2
i (n) = 0 for all m,n, i ∈ Z which implies s0,2

i (n) = 0 for any

integer i, n ∈ Z, and by (3.44) we also obtain for any m 6= n,

(2m+ i)r0,2
i (n) = 0, i 6= 0, n−m,

−(m+ n)r0,2
n−m(n) = ρ0,2

1 (Lm),(3.46)

θ0,2
2 (In)m3 − 2mr0,2

0 (n) = 0.(3.47)

By letting m = −n 6= n in (3.46), we have ρ0,2
1 (Lm) = 0 for all m 6= 0. In addition, by

taking m = n = 0 in (3.44) we have ρ0,2
1 (L0) = 0 and then f(Lm, In) = ρ0,2

1 (Lm)In = 0

for all m,n ∈ Z. This completes the proof of the claim. On the other hand, in view

of (3.47), in a similar way to Claim 3.11 we get θ0,2
2 (In) = r0,2

0 (n) = 0 for all n ∈ Z.

These results with (3.47) yield r0,2
i (n) = 0 for all i, n ∈ Z. Similarly, by (3.45) we obtain

ρ0,2
2 (In) = p0,2

i (n) = q0,2
i (n) = θ0,2

1 (Ln) = 0 for any integer n. We have shown that

(3.48) φ0,2(In) = ψ0,2(In) = 0 for all n ∈ Z.
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Claim 3.13. f(Im, In) = 0 for all m,n ∈ Z.

From (3.48), the proof can be finished by a similar way to Claim 3.9.

Finally, the proof of the proposition is completed by Claims 3.11, 3.12 and 3.13.

3.3. The case for a, b with a /∈ Z or a = 0, b /∈ {0, 1, 2}

In this case, we shall prove the following result.

Proposition 3.14. Suppose that a /∈ Z or a = 0, b /∈ {0, 1, 2}. Let f ∈ Bit+(W(a, b)).

Then there is a sequence Ω = (µk)k∈Z which contains only finitely many nonzero entries

such that f(x, y) = ∆Ω(x, y) for all x, y ∈ W(a, b), where ∆Ω is a bilinear map on W(a, b)

defined by

∆Ω(Lm, Ln) =


∑

k∈Z(b(m+ n) + k + a)µkIm+n+k a /∈ Z, b = 0 or 1,

0 otherwise,

and ∆Ω(Lm, In) = ∆Ω(Im, Ln) = ∆Ω(Im, In) = 0 for all m,n ∈ Z.

Proof. The proof will be completed by verifying the following three claims.

Claim 3.15. There is a sequence Ω = (µk)k∈Z which contains only finitely many nonzero

entries such that

f(Lm, Ln) =


∑

k∈Z(b(m+ n) + k + a)µkIm+n+k a /∈ Z, b = 0 or 1,

0 otherwise.

By Lemma 3.4, the linear maps φa,b, ψa,b : W(a, b) → W(a, b) satisfy (3.1). This,

together with (3.5) and (3.6), yields that f(Lm, Ln) is equal to∑
i∈Z

(i− n)aa,bi (m)Ln+i +
∑
i∈Z

(i+ a+ bn)ba,bi (m)In+i

=
∑
j∈Z

(m− j)ca,bj (n)Lm+j −
∑
j∈Z

(j + a+ bm)da,bj (n)Im+j

=
∑
i∈Z

(2m− n− i)ca,bn−m+i(n)Ln+i −
∑
i∈Z

(i+ a+ n+ (b− 1)m)da,bn−m+i(n)In+i.

Because f is symmetric which implies f(Lm, Ln) = f(Ln, Lm), comparing both sides of

the above equations, we obtain

(i− n)aa,bi (m) = (n− i)ca,bi (m)

= (2m− n− i)ca,bn−m+i(n),
(3.49)

(i+ a+ bn)ba,bi (m) = −(i+ a+ n+ (b− 1)m)da,bn−m+i(n)

= −(i+ a+ bn)da,bi (m).
(3.50)
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It is easy to see by Lemma 2.5 with (3.49) that

(3.51) aa,bi (m) = ca,bi (m) = 0 for all m, i ∈ Z.

Next, we shall finish the proof based on different cases of a, b.

