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Splitting via Noncommutativity
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Abstract. Let G be a nonabelian group and n a natural number. We say that G has a

strict n-split decomposition if it can be partitioned as the disjoint union of an abelian

subgroup A and n nonempty subsets B1, B2, . . . , Bn, such that |Bi| > 1 for each i

and within each set Bi, no two distinct elements commute. We show that every finite

nonabelian group has a strict n-split decomposition for some n. We classify all finite

groups G, up to isomorphism, which have a strict n-split decomposition for n = 1, 2, 3.

Finally, we show that for a nonabelian group G having a strict n-split decomposition,

the index |G : A| is bounded by some function of n.

1. Introduction

Throughout this paper, all groups are finite. We are interested in studying how to split

up a nonabelian group into disjoint subsets where the members of the subsets do not

commute with each other. Let G be a nonabelian group and n a natural number. An

n-split decomposition of G is the disjoint union of an abelian subgroup A and n nonempty

subsets B1, B2, . . . , Bn such that for each i no two distinct elements of the set Bi commute.

When G has an n-split decomposition, we will denote the decomposition by G = A]B1]
B2 ] · · · ] Bn. We will say that the n-split decomposition is strict if |Bi| > 1 for each i

with 1 ≤ i ≤ n. When n = 1, we simply say G = A ]B1 is a split decomposition of G.

We note that groups having split decompositions have previously been studied in [2],

and this paper arose as a generalization suggested by Prof. Isaacs when reading that paper.

We note that n-split decompositions are of interest when consider the commuting graph

of a group. If G is a nonabelian group, then the commuting graph ∆(G) of G is the graph

whose vertex set is G \ Z(G) and there is an edge between x and y if x and y commute.

An n-split decomposition of G corresponds to a partition of ∆(G) where A \ Z(G) is

a complete subgraph and the Bi’s are disjoint independent subsets. Saying the n-split

decomposition is strict is equivalent to requiring each of the independent subsets to have

at least 2-vertices.
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Notice that every group trivially has a (|G| − 1)-decomposition by taking A = 1 and

taking the Bi’s to be the singleton sets {g} as g runs over the nonidentity elements of G.

To eliminate this trivial decomposition, it is reasonable to ask which groups have a strict

n-split decomposition for some n. We will prove that all nonabelian groups have a strict

n-split decomposition for some positive integer n and some abelian subgroup A.

Theorem 1.1. If G is a nonabelian group, then there is an abelian subgroup A and a

positive integer n so that G has a strict n-split decomposition with respect to A.

We will see that usually there is no unique (strict) n-split decomposition for a given

group. Moreover, we will see that for most groups that have a (strict) n-split decomposition

will also have a (strict) (n + 1)-split decomposition. The question arises, given a group

G, what is the smallest integer n so that G has a (strict) n-split decomposition. For some

classes of groups, we are able to answer this question.

Theorem 1.2. For each of the following groups, n is the minimal integer so that G has

a (strict) n-split decomposition.

(1) If G is a Frobenius group with abelian Frobenius kernel A and an abelian Frobenius

complement, then n = |G : A| − 1.

(2) If G = L2(2
m), then n = 2m.

(3) If p is an odd prime, q is a power of p, and G = L2(q), then n = q − 1.

(4) If p is an odd prime, q is a power of p, and G = PGL2(q), then n = q.

(5) If G = Sz(22m+1), m ≥ 1, then n = 22m+2 − 1.

For small values of n, we are able to obtain the structure of groups G which have a

strict n-split decomposition. In particular, we present the classification for n = 1, 2, 3.

Notice that Theorem 1.2(1) shows that it is not possible to bound |A| in terms of n when

G has an n-split decomposition. On the other hand, the classifications for n = 1, 2, 3

suggest that it may be possible to bound |G : A| in terms of n when G has an n-split

decomposition. In our final theorem, we shall show that this is in fact true.

Theorem 1.3. There exists a positive integer valued function f defined on the positive

integers so that if G has an n-split decomposition, then |G : A| ≤ f(n).

2. The existence of a strict n-split decomposition

In this section, we consider the problem of the existence of a strict n-split decomposition

for each nonabelian group. We begin with the following observation about when elements

commute.
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Lemma 2.1. Let A ⊂ G be an abelian subgroup and fix elements a1, a2 ∈ A and g ∈ G.

Then a1g and a2g commute if and only if CA(g)a1 = CA(g)a2.

Proof. This holds by direct calculations. In fact, we have

a1ga2g = a2ga1g ⇐⇒ a1ga2 = a2ga1

⇐⇒ a−12 a1ga2a
−1
1 = g

⇐⇒ (a2a
−1
1 )−1ga2a

−1
1 = g

⇐⇒ a2a
−1
1 ∈ CA(g)

⇐⇒ CA(g)a1 = CA(g)a2.

The result follows.

We next show how to partition the cosets of an abelian group into noncommuting sets.

A set is noncommuting if no pair of distinct elements in the set commute. Similarly, a set

is commuting if all pairs of elements commute.

Lemma 2.2. Let A ⊂ G be an abelian subgroup, and fix an element g ∈ G. Let n =

|CA(g)|. Then there exist noncommuting subsets B1, . . . , Bn such that Ag =
⊎n

i=1Bi, with

|Bi| = |A : CA(g)| for all i = 1, . . . , n.

Proof. We write CA(g) = {c1, . . . , cn}. Let {a1, . . . , al} be a transversal for CA(g) in A.

So, we have

A = {ciaj | i = 1, . . . , n; j = 1, . . . , l}.

For i = 1, . . . , n, set

Bi = {cia1g, cia2g, . . . , cialg}.

Then, clearly Ag =
⊎n

i=1Bi. Moreover, when, j1 6= j2, it follows that ciaj1 and ciaj2 lie in

different cosets of CA(g), so ciaj1g and ciaj2g do not commute by Lemma 2.1. Therefore,

we conclude Bi is a noncommuting set and |Bi| = l = |A : CA(g)|. This completes the

proof.

We are now able to prove that every nonabelian group has a strict n-split decomposition

with respect to A for some integer n and some abelian subgroup A.

Theorem 2.3. If G is a nonabelian group, then there exists an abelian subgroup A of G

and a positive integer n so that G has a strict n-split decomposition with respect to A.

Proof. Let A be a maximal abelian subgroup of G. It follows that for every element

g ∈ G \ A, the group 〈A, g〉 is not abelian, and so CA(g) < A. Let {g1, g2, . . . , gm} be a

transversal for A in G with g1 ∈ A. Clearly, for every value i with 1 < i ≤ m, we have
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|A : CA(gi)| > 1. Furthermore, by Lemma 2.2, for each integer i with 1 < i ≤ m, there

exist noncommuting subsets Bi,1, . . . , Bi,li so that Agi =
⊎li

j=1Bi,j , where li = |CA(gi)|
and |Bi,j | = |A : CA(gi)| > 1. It follows that

G = A ]
m⊎
i=2

li⊎
j=1

Bi,j .