Case 1: a = 0 and b 6= 0, 1, 2. By (3.50), (i + bn)b0,bi (m) = −(i + bn)d0,b
i (m), which

implies from b 6= 0 that b0,bi (m) = −d0,b
i (m) for any integers m, i. By letting m = 0 and

n = −i in (3.50), we get (b − 1)nb0,b−n(0) = 0, which from b 6= 1 gives that b0,b−n(0) = 0

for any n 6= 0. Thus, d0,b
−m+i(0) = −b0,b−m+i(0) = 0 if i 6= m. This, together with (3.50)

by letting n = 0, yields ib0,bi (m) = 0 when i 6= m. Therefore, we get b0,bi (m) = 0 for all

i,m ∈ Z with i 6= 0,m. In particular, d0,b
n−m(n) = −b0,bn−m(n) = 0 if n −m 6= 0, n. This,

together with (3.50) by letting i = 0, yields bnb0,b0 (m) = 0 for all n 6= 0,m. The above

discussion tells us that

(3.52) b0,bi (m) = d0,b
i (m) = 0 for all i 6= m.

Let i = m in (3.50), we get

(3.53) (m+ bn)b0,bm (m) = (n+ bm)d0,b
n (n) for all m,n ∈ Z.

Taking n = 0 in the above equation, we obtain mb0,bm (m) = bmb0,b0 (0) for all m ∈ Z. Denote

b0,b0 (0) = µ, then b0,bm (m) = bµ for all m ∈ Z with m 6= 0. From this, we have by (3.53)

that b(b−1)(m−n)µ = 0 for all m,n ∈ Z with m,n 6= 0. It follows by b 6= 0, 1 that µ = 0,

and so b0,bm (m) = 0 for all m ∈ Z. This, together with (3.52), yields b0,bi (m) = d0,b
i (m) = 0

for all i,m ∈ Z. With (3.51), one can conclude by (3.1) that

(3.54) φ0,b(Ln) = ψ0,b(Ln) = 0 and f(Lm, Ln) = 0.

This completes the proof of the claim in which a = 0 and b 6= 0, 1, 2.

Case 2: a /∈ Z. In view of (3.50), we see (i + a)ba,bi (m) = −(i + a)da,bi (m). Note that

i+a 6= 0 since a /∈ Z, one has ba,bi (m) = −da,bi (m) for all i ∈ Z. This, together with (3.50),

yields

(i+ a+ bn)ba,bi (m) = (i+ a+ n+ (b− 1)m)ba,bn−m+i(n).

Let m = 0 in the above equation, then we have (i+a)ba,bi (m) = (i+a+(b−1)m)t
(0)
i−m. From

this, by letting k = i−m and µk = t
(0)
k ∈ C, we obtain (m+k+a)b

(m)
m+k = (bm+k+a)µk,

which implies

(3.55) b
(m)
m+k =

bm+ k + a

m+ k + a
µk = −d(m)

m+k for all m, k ∈ Z.

Now, equations (3.51), (3.55) with (3.1) yield that

f(Lm, Ln) =
∑
k∈Z

(m+ k + a+ bn) · bm+ k + a

m+ k + a
µkIn+m+k

=
∑
k∈Z

(
(b(m+ n) + k + a) +

b(b− 1)mn

m+ k + a

)
µkIn+m+k.

(3.56)
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Since f(Lm, Ln) = f(Lm, Ln), so if there is some µk 6= 0, then by (3.56) we get b = 0 or

b = 1. Note that the sequence Ω
.
= (µk)k∈Z which contains only finitely many nonzero

entries for which the above equation makes sense. This completes the proof of the claim

for a /∈ Z. In addition, the above process also implies

(3.57) φa,b(Ln) = −ψa,b(Ln) =
∑
k∈Z

bm+ k + a

m+ k + a
µkIn+k for all n ∈ Z.

Claim 3.16. f(Lm, In) = 0 for all m,n ∈ Z.

By Lemma 3.4, the linear maps φa,b, ψa,b : W(a, b) → W(a, b) satisfy (3.2) and (3.3).

This, together with (3.7), (3.8), (3.57) or (3.54), yields that f(Lm, In) and f(In, Lm) are

of the following forms respectively:

ρa,b1 (Lm)In =
∑
j∈Z

(m− i)sa,bi (n)Lm+i −
∑
i∈Z

(i+ a+ bm)ra,bi (n)Im+i,(3.58)

∑
j∈Z

(i−m)pa,bi (n)Li+m +
∑
i∈Z

(i+ a+ bm)qa,bi (n)Im+i = θa,b1 (Lm)In.(3.59)

From (3.58) we get (m− i)sa,bi (n) = 0, which deduces sa,bi (n) = 0 for all i, n ∈ Z. For any

m 6= n, in view of (3.58) in which m = 0 we get (i + a)ra,bi (n) = 0 for any i 6= m. This,

together with a /∈ Z, yields ra,bi (n) = 0 for any n, i ∈ Z. Furthermore, it also follows that

ρa,b1 (Lm) = 0. Similarly, by (3.59) one can obtain that pa,bi (n) = qa,bi (n) = θa,b1 (Ln) = 0 for

all n, i ∈ Z. Therefore, we have shown that

(3.60) φa,b(Lm) = ψa,b(Im) = f(Lm, In) = 0 for all m,n ∈ Z.

The proof of the claim is completed.

Claim 3.17. f(Im, In) = 0 for all m,n ∈ Z.

Notice that (3.60), the proof is similar to Claim 3.9.

Finally, the proof of the proposition is completed by Claims 3.15, 3.16 and 3.17.

Now we are ready to give the proof of our main result.

Proof of Theorem 3.2. The “if” part is easy to verify, we now prove the “only if” part.

Now we assume that f is a biderivation ofW(a, b). We shall finish the proof according

to the cases of values allowed for a, b.

Case 1: a ∈ Z, b = 0.

By [17] we know that if f ∈ Bid(W(0, 0)), then there exist λ ∈ C and a sequence Ω =

(µk)k∈Z which contains only finitely many nonzero entries such that f = λ[x, y]+ΨΩ(x, y)

for all x, y ∈ W(0, 0), where ΨΩ is given by Definition 3.1. Let σ : W(0, 0) → W(a, 0) be

a linear map determined by σ(Lm) = Lm, σ(Im) = Im−a. Then by Lemma 2.4, σ is an
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isomorphism of Lie algebras. Let fσ be a linear map fromW(a, 0) into itself determined by

fσ(σ(x), σ(y)) = σ(f(x, y)) for all x, y ∈ W(a, 0). Thanks to Lemma 2.3, any biderivation

of W(a, 0) must be of the form fσ which satisfies

fσ(Lm, Ln) = fσ(σ(Lm), σ(Ln)) = σ(f(Lm, Ln))

= λ[Lm, Ln] +
∑
k∈Z

(m+ n+ k)µkIm+n+k−a

= λ[Lm, Ln] +
∑
t∈Z

(m+ n+ t+ a)µt+aIm+n+t

= λ[Lm, Ln] + ΨΩ′(Lm, Ln),

where Ω′ = (µ′k)k∈Z with µ′k = µk+a; and obviously fσ(Lm, In) = λ[Lm, In], fσ(In, Lm) =

λ[In, Lm], fσ(Im, In) = 0. Hence, we have fσ(x, y) = λ[x, y] + ΨΩ′(x, y) for all x, y ∈
W(a, 0).

Case 2: a /∈ Z, b = 0.

By Lemma 2.2, Bid(W(a, 0)) = Bid−(W(a, 0)) ⊕ Bid+(W(a, 0)). By [10], any f− ∈
Bid−(W(a, 0)) has the form as f−(x, y) = λ[x, y] for all x, y ∈ W(a, 0), where λ ∈ C.

Let f+ ∈ Bid+(W(a, 0)). Then by Proposition 3.14, there is a sequence Ω = (µk)k∈Z

which contains only finitely many nonzero entries such that f+(x, y) = ∆Ω(x, y) for all

x, y ∈ W(a, 0), where ∆Ω is given by Proposition 3.14. Therefore, we have f+(Lm, In) =

f+(Im, Ln) = f+(Im, In) = 0 and

f+(Lm, Ln) =
∑
k∈Z

(k + a)µkIm+n+k =
∑
k∈Z

µ′kIm+n+k

for all m,n ∈ Z, where µ′k = (k + a)µk. Let Ω′ = (µ′k)k∈Z, we see that f+ = ΨΩ′ . Hence,

in this case any biderivation f of W(a, 0) is of the form

f(x, y) = f−(x, y) + f+(x, y) = λ[x, y] + ΨΩ′(x, y) for all x, y ∈ W(a, 0).

Case 3: a ∈ Z, b = 1.