This shows that G has a strict n-split decomposition where n =
∑m

i=2 li.

We make several observations here. First, note that our proof can be modified to say:

Let A be a maximal abelian subgroup of G, then there is a positive integer n so that G has a

strict n-split decomposition with respect to A. We will see that G may also have strict split

decompositions with respect to abelian subgroups that are not maximal. See for example,

Lemma 4.4(4) where we have a strict 2-split decomposition for S3 with the trivial abelian

subgroup which is definitely not a maximal abelian subgroup. We will also see that there

are abelian subgroups for which the group will have no strict split decompositions. In

particular, in Lemma 3.1(5), we see that no proper subgroup of the center of a group can

have a strict n-decomposition.

Secondly, note in the proof of Theorem 2.3 that the n-split decomposition we obtain

has at least one Bi for each coset of A in G. This shows that G will always have an n-split

decomposition with n ≥ |G : A| − 1 for every maximal abelian subgroup of G. This shows

that G will always have a strict n-split decomposition where |G : A| is bounded by n + 1.

On the other hand, the n-split decompositions found in this theorem likely do not have

the smallest n that will work. We will see that it is possible for |G : A| to be larger than

n + 1. See Lemma 4.4(3) and (4) for examples.

3. Preliminary results

If G is a group and g ∈ G, then we write o(g) for the order of g. We start with the

following general result:

Lemma 3.1. Suppose a group G has an n-split decomposition with abelian subgroup A.

Then, the following hold:

(1) If U is an abelian subgroup of G not contained in A, then

|U ∩A|(|U : U ∩A| − 1) ≤ n.

In particular, |U ∩A| ≤ n, |U : U ∩A| ≤ n + 1, and |U | ≤ 2n.

(2) If b ∈ G \A with 〈b〉 ∩A = 1, then (o(b)− 1)|CA(b)| ≤ n.
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(3) If b ∈ G \A, then |CA(b)| ≤ n and o(b) ≤ 2n.

(4) If A is normal in G and b ∈ G \A, then o(Ab) ≤ n + 1.

(5) If the n-split decomposition is strict, then Z(G) ≤ A and |Z(G)| ≤ n.

Proof. Let G = A]B1 ]B2 ] · · · ]Bn be the n-split decomposition of G. Suppose that U

is an abelian subgroup of G not contained in A. Observe that U \ U ∩ A is a commuting

subset of G \A. Hence, each element of U \ U ∩A must lie in a distinct Bi. This implies

that |U \U ∩A| ≤ n. Notice that |U \U ∩A| = |U | − |U ∩A| = |U ∩A|(|U : U ∩A| − 1).

This implies that |U ∩ A|(|U : U ∩ A| − 1) ≤ n. Since U is not contained in A, we see

that (|U : U ∩ A| − 1) ≥ 1, and so, |U ∩ A| ≤ n. Similarly, as |U ∩ A| ≥ 1, we have that

(|U : U ∩A| − 1) ≤ n and so, |U : U ∩A| ≤ n + 1. We have |U | = |U \U ∩A|+ |U ∩A| ≤
n + n = 2n.

Suppose b ∈ G \ A. Observe that C = CA(b)〈b〉 is an abelian subgroup not contained

in A and C ∩ A = CA(b). The results of (2) and (3) now follow from (1). Note that if A

is normal in G, then o(Ab) = |A〈b〉/A| = |〈b〉 : 〈b〉 ∩A|, so (4) also follows from (1).

If we assume that the n-split decomposition is strict, then using the fact that |Bi| > 1,

it follows that Bi does not contain any central element of G, and so Z(G) ⊆ A. It follows

that Z(G) ≤ CA(b) for each b ∈ G \A. We now have |Z(G)| ≤ |CA(b)| ≤ n.

Lemma 3.2. Suppose a group G has an n-split decomposition with abelian subgroup A,

p is a prime divisor of |G|, and P is a p-subgroup of G. If either (1) p ≥ n + 2 or (2)

p2 > 2n and |P | ≥ p2, then P ≤ A.

Proof. Let b ∈ G be an element of order p. If b is not contained in A, then 〈b〉∩A = 1. By

Lemma 3.1(2), we have o(b) ≤ n + 1. Thus, if p ≥ n + 2, then we must have b ∈ A, and if

P is a p-group, then all of elements lie in A, so P ≤ A. We now assume that p ≤ n+1 and

p2 > 2n and |P | ≥ p2. Suppose that P is not contained in A. Thus, there is an element

b ∈ P \ A. By Lemma 3.1(2), we have that o(b) ≤ n + 1 ≤ 2n < p2. This implies that

b has order p. If b ∈ Z(P ), then this implies 〈b〉 < CP (b). On the other hand, we know

1 6= Z(P ) ≤ CP (b), so if b /∈ Z(P ), then 〈b〉 < CP (b). Let c be an element of CP (b) that

does not lie in 〈b〉, and let U = 〈b, c〉. Note that U is an abelian subgroup of G that is not

contained in A and has order at least p2. This is a contradiction to Lemma 3.1(1), and

hence, P ≤ A.

We show that the bound obtained in Lemma 3.1(1) cannot be improved.

Lemma 3.3. If G is an extra-special group of order p3 for some prime p, then G has

a (strict) p(p − 1)-split decomposition and every n-split decomposition of G satisfies n ≥
p(p− 1).
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Proof. Observe that the centralizer CG(x) of every noncentral element x of G is a maximal

subgroup of G of order p2 and is abelian. In fact, G has p + 1 abelian subgroups of

order p2. Suppose that G has an n-split decomposition with abelian subgroup A, and

let U be an abelian subgroup of order p2 that does not equal A. It follows that either

|U∩A| = |U : U∩A| = p or |U∩A| = 1 and |U : U∩A| = p2. We now apply Lemma 3.1(1).

In the first case, we obtain n ≥ |U ∩ A|(|U : U ∩ A| − 1) = p(p − 1), and in the second

case, we have n ≥ |U : U ∩A| − 1 = p2 − 1. In either case, we have n ≥ p2 − p.

We now prove that G has a (p2−p)-split decomposition. Let A be an abelian subgroup

of order p2, and fix an element g ∈ G \ A. We know that g, g2, . . . , gp form a transversal

for A in G; moreover, gi /∈ A for 1 ≤ i ≤ p − 1. It follows that CA(gi) = Z(G) has

order p. We now apply Lemma 2.2 to obtain noncommuting sets Bi,1, . . . , Bi,p so that

Agi = Bi,1] · · · ]Bi,p and note that |Bi,j | = p. We now obtain G = A]B1,1] · · · ]Bp−1,p

is a strict (p2 − p)-split decomposition of G.

Here we present some examples of nonabelian groups G having an n-split decomposi-

tion, for some natural number n. The first example concerns a Frobenius group G with

an abelian kernel A.

Lemma 3.4. If G is a Frobenius group with abelian Frobenius kernel A, then the cosets

of A form a strict (|G : A| − 1)-split decomposition of G with respect to A. If in addition,

G has an abelian Frobenius complement, then any n-split decomposition of G with respect

to A has n ≥ |G : A| − 1.

Proof. It is obvious that G is the disjoint union of the cosets of A. If B is a coset of A

that does not equal A and b ∈ B, then we know that CG(b) is contained in a Frobenius

complement of G, and so, CG(b) ∩ B = {b}. It follows that b does not commute with

any other element of B. This proves that the cosets of A form a strict (|G : A| − 1)-

split decomposition of G with respect to A. Suppose G has an n-split decomposition

with respect to A and that U is an abelian Frobenius complement of G. We know that

|U ∩ A| = 1, so |U | = |U : U ∩ A|, and by Lemma 3.1(1), we have |U | ≤ n + 1. Since

|U | = |G : A|, we conclude that |G : A| − 1 ≤ n.

In particular, a Frobenius group of order 2m, where m is odd and the kernel is abelian

of order m, has a split decomposition over the Frobenius kernel.

The following result is proved in [2], and states that these are the only possible split

decompositions. We provide a direct group-theoretic proof for the sake of completeness,

which was inspired by Isaacs.

Corollary 3.5. The following conditions on a nonabelian group G are equivalent:

(1) G has a split decomposition with respect to an abelian subgroup A.
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(2) G is a Frobenius group of order 2n, where n is odd, and the Frobenius kernel is

abelian of order n and is A.

Proof. (1) ⇒ (2). Suppose G = A ] B is a split decomposition of G. Let b in B. Then

(o(b) − 1)|CA(b)| ≤ 1 by Lemma 3.1(2). This implies that o(b) = 2 and CA(b) = 1. Let

P be a Sylow 2-subgroup of G. If |P | ≥ 4, then by Lemma 3.2, we would have P ≤ A

which is a contradiction. Thus, |P | = 2, and so P ∩A = 1. Now, we have that |A| is odd,

|G : A| = 2, and every element outside A has order 2. This implies that G is a Frobenius

group with abelian Frobenius kernel A.

(2) ⇒ (1). This is Lemma 3.4 when |G : A| = 2.

4. Groups having a strict 2-split decomposition

We now want to understand groups with an n-split decomposition where n > 1. We

begin with the following observation that shows that having an n-split decomposition

with respect to A in most cases will yield an (n + 1)-split decomposition for the same

group A. The following lemma follows easily from the definition.

Lemma 4.1. Suppose the group G has a strict n-split decomposition G = A ]B1 ]B2 ]
· · · ]Bn, and at least one of the following occurs:

(1) there exists an integer i with 1 ≤ i ≤ n such that |Bi| ≥ 4.

(2) there exist integers 1 ≤ i < j ≤ n with |Bi| ≥ 3 and |Bj | ≥ 3, and two elements

x ∈ Bi and y ∈ Bj such that xy 6= yx.

Then G has a strict (n + 1)-split decomposition.

Hence, a group usually will have strict n-split decompositions for different values of

n. Notice that, a group G can have more than one (strict) n-split decomposition for a

fixed n. In particular, we have the following 2-split decompositions for S3: A = {1, (12)},
B1 = {(13), (123)}, B2 = {(23), (132)} and A = {1}, B1 = {(12), (13), (123)}, B2 =

{(23), (132)}.
We now work to classify the groups having a 2-split decomposition. Lemma 3.4 implies

that the Frobenius groups with an abelian kernel of index 3 have a 2-split decomposition for

the Frobenius kernel. Applying Lemma 4.1 and Corollary 3.5, we see that every Frobenius

group of order 2n with an abelian Frobenius kernel of order n except for D6
∼= S3, also has

a 2-split decomposition. Note that S3 cannot have a strict 2-split decomposition over its

Frobenius kernel since there are only three elements outside the Frobenius kernel. On the

other hand, the previous paragraph shows that S3 does have strict 2-split decompositions

over other subgroups A. The next result generalizes the fact that Frobenius groups whose

Frobenius kernels have index 2 and order at least 5 have a strict 2-decompositions.
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Lemma 4.2. Let G be a nonabelian group of order greater than 6 containing an abelian

subgroup A of index 2. Then G has a (strict) 2-split decomposition for A if and only if

|Z(G)| ≤ 2.

Proof. (⇒) This follows immediately from Lemma 3.1(5).

(⇐) Suppose first that Z(G) = 1. Then G is a Frobenius group with kernel A of

odd order ≥ 5. We know G has a split decomposition by Lemma 3.4 and also a 2-split

decomposition by Lemma 4.1(1). So suppose that |Z(G)| = 2. Let t be an arbitrary

element in G \A. Then CA(t) = Z(G). By Lemma 2.2, there exist noncommuting sets B1

and B2 so that At = B1]B2. We conclude that G = A]B1]B2 is a 2-split decomposition

of G.

In light of Lemma 4.2, dihedral, semidihedral, and (generalized) quaternion groups of

order at least 8 have (strict) 2-split decompositions with respect to their abelian subgroups

of index 2. We note that the dihedral group of order 8 and the quaternion group of order

8 also have strict 2-split decompositions over their centers.

Lemma 4.3. Let G be a nonabelian group. Then G has an abelian subgroup of index 2

and |Z(G)| ≤ 2 if and only if G is the semi-direct product of a nontrivial 2-group P acting

on a group Q with odd order where P has an abelian subgroup B of index 2 and either

(1) |Z(P )| = 2 or (2) |P | ≤ 4 and |Q| > 1, so that B centralizes Q and any element of P

outside of B inverts every element of Q. In this situation, if |P | ≥ 8, then P is dihedral,

semi-dihedral, quaternion, or generalized quaternion.

Proof. Suppose that G has an abelian subgroup A of index 2 and |Z(G)| ≤ 2. Let P be

a Sylow 2-subgroup of G and let Q be the Hall 2-complement O2′(A) of A, and observe

that Q is a normal Hall 2-complement of G. Thus, G is the semi-direct product of P

acting on Q. Let B = P ∩ A and observe that B is an abelian subgroup of index 2 in P

and centralizes Q. Obviously, |P | ≥ 2. If |P | ≤ 4, then since G is nonabelian, we must

have |Q| > 1. Thus, we may assume that |P | ≥ 8. Notice that |Z(P )| ≥ 2. Observe that

both P and Q will centralize B ∩ Z(P ), so B ∩ Z(P ) is central in PQ = G, and thus,

B ∩ Z(P ) ≤ Z(G), and so, |B ∩ Z(P )| ≤ 2. Notice that if Z(P ) is not contained in B,

then P = BZ(P ) and both B and Z(P ) centralize B; so B is central in P . This implies

that B = B ∩ Z(P ). We deduce that |B| ≤ 2 and |P | ≤ 4 which contradicts |P | ≥ 8.