By Proposition 3.6, we know that if f+ ∈ Bid+(W(0, 1)) then there is a sequence Ω =

(µk)k∈Z which contains only finitely many nonzero entries such that f+(x, y) = Υ0
Ω(x, y)

for all x, y ∈ W(0, 1), where Υ0
Ω is given by Definition 3.1. Let σ : W(0, 1) → W(a, 1) be

a linear map determined by σ(Lm) = Lm, σ(Im) = Im−a. Then by Lemma 2.4, σ is an

isomorphism of Lie algebras. Let fσ+ be a linear map fromW(a, 1) into itself determined by

fσ+(σ(x), σ(y)) = σ(f+(x, y)) for all x, y ∈ W(a, 1). Thanks to Lemma 2.3, any symmetric

biderivation of W(a, 0) must be of the form fσ+ which is given by

fσ+(Lm, Ln) = fσ+(σ(Lm), σ(Ln)) = σ(f+(Lm, Ln))

=
∑
k∈Z

(m+ n+ k)µkIm+n+k−a
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=
∑
t∈Z

(m+ n+ t+ a)µt+aIm+n+t

= Υa
Ω′(Lm, Ln),

where Ω′ = {µ′k = µk+a | k ∈ Z}; and obviously fσ+(Lm, In) = fσ+(In, Lm) = fσ+(Im, In) =

0. On the other hand, if f− ∈ Bid−(W(a, 1)), then by [10] we see that f−(x, y) = λ[x, y]

for some λ ∈ C. Now, by Lemma 2.2 we conclude that any biderivation of W(a, 1) is of

the form

f−(x, y) + fσ+(x, y) = λ[x, y] + Υa
Ω′(x, y) for all x, y ∈ W(a, 1).

Case 4: a /∈ Z, b = 1.

For any f− ∈ Bid−(W(a, 1)), by [10] one has f−(x, y) = λ[x, y] for some λ ∈ C.

On the other hand, if f+ ∈ Bid+(W(a, 1)) then by Proposition 3.14, there is a sequence

Ω = (µk)k∈Z which contains only finitely many nonzero entries such that f+(x, y) =

∆Ω(x, y) for all x, y ∈ W(a, 1), where ∆Ω is given by Proposition 3.14. Therefore, we have

f+(Lm, In) = f+(Im, Ln) = f+(Im, In) = 0 and

f+(Lm, Ln) =
∑
k∈Z

(m+ n+ k + a)µkIm+n+k = Υa
Ω(Lm, Ln)

for all m,n ∈ Z. Then we see that f+ = Υa
Ω. Thanks to Lemma 2.2, we deduce that

any biderivation of W(a, 1) is of the form f−(x, y) + f+(x, y) = λ[x, y] + Υa
Ω(x, y) for all

x, y ∈ W(a, 1).

Case 5: a ∈ Z, b = −1.

By [15], we see that if f ∈ Bid(W(0,−1)), then there exist λ, µ ∈ C such that

f = λ[x, y] + Θ0
µ(x, y) for all x, y ∈ W(0,−1), where Θ0

µ is given by Definition 3.1. Let

σ : W(0,−1) → W(a,−1) be a linear map determined by σ(Lm) = Lm, σ(Im) = Im−a.

Then by Lemma 2.4, σ is an isomorphism of Lie algebras. Let fσ be a linear map from

W(a,−1) into itself determined by fσ(σ(x), σ(y)) = σ(f(x, y)) for all x, y ∈ W(a,−1).

Thanks to Lemma 2.3, any biderivation ofW(a,−1) must be of the form fσ which satisfies

fσ(Lm, Ln) = fσ(σ(Lm), σ(Ln)) = σ(f(Lm, Ln))

= σ(λ[Lm, Ln] + Θ0
µ(Lm, Ln))

= λ[Lm, Ln] +
∑
k∈Z

µkσ(Im+n)

= λ[Lm, Ln] +
∑
k∈Z

µkIm+n−a

= λ[Lm, Ln] + Θa
µ(Lm, Ln);

and obviously fσ(Lm, In) = λ[Lm, In], fσ(In, Lm) = λ[In, Lm], fσ(Im, In) = 0. Hence, we

have fσ(x, y) = λ[x, y] + Θa
µ(x, y) for all x, y ∈ W(a,−1).
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Case 6: (i) a ∈ Z, b = 2; (ii) a ∈ Z, b /∈ {−1, 0, 1, 2} and (iii) a /∈ Z, b /∈ {0, 1}.
Proposition 3.10 tells us that if f+ ∈ Bid+(W(0, 2)) then f+ = 0. In a similar way to

the proof of Case 1, by Lemmas 2.4 and 2.3 we conclude that any fσ+ ∈ Bid+(W(a, 2))

has to be 0 for all a ∈ Z. In view of Proposition 3.14, we see that whatever a ∈ Z,

b /∈ {−1, 0, 1, 2} or a /∈ Z, b /∈ {0, 1}, any f+ ∈ Bid+(W(a, b)) has to be 0. This indicated

that Bid+(W(a, b)) contains only zero biderivation in all cases (i), (ii) and (iii). On the

other hand, it is easy to see by [10] that Bid−(W(a, b)) contains only inner biderivation in

these cases. Therefore, by Lemma 2.2 we deduce that any biderivation f of W(a, b) must

be inner in all cases (i), (ii) and (iii).

Now, we summarize Cases 1–6 and complete the proof of Theorem 3.2.

4. Post-Lie algebra structures on W(a, b)

Recall that the post-Lie algebras have been introduced by Valette in connection with the

homology of partition posets and the study of Koszul operads in [19]. As [5] pointed out,

post-Lie algebras are natural common generalization of pre-Lie algebras and LR-algebras

in the geometric context of nil-affine actions of Lie groups. Recently, many authors study

some post-Lie algebras and post-Lie algebra structures (see [4,5,12,14,18]). In particular,

the authors of [5] study the commutative post-Lie algebra structure on Lie algebra. By

using our results, we can characterize the commutative post-Lie algebra structure on

W(a, b). Let us recall the following definition of commutative post-Lie algebra.

Definition 4.1. [15] Let (L, [ · , · ]) be a complex Lie algebra. A commutative post-Lie

algebra structure on L is a C-bilinear product x◦y on L satisfying the following identities:

(4.1) x ◦ y = y ◦ x, [x, y] ◦ z = x ◦ (y ◦ z)− y ◦ (x ◦ z), x ◦ [y, z] = [x ◦ y, z] + [y, x ◦ z]

for all x, y, z ∈ L. We also say (L, [ · , · ], ◦) a commutative post-Lie algebra.

A post-Lie algebra (L, [ · , · ], ◦) is said to be trivial if x ◦ y = 0 for all x, y ∈ L.

The following lemma shows the connection between commutative post-Lie algebra and

biderivation of a Lie algebra.

Lemma 4.2. [15] Suppose that (L, [ · , · ], ◦) is a commutative post-Lie algebra. If we

define a bilinear map f : L × L → L by f(x, y) = x ◦ y for all x, y ∈ L, then f is a

biderivation of L.

Theorem 4.3. Any commutative post-Lie algebra structure on the algebra W(a, b) is

trivial.
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Proof. Suppose that (W(a, b), [ · , · ], ◦) is a commutative post-Lie algebra. By Lemma 4.2

and Theorem 3.2, we know that there are λ, µ ∈ C and a sequence Ω = (µk)k∈Z which

contains only finitely many nonzero entries such that

x ◦ y =



λ[x, y] + ΨΩ(x, y) if b = 0,

λ[x, y] + Υa
Ω(x, y) if b = 1,

λ[x, y] + Θa
µ(x, y) if a ∈ Z, b = −1,

λ[x, y] otherwise

for all x, y ∈ H, where ΨΩ, Υa
Ω and Θa

µ are given by Definition 3.1. Because the product

◦ is commutative, we have by L1 ◦ L2 = L1 ◦ L2 that λ = µ = 0. By (4.1), we see that

[Lm, Ln] ◦ Lt = Lm ◦ (Ln ◦ Lt)− Ln ◦ (Lm ◦ Lt)

for all m,n, t ∈ Z. If there is µk ∈ Ω such that µk 6= 0, then it is easy to find some

m,n, t ∈ Z such that the left-hand side of the above equation contains at least a nonzero

item, whereas the right-hand side is equal to zero, which is a contradiction. Thus, we have

µi = 0 for any i ∈ Z. In other words, x ◦ y = 0 for all x, y ∈ W(a, b).
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[3] M. Brešar, On generalized biderivations and related maps, J. Algebra 172 (1995),

no. 3, 764–786.