Thus, |Z(P )| = |B ∩ Z(P )| ≤ 2, and conclude that |Z(P )| = 2. Suppose x is an element

of P that lies outside B. We know that Z(G) ≤ CG(x). Observe that x, B, and Q will all

centralize CQ(x), and so, CQ(x) ≤ Z(G) ∩Q, and thus, CQ(x) = 1. This implies xB acts

Frobeniusly on Q, and this implies that x inverts every element of Q.

Suppose now that |P | ≥ 8. Since |Z(P )| = 2, it follows that P is a nonabelian group.

If |P | = 8, this implies that P is either the dihedral group or the quaternion group. Thus,
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we may assume that |P | ≥ 16. This implies that |B| ≥ 8. Let U = {b ∈ B | b4 = 1}.
It is not difficult to see that U is a characteristic subgroup of B. By the Fundamental

Theorem of abelian groups, we see that |U | ≥ 4 and |U | = 4 if and only if B is cyclic.

Suppose B is not cyclic, so |U | ≥ 8. Fix an element x ∈ P \B. Observe that 〈x〉 ∩B and

CB(x) will both be centralized by both x and B and so are central in P . This implies

that |〈x〉 ∩ B| ≤ 2 and so, x has order at most 4. Also, |CB(x)| = 2, so CB(x) = Z(P ).

We can find an x-invariant subgroup V of U with Z(P ) ≤ V and |V | = 8. Let D = 〈x〉V ,

and observe that |D| = 16. Notice that CV (x) = CB(x) ∩ V = Z(P ) ∩ V = Z(P ). This

implies that Z(D) = Z(P ). We deduce that D′ > 1, and so Z(D) ≤ D′. If D′ = Z(D),

then D would be extra-special which is a contradiction since |D : Z(D)| = 8. Thus, we

must have Z(D) < D′. Since D is not cyclic, we know that |D : D′| ≥ 4, and we conclude

that |D : D′| = 4. This implies that D is either dihedral, semidihedral, or generalized

quaternion. But in this case, the only abelian subgroup of index 2 is cyclic since |D| = 16.

We deduce that V is cyclic which is a contradiction. Therefore, B is cyclic, and hence, P

is dihedral, semidihedral, or generalized quaternion (see Satz I.14.9 of [4]).

Finally, suppose that G is the semi-direct product of a nontrivial 2-group P acting

on a group Q with odd order where P has an abelian subgroup B of index 2 and either

(1) |Z(P )| = 2 or (2) |P | ≤ 4 and |Q| > 1, so that B centralizes Q and any element of

P outside of B inverts every element of Q. Let A = B × Q. Observe that |G : A| =

|PQ : BQ| = |P : P ∩ BQ| = |P : B| = 2. Since every element of P outside B inverts

every element of Q, we conclude that Z(G) ∩ Q = 1, so Z(G) ≤ P . This implies that

Z(G) ≤ Z(P ). If |Z(P )| = 2, then |Z(G)| ≤ 2. If |P | ≤ 4, then there exist nontrivial

elements of Q, so the elements of P outside of B cannot be central in G, so Z(G) ≤ B,

and since |B| ≤ 2, we conclude that |Z(G)| ≤ 2.

We now classify the groups G that have a 2-split decomposition with respect to a

normal abelian group A.

Lemma 4.4. Let G be a group. Then G has a strict 2-split decomposition for a normal

abelian subgroup A if and only if one of the following occurs:

(1) |G/A| = 2 and |Z(G)| ≤ 2 and |A| ≥ 4.

(2) |G/A| = 3 and G is a Frobenius group with Frobenius kernel A.

(3) |G/A| = 4 and G is either the quaternion group of order 8 or the dihedral of order

8 (note that A must be the center of G).

(4) |G/A| = 6 and G is S3 with A = 1 or S4 and A is the normal Klein 4-subgroup.
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Proof. Suppose that G has a strict 2-split decomposition for the normal abelian subgroup

A. By Lemma 3.1(4), we know that if b ∈ G \A, then o(Ab) ≤ 3. This implies that every

element of G/A has order at most 3.

Assume that G/A has an element of order 3. Let T be a Sylow 3-subgroup of G. By

Lemma 3.2, we see that if |T | ≥ 9, then T ≤ A which is a contradiction. Thus, we must

have |T | = 3. This implies that 3 does not divide |A|. If 1 6= x ∈ T , then by Lemma 3.1,

we have |CA(x)| ≤ 2. Suppose |CA(x)| = 2, and let a be the nonidentity element of

CA(x). Then ax is an element of G \A and o(ax) = 6 which contradicts o(ax) ≤ 4. Thus,

|CA(x)| = 1. This implies that AT is a Frobenius group when A > 1. If G = AT , then

we must have A > 1 and so, we have conclusion (2). Note that if |G/A| is odd, then G/A

only contains elements of order 3, so G = AT , and this completes the result in this case.

Thus, we may assume that |G/A| is even, and so G/A contains an involution, say

Ai. By Lemma 3.1(3), |CA(i)| ≤ 2. Thus, H = A〈i〉 has a normal subgroup A of index

2. If |A| ≥ 3, then i is not in Z(H) which implies that Z(H) ≤ A. This implies that

Z(H) ≤ CA(i) and hence |Z(H)| ≤ 2 when |A| ≥ 3. If G = H, then since the split

decomposition is strict, we must have |A| ≥ 4 which gives conclusion (1). Note that if

|G/A| = 2, then this completes the result in this case.

We now assume that |G/A| is even and at least 4. Suppose that 4 divides |G/A|. Thus,

there exist involutions Ai and Aj so that 〈Ai,Aj〉 is a subgroup of G/A of order 4. We

may assume that i and j are 2-elements. Let D = 〈i, j〉. Observe that DA/A = 〈Ai,Aj〉,
so |D : D ∩ A| = |DA/A| = 4, so by Lemma 3.1(1), we conclude that D is not abelian.

Let Q be the Hall 2-complement of A. Notice that D ∩ A is normalized by both D and

A, so D ∩ A is normal in DA. Notice that DQ/(D ∩ A) is the semidirect product of

D/(D ∩A) acting on Q. Every element of D/(D ∩A) will act fixed-point freely on Q, so

if Q > 1, then DQ/(D ∩A) is a Frobenius group with Frobenius complement D/(D ∩A).

However, D/(D∩A) is abelian and not cyclic which is a contradiction to being a Frobenius

complement. This implies that Q = 1 and A is a 2-group.

If |A| ≥ 8, then A has index 2 in H = A〈i〉 and |Z(H)| ≤ 2. By Lemma 4.3, we know

that H is dihedral, semi-dihedral, or generalized quaternion. In these groups, the only

abelian subgroup of index 2 is cyclic, and so, we deduce that A is cyclic. Let C be the

subgroup of A of order 4. Since A is cyclic, C is characteristic which implies that C is

invariant under the action of j. We let C = 〈c〉. Since i and j do not centralize c, we must

have ci = c3 = cj . We conclude that cij
−1

= c, and so, ij−1 is element of G outside of A

that centralizes C. In particular, |CA(ij−1)| ≥ 4 which contradicts Lemma 3.1(3). Thus,

we must have |A| ≤ 4.

Suppose that |A| = 4 which implies that |DA| = 16. Since DA is a 2-subgroup, we

deduce that |Z(DA)| ≥ 2. Observe that DA/A is abelian, so (DA)′ ≤ A. If (DA)′ = A,
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then |DA : (DA)′| = 4. This implies that DA is dihedral, semi-dihedral, or generalized

quaternion. It follows that DA contains a cyclic subgroup C of index 2 and order 8 in

contradiction to Lemma 3.1(1). Thus, we must have |(DA)′| = 2 since we know that D

is nonabelian. By Lemma 3.1(3), |CA(i)| = |CA(j)| = |CA(ij)| = 2. This implies that

|Z(DA)| = 2. We know DA is nonabelian, so (DA)′ > 1, and thus, (DA)′ ∩ Z(DA) > 1.

We see that Z(DA) = (DA)′. If g ∈ DA, then [g2, h] = [g, h]2 = 1 for all h ∈ DA. It

follows that DA/(DA)′ is elementary abelian, and so, DA is extra-special. This contradicts

|DA : Z(DA)| = 8. Therefore, |A| = 2 which implies that DA has order 8, and thus, DA

is either the dihedral group or the quaternion group. If |G/A| = 4, then G = DA and we

have conclusion (3).

Continuing to assume that there exist involutions Ai and Aj as above, suppose that 3

divides |G/A|. Hence, there exists an element k of order 3 in G\A. It follows that A〈k〉 is

a cyclic subgroup of order 6 that is not contained in A which contradicts Lemma 3.1(1).

Thus, 3 does not divide |G/A|. On the other hand, suppose there is an involution Al

that is not contained in A〈i, j〉. Now, E = A〈i, j, l〉 is a group of order 16. Notice that

Z(E) = A and E/A is abelian, so A = E′. As in the previous paragraph, this implies

that E is an extra-special group which is a contradiction since |E : A| = |E : E′| = 8. We

conclude that if 4 divides |G : A| then |G : A| = 4.

Finally, we know that the odd part of |G/A| is at most 3. It follows that the remaining

possibility is that |G/A| = 6. Let Q be the Hall 2-complement of A. Let P be the Sylow

2-subgroup of A and let T be a Sylow 2-subgroup. Observe that P is an abelian subgroup

of index 2 in T . Let i be an element of T \ P , and observe that i lies in G \A. Applying

Lemma 3.1(3), |CA(i)| ≤ 2 which implies that |CP (i)| ≤ 2 and so, |Z(T )| ≤ 2. In light of

Lemma 4.3, we see that T is dihedral, semi-dihedral, or generalized quaternion. Since the

only abelian subgroup of index 2 in those groups are cyclic, we conclude that P is cyclic.

We know that a cyclic 2-group of order at least 8 has no odd order automorphisms. We

conclude that the elements of order 3 in G\A centralize P which contradicts Lemma 3.1(3).

We determine that |P | ≤ 4. If |P | = 2, then the elements of order 3 in G \ A would

centralize P . This would imply that G \ A would contain an element of order 6 which

contradicts Lemma 3.1(3). Thus, we have that either |P | = 1 or |P | = 4. Notice that if

|P | = 4, then P is a Klein 4-group and T is the dihedral group of order 8 in this case.

Let R be a Sylow 3-subgroup of G. Since G/A has order 6, we see that AR/A is normal

in G/A. This implies that PR is normal in G, and so, RT = R(PT ) is a subgroup of

G. If P = 1, then since RT has order 6 and intersects A trivially, we cannot have RT

abelian. On the other hand, we see that if |P | = 4, then CT (P ) = P , and so, CRT (P )

which implies that RT/P is isomorphic to a subgroup of the automorphism group of P

which is S3. It follows that RT/P is isomorphic to S3. Let Q be the Hall 2-complement of
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A. If Q > 1, note that Lemma 3.1(3) implies that RT/P acts Frobeniusly on Q which is

a contradiction since S3 cannot be a Frobenius complement. Therefore, we conclude that

Q = 1, and G is either S3 with A = 1 or S4 with A being the normal Klein 4-subgroup.

Conversely, if G has a normal subgroup A of index 2 with |Z(G)| ≤ 2, then Lemma 4.2

implies that G has a 2-split decomposition. If G is a Frobenius group with abelian Frobe-

nius complement A of index 3, then Lemma 3.4 may be used to show that G has a 2-split

decomposition with respect to A. We have provided above, 2-split decompositions for G

with respect to A when G is either the dihedral group or the quaternion group of order 8

and A is the center of G, and when G is S3 and A = 1. Finally, when G is S4 and A is

the normal Klein 4-subgroup, we have the 2-split decomposition:

A = {(1), (12)(34), (13)(24), (14)(23)},

B1 = {(123), (124), (134), (234), (1234), (1243), (1324), (12), (13), (14)},

B2 = {(132), (142), (143), (243), (1432), (1342), (1423), (34), (24), (23)}.

The lemma is proved.

Next, we classify the groups G that have a strict 2-split decomposition with respect to

a nonnormal abelian subgroup A.

Lemma 4.5. Let G be a nonabelian group. Then G has a strict 2-split decomposition with

respect to a nonnormal abelian group A if and only if one the following occurs:

(1) G ∼= S3 with |G : A| = 3, i.e., A is a nonnormal subgroup of order 2.

(2) G ∼= A4 with |G : A| = 6, i.e., A is a nonnormal subgroup of order 2.

Proof. First of all, for every abelian subgroup U of G, either U ≤ A or |U | ≤ 4 by

Lemma 3.1(1). Since A is a nonnormal subgroup of G, we have Ag � A, for some

g ∈ G, which is an abelian subgroup of G. Since Ag is not contained in A, we obtain

|A| = |Ag| ≤ 4. We conclude that all abelian subgroups of G have order at most 4. By

Lemma 3.1(3), the elements outside A have orders at most 4. We deduce that G is a

{2, 3}-group. Since every group of order 16 contains an abelian subgroup of order 8 and

every group of order 9 is abelian, this forces |G| = 2a ·3b where a ≤ 3 and b ≤ 1. Now, it is

easy to check that G is isomorphic to one of the following groups: S3, D8, Q8, A4, or S4. In

S3, if A is nonnormal, then |G : A| = 3. For A4, notice that the nonnormal subgroups have

order 2 or 3. Notice that for subgroups of order 3, the existence of the Klein 4-subgroup

and Lemma 3.1(1) would imply that n ≥ 3 which is a contradiction. Thus, we must have

|A| = 2 which yields |G : A| = 6. For S4, we can find an abelian subgroup U of order 4

that intersects A trivially. To see this, observe that if |A| = 3, then we can take U to be

any abelian subgroup of order 4. If A intersects the Klein 4-subgroup trivially, take U to



Splitting via Noncommutativity 1063

be the Klein 4-subgroup. Otherwise, A will intersect the Klein 4-subgroup in a subgroup

of order 2. Take U to be a cyclic subgroup of order 4 that intersects the Klein-subgroup

in a different subgroup of order 2, and it follows that U and A will intersect trivially. This

implies by Lemma 3.1(1) that any n-split decomposition for A must have n ≥ 3. To see

that D8 and Q8 cannot have an n-split decomposition with A nonnormal, observe that

since the decomposition is strict, we have Z(G) ≤ A, and this implies A is normal when

G is D8 or Q8.