[4] D. Burde, K. Dekimpe and K. Vercammen, Affine actions on Lie groups and post-Lie

algebra structures, Linear Algebra Appl. 437 (2012), no. 5, 1250–1263.

[5] D. Burde and W. A. Moens, Commutative post-Lie algebra structures on Lie algebras,

J. Algebra 467 (2016), 183–201.



Biderivations and Commutative Post-Lie Algebra Structures on the Lie Algebra W(a, b) 1365

[6] Z. Chen, Biderivations and linear commuting maps on simple generalized Witt alge-

bras over a field, Electron. J. Linear Algebra 31 (2016), 1–12.

[7] G. Fan and X. Dai, Super-biderivations of Lie superalgebras, Linear Multilinear Al-

gebra 65 (2017), no. 1, 58–66.

[8] S. Gao, C. Jiang and Y. Pei, Low-dimensional cohomology groups of the Lie algebras

W (a, b), Comm. Algebra 39 (2011), no. 2, 397–423.

[9] N. M. Ghosseiri, On biderivations of upper triangular matrix rings, Linear Algebra

Appl. 438 (2013), no. 1, 250–260.

[10] X. Han, D. Wang and C. Xia, Linear commuting maps and biderivations on the Lie

algebras W(a, b), J. Lie Theory 26 (2016), no. 3, 777–786.

[11] X. Liu, X. Guo and K. Zhao, Biderivations of the block Lie algebras, Linear Algebra

Appl. 538 (2018), 43–55.

[12] H. Z. Munthe-Kaas and A. Lundervold, On post-Lie algebras, Lie-Butcher series and

moving frames, Found. Comput. Math. 13 (2013), no. 4, 583–613.

[13] V. Y. Ovsienko and K. Rozhe, Extensions of the Virasoro group and the Virasoro

algebra by means of modules of tensor densities on S1, Funct. Anal. Appl. 30 (1996),

no. 4, 290–291.

[14] Y. Pan, Q. Liu, C. Bai and L. Guo, PostLie algebra structures on the Lie algebra

SL(2,C), Electron. J. Linear Algebra 23 (2012), 180–197.

[15] X. Tang, Biderivations, linear commuting maps and commutative post-Lie algebra

structures on W-algebras, Comm. Algebra 45 (2017), no. 12, 5252–5261.

[16] , Biderivations of finite-dimensional complex simple Lie algebras, Linear Mul-

tilinear Algebra 66 (2018), no. 2, 250–259.

[17] X. Tang and X. Li, Biderivations of the twisted Heisenberg-Virasoro algebra and their

applications, Comm. Algebra 46 (2018), no. 6, 2346–2355

[18] X. Tang and Y. Zhang, Post-Lie algebra structures on solvable Lie algebra t(2,C),

Linear Algebra Appl. 462 (2014), 59–87.

[19] B. Vallette, Homology of generalized partition posets, J. Pure Appl. Algebra 208

(2007), no. 2, 699–725.

[20] D. Wang and X. Yu, Biderivations and linear commuting maps on the Schrödinger-

Virasoro Lie algebra, Comm. Algebra 41 (2013), no. 6, 2166–2173.



1366 Xiaomin Tang

[21] D. Wang, X. Yu and Z. Chen, Biderivations of the parabolic subalgebras of simple Lie

algebras, Comm. Algebra 39 (2011), no. 11, 4097–4104.

[22] C. Xia, D. Wang and X. Han, Linear super-commuting maps and super-biderivations

on the super-Virasoro algebras, Comm. Algebra 44 (2016), no. 12, 5342–5350.

[23] J. Yuan and X. Tang, Super-biderivations of classical simple Lie superalgebras, Ae-

quationes Math. 92 (2018), no. 1, 91–109.

[24] W. Zhang and C. Dong, W -algebra W (2, 2) and the vertex operator algebra L(1
2 , 0)⊗

L(1
2 , 0), Comm. Math. Phys. 285 (2009), no. 3, 991–1004.

Xiaomin Tang

Department of Mathematics, Heilongjiang University, Harbin 150080, China

and

Heilongjiang Provincial Laboratory of the Theory and Computation of Complex

Systems, Heilongjiang University Harbin 150080, China

E-mail address: x.m.tang@163.com


	Introduction
	General results on biderivations and some lemmas
	Biderivations of 
	The case for 
	The case for 
	The case for 

	Post-Lie algebra structures on 