Conversely, suppose that G is one of the groups given and A has the given index.

We now show that these groups have a 2-split decomposition for the given one of the

possible A’s. In each case, we can obtain 2-decompositions for the other possible A’s by

conjugating. When G = S3, we take

A = {1, (12)}, B1 = {(13), (123)}, B2 = {(23), (132)}.

For G = A4 and |A| = 2, we present the 2-split decomposition:

A = {(1), (12)(34)},

B1 = {(13)(24), (123), (124), (134), (234)},

B2 = {(14)(23), (132), (142), (143), (243)}.

The lemma is proved.

5. Groups having a strict 3-split decomposition

We now work to determine which groups have a strict 3-split decomposition.

Lemma 5.1. If G has a strict 2-split decomposition over A, then G has a strict 3-split

decomposition over A except for the following: (1) G ∼= S3 (with |A| = 2), (2) G ∼= D8 or

Q8 and |A| = 4, or (3) G ∼= D10 (with |A| = 5).

Proof. Let G be a group having a strict 2-split decomposition over A; say G = A]B1]B2.

If either of B1 or B2 contains at least four elements, then it follows from Lemma 4.1(1)

that G has a strict 3-split decomposition, and the result is proved. We assume, therefore,

that |B1| ≤ 3 and |B2| ≤ 3. Since |A| divides |B1]B2|, we have |A| ≤ 6 and so |G| ≤ 12. It

is now easy to check that G has a strict 3-split decomposition, except the cases mentioned

above.

Please note that Lemma 5.1 does not imply that the groups G mentioned in the conclu-

sion do not have strict 3-split decompositions, just that the strict 2-split decompositions

for the given A’s do not yield strict 3-split decompositions. Indeed, the strict 2-split de-

compositions for D8 and Q8 over their centers do yield strict 3-split decompositions. On



1064 Mark Lanning Lewis, Daria V. Lytkina, Viktor Danilovich Mazurov and Ali Reza Moghaddamfar

the other hand, since S3 only has 6 elements, it is not possible for S3 to have a strict

3-split decomposition. Let G = D10 and let A be an abelian subgroup of G that does not

have order 5. Then A will intersect the subgroup of order 5 trivially, and if G has a strict

n-split decomposition with respect to A, then n ≥ 4 by Lemma 3.1(1).

Lemma 5.2. Suppose G has a strict 3-split decomposition of G with respect to a normal

abelian subgroup A. Then the following are true:

(1) Every element of G/A has order at most 4.

(2) G/A is a {2, 3}-group.

(3) If 3 divides |G/A|, then a Sylow 3-subgroup of G has order 3.

Proof. Note that G/A does not contain any element of order greater than or equal to

5 by Lemma 3.2. Also, by Lemma 3.2, we know that if 3 divides |G/A|, then a Sylow

3-subgroup of G has order 3.

Lemma 5.3. Suppose the nonabelian group G has a strict 3-split decomposition of G with

respect to a normal abelian subgroup A of odd order.

(1) If a Sylow 2-subgroup S of G is isomorphic to D8, then one of the following occurs:

(a) A = 1 and G ∼= S4,

(b) G = AS, such that S = 〈x, y | x4 = y2 = xyx = 1〉 (= D8) and A = 〈u, v | u3 =

v3 = [u, v] = 1〉, where u, v can be chosen such that ux = v, vx = u−1, uy = u,

vy = v−1.

(2) If a Sylow 2-subgroup S of G is isomorphic to Q8, then G = AQ8 is a Frobenius

group.

Furthermore, each of the three groups listed have a strict 3-split decomposition with respect

to A.

Proof. Suppose G/A is not a 2-group and has a Sylow 2-subgroup that is nonabelian of

order 8. It follows that G/A has order 24 by Lemma 5.2. If G/A has a normal Sylow

2-subgroup, then an element of order 3 will centralize the center of S and this yields an

element of order 6 which is a contradiction. Thus, a Sylow 2-subgroup of G/A is not

normal, and hence G/A has three Sylow 2-subgroups; so the action of G/A on its Sylow

2-subgroups yields a homomorphism into S3. It is not difficult to see that this implies

that G/A is isomorphic to S4 when G/A is not a 2-group.

We may assume that S is either D8 or Q8. Let t be the central involution of S. By

Lemma 3.1(3), we have |CA(t)| ≤ 3. If CA(t) 6= 1, then |CA(t)| = 3. Observe that S
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acts on CA(t), and if K = CS(CA(t)), then |S/K| = 2, so |K| = 4. Notice that CA(t)K

is an abelian subgroup of G of order 12 that is not contained in A and this contradicts

Lemma 3.1(1) which shows that such a subgroup has size at most 2·3 = 6. Thus, CA(t) = 1

and so, t inverts every element of A.

Now assume that S is isomorphic to D8 = 〈x, y | x4 = y2 = xyx = 1〉 as above,

and this implies that G/A is either D8 or S4. Suppose A = 1, then since G has a

strict 3-split decomposition, we cannot have G ∼= D8 by Lemma 3.1(5). Suppose that

A > 1. The previous paragraph implies that |CA(x2)| = 1 and hence |CA(x)| = 1. Since

S = D8 is not a Frobenius complement, we must have CA(y) 6= 1 and |CA(y)| = 3 by

Lemma 3.1(1). Recall that Lemma 3.2 implies that 3 does not divide |G/A| since 3 divides

|A|. We conclude that G/A is a 2-group and G = AD8. By Fitting’s lemma, we have

A = CA(y) × [A, y] and y inverts every element of [A, y]. Clearly, [A, y] 6= 1 and yx2

centralizes [A, y]. Thus, [A, y] ≤ CA(yx2) which implies that |[A, y]| = 3 and |A| = 9. Let

1 6= u ∈ CA(y) and v = ux. Then A = 〈u, v〉, and we have

vy = uxy = uyx
−1

= ux
−1

= (ux)x
2

= vx
2

= v−1,

and vx = ux
2

= u−1.

Assume S is isomorphic to Q8. Since a Sylow 2-subgroup of S4 is dihedral, we do not

have G/A ∼= S4, and so, G/A ∼= Q8 which implies that G = AS. Lemma 3.1(5) implies

that A > 1. Let t be the involution in S. From the second paragraph, we have |CA(t)| = 1,

and so, 〈t〉 acts fixed-point-freely on A. This implies that Q8 acts fixed-point-freely on A;

hence G = AS is a Frobenius group with abelian kernel A.

Conversely, we now show that the three groups named have strict 3-split decomposi-

tions for the given A.

For G = S4 and A = 1, we obtain a 3-split decomposition as follows:

B1 = {(12)(34), (13), (14), (1234), (1243), (123), (142), (234)},

B2 = {(13)(24), (12), (23), (1324), (1342), (132), (134), (243)},

B3 = {(14)(23), (34), (24), (1423), (1432), (124), (143)}.

Suppose G = AS, such that S = 〈x, y | x4 = y2 = xyx = 1〉 (= D8) and A =

〈u, v | u3 = v3 = [u, v] = 1〉, where u, v can be chosen such that ux = v, vx = u−1,

uy = u, vy = v−1. Observe that CA(y) = 〈u〉, CA(x2y) = 〈v〉, CA(xy) = 〈uv2〉, and

CA(x3y) = 〈uv〉. We have

Ay = [A, y]y ∪ [A, y]uy ∪ [A, y]u2y.

Similarly,

Ax2y = [A, x2y]x2y ∪ [A, x2y]vx2y ∪ [A, x2y]v2x2y,
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Axy = [A, xy]xy ∪ [A, xy]uv2xy ∪ [A, xy]u2vxy,

and

Ax3y = [A, x3y]x3y ∪ [A, x3y]uvx3y ∪ [A, x3y]u2v2x3y.

Note first that x2 inverts both u and v, so x2 inverts every element of A. This implies

that A〈x〉 is a Frobenius group. Thus, no pair of elements in any of the cosets Ax, Ax2,

and Ax3 will commute with each other, and Ax is contained in the conjugacy class of x,

Ax2 is contained in the conjugacy class of x2, and Ax3 is contained in the conjugacy class

of x3. Note that xy = x3; so Ax ∪ Ax3 is contained in the conjugacy class of x. Observe

that | cl(x)| ≥ 2|A| = 18. On the other hand, 〈x〉 ≤ CG(x), and thus, 4 ≤ |CG(x)| =

|G|/| cl(x)| ≤ 72/18 = 4. We conclude that CG(x) = 〈x〉 and cl(x) = Ax ∪ Ax3. Also,

we know that | cl(x2)| ≥ |A| = 9 and S ≤ CG(x), so 8 = |S| ≤ |CG(x2)| = |G|/| cl(x2)| ≤
72/9 = 8. We deduce that CG(x2) = S and cl(x2) = Ax2.

We see that CG(x) contains one element from each of Ax, Ax2 and Ax3. In particular,

CG(x) does not intersect

[A, y]y, [A, xy]xy, [A, x2y]vx2y, or [A, x3y]uvx3y.

For any element g of Ax, the centralizer of g in G will be conjugate to CG(x), and thus, we

deduce that g commutes with no element in these four cosets. It follows that no element

of Ax commutes with any element in these four cosets. Similarly, no element of Ax3

commutes with any element in [A, y]uy, [A, xy]u2vxy, [A, x2y]x2y, or [A, x3y]x3y.

Note that [A, y]〈y〉 will be a Frobenius group, so y is conjugate to all the elements in

[A, y]y and no two elements in [A, y]y commute with each other. Similarly, xy, x2y, and

x3y (respectively) are conjugate to all of the elements in the cosets [A, xy]xy, [A, x2y]x2y,

and [A, x3y]x3y (respectively) and no two elements in any of those cosets will commute.

We see that yx = x2y, so [A, y]y ∪ [A, x2y]x2y ⊆ cl(y). This implies that |[A, y]| +

|[A, x2y]| = 3 + 3 = 6 ≤ | cl(y)|. On the other hand, we know that 〈u〉〈y, x2〉 ≤ CG(y).

This implies that 12 ≤ |CG(y)| = |G|/| cl(y)| ≤ 72/6 = 12. We determine that cl(y) =

cl(x2y) = [A, y]y ∪ [A, x2y]x2y and CG(y) = 〈u〉〈y, x2〉. In a similar fashion, one can see

that cl(xy) = cl(x3y) = [A, xy]xy ∪ [A, x3y]x3y and Cg(xy) = 〈uv2〉〈xy, x2〉.
We have now that CG(x2) consists of elements in Ax, Ax2, Ax3, [A, y]y, [A, xy]xy,

[A, x2y]x2y, [A, x3y] and does not intersect [A, y]u2y, [A, xy]u2vxy, [A, x2y]v2x2y, or

[A, x3y]u2v2x3y. Using conjugacy, we see that no element in Ax2 will commute with any

element in [A, y]u2y, [A, xy]u2vxy, [A, x2y]v2x2y, or [A, x3y]u2v2x3y.

Since u commutes with y and the elements in [A, y], we see that all the elements in

[A, y]uy are conjugate as are the elements in [A, y]u2y and no two elements in either of

those two cosets will commute. Observe that

(uy)x
2

= u2y, (uy)x = vx2y and (uy)x
3

= v2x2y.
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Arguing as above, we can show that

cl(uy) = [A, y]uy ∪ [A, y]u2y ∪ [A, x2y]vx2y ∪ [A, x2y]v2x2y,

and CG(uy) = 〈uy〉 is cyclic of order 6. Similarly, we can obtain

cl(u2vxy) = [A, xy]u2vxy ∪ [A, xy]uv2xy ∪ [A, x3y]uvx3y ∪ [A, x3y]u2v2x3y,

and CG(u2vxy) = 〈u2vxy〉 is cyclic of order 6.

We have that CG(y) = {1, u, u2, y, x2, x2y, uy, ux2, ux2y, u2y, u2x2, u2x2y}. Notice that

ux
2y = u−1, so [A, x2y] = {1, u, u2}. It follows that CG(y) consists of three elements

of A, three elements of Ax2, the coset [A, x2y]x2y and one element in each of [A, y]y,

[A, y]uy, and [A, y]u2y. So y does not commute with any elements of the cosets [A, x3y]x3y,

[A, x2y]vx2y, and [A, x3y]uvx3y. Noting that conjugating, we see that this applies to all

the elements in the coset [A, y]y.

Observe that CG(uy) = {1, uy, u2, y, u, u2y}, and so, CG(uy) contains three elements

of A, and one element in each of [A, y]y, [A, y]uy, and [A, y]u2y. Working the same way,

we can see that CG(vuy) and CG(v2uy) are composed from the same number of elements

in the same sets. Thus, we see that no element in [A, y]uy commutes with any element in

the cosets [A, x2y]v2x2y, [A, xy]u2vxy, and [A, x3y]u2v2x3y.

Using similar arguments, we can show that the following sets form a strict 3-split

decomposition of G with respect to A:

B1 = Ax ∪ [A, y]y ∪ [A, xy]xy ∪ [A, x2y]vx2y ∪ [A, x3y]uvx3y,

B2 = Ax2 ∪ [A, y]uy ∪ [A, xy]u2vxy ∪ [A, x2y]v2x2y ∪ [A, x3y]u2v2x3y,

B3 = Ax3 ∪ [A, y]u2y ∪ [A, xy]uv2xy ∪ [A, x2y]x2y ∪ [A, x3y]x3y.

Finally, suppose that G = AS is a Frobenius group with abelian Frobenius kernel A

and Frobenius complement Q8 = {±1,±i,±j,±k}. We claim to obtain a strict 3-split

decomposition for G with respect to A by taking

B1 = A(−1), B2 = Ai ∪Aj ∪Ak and B3 = A(−i) ∪A(−j) ∪A(−k).

To see this, observe that since G is a Frobenius group, we know that no two elements in

any coset of A that is not A will commute. Suppose g ∈ Ai and h ∈ Aj. When g and

h lie in different Frobenius complements, then they do not commute. However, if they

lie in the same Frobenius complement, they will be two elements of order 4 that are not

inverses. In Q8, this implies that they do not commute. Similarly, we can show that no

two elements of either B2 or B3 commute proving our claim.
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Lemma 5.4. Let G be a nonabelian group, and let S a Sylow 2-subgroup of G. Then G

has a strict 3-split decomposition with respect to a normal abelian subgroup A of odd order

if and only if one of the following holds:

(1) |S| = 1 and G is a Frobenius group, with Frobenius kernel A satisfying |G : A| = 3.

(2) |S| = 2 and G is a Frobenius group with Frobenius kernel A satisfying |A| ≥ 7 and

|G : A| = 2.

(3) |S| = 2 and G = Z3 × F where F is a Frobenius group with Frobenius kernel A ∩ F

and Frobenius complement S.

(4) S is cyclic of order 4 and G is a Frobenius group with kernel A satisfying |G : A| = 4.

(5) S is cyclic of order 4 and G = AS such that A = [A,S] and A = CA(t) × [A, t],

where t is the involution in S, |CA(t)| = 3, and [A, t] > 1.

(6) S is a Klein 4-group, A = 1, and G ∼= A4.

(7) S is a Klein 4-group and G = AS, where A is elementary abelian of order 9 or 27,

and either G = S3 × S3 where A = A3 × A3 or G = AS satisfies A = CA(s1) ×
CA(s2)× CA(s3) where S = {1, s1, s2, s3} and |CA(si)| = 3 for i = 1, 2, 3.

(8) S ∼= D8 and G satisfies one of the groups in Conclusion (1) of Lemma 5.3.

(9) S ∼= Q8 and G = AQ8 is a Frobenius group.

Proof. We suppose first that G has a strict 3-split decomposition with respect to A. If

|S| = 1, then |G| is odd. We deduce that G/A has order 3 and 3 does not divide |A| by

Lemma 5.2. Let b 6= 1 be a 3-element in G \ A. Then |CA(b)| ≤ 3 by Lemma 3.1(3).

Since |A| is odd and not divisible by 3, we conclude that CA(b) = 1. Thus G = A〈b〉 is a

Frobenius group.

Let |S| = 2 and consider the involution t in S. By Lemma 3.1(3), we know that

|CA(t)| ≤ 3. Since |A| is odd, either |CA(t)| = 1 or |CA(t)| = 3. If |CA(t)| = 3, then by

Lemma 5.2, we see that G/A is a 2-group. Thus, G = AS and by Fitting’s lemma, we have

A = CA(t) × [A, t]. It is not difficult to see that G = CA(t) × [A, t]S where CA(t) ∼= Z3

and F = [A, t]S is a Frobenius group with Frobenius kernel [A, t] = F ∩A and Frobenius

complement S. We now consider the case |CA(t)| = 1. If G = AS, then it is not difficult

to see that G is a Frobenius group with Frobenius kernel A and Frobenius complement

S. If G 6= AS, then G/A is a {2, 3}-group and not a 2-group. Thus, 3 divides |G : A|
which implies that |G : A| = 6 and 3 does not divide |A|. We can find an element b ∈ G

of order 3 so that B = 〈b, t〉 is a Hall {2, 3}-subgroup of G. Notice that B ∼= G/A, so B
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is not cyclic. On the other hand, arguing as in the first paragraph of this proof, we have

CA(b) = 1 which would imply that B is a Frobenius complement and this is a contradiction

since B not abelian implies that B ∼= S3 and S3 cannot be a Frobenius complement. This

completes the case when |S| = 2.

Suppose S is cyclic of order 4. Let t be the involution in S. As in the case |S| = 2, one

can prove that |CA(t)| equals either 1 or 3. If |CA(t)| = 3, then 3 does not divide |G : A|.
This implies that G = AS. By Lemma 3.1(2), we have (|S| − 1)|CA(S)| ≤ 3 which implies

that |CA(S)| = 1 and hence, A = [A,S]. By Fitting’s lemma, we have A = [A, t]× CA(t).

Notice that if [A, t] = 1, then t will be central in G, and this violates Lemma 3.1(5), so

we must have [A, t] > 1.

We now assume that CA(t) = 1. This implies that AS is a Frobenius group. If 3

divides |G : A|, then we can choose an element b of order 3 so that 〈S, b〉 is a Hall {2, 3}-
subgroup of G. Notice that b and t will have to commute which gives G/A an element of

order 6 which is a contradiction. Thus, G = AS as desired.

Let S be an elementary abelian subgroup of order 4. Since S cannot be a Frobenius

complement, either |A| = 1 or there exists an involution t in S such that |CA(t)| = 3.

Suppose that |A| = 1. Since G is not abelian, we must have |G| = 12, and since A4 is the

only nonabelian group of order 12 that does not have an element of order 6, we deduce

that G ∼= A4.

Suppose now that there exists an involution t so that |CA(t)| = 3. By Lemma 3.2, A

contains a Sylow 3-subgroup of G and hence G = AS. Let r be an involution in S such

that r 6= t. If CA(r) ≤ CA(t) then C[A,t](r) = 1. It follows that [A, t] ≤ [A, r]. Since both r

and t invert all the elements of [A, t], it follows that rt centralizes [A, t]. In particular, we

have [A, t] ≤ CA(rt). Applying Lemma 3.1(3) to rt, we obtain |CA(rt)| ≤ 3 so |[A, t]| ≤ 3

and |A| ≤ 32. If |A| = 3, then since |CA(t)| = 3, we have A = CA(t). It follows that t

is central in G, and since the decomposition is strict, this contradicts Lemma 3.1(5). If

|A| = 32, then CA(rt) = [A, t]. Since CA(r) ≤ CA(t), we see that every element of CA(r)

is centralized by both r and t and so is centralized by rt. Since CA(t) ∩ CA(rt) = 1, we

deduce that CA(r) = 1. This implies that r inverts every element of A. It follows that rt

inverts every element of CA(t), and so, G = [A, t]〈t〉 × CA(t)〈rt〉 ∼= S3 × S3.

We may assume that CA(t), CA(r), and CA(rt) are three distinct subgroups of order 3.

Applying Fitting’s lemma, we have A = CA(t)× [A, t]. Since r and t commute, it follows

that CA(r) is t-invariant. By Fitting’s lemma, we have CA(r) = [CA(r), t] × CCA(r)(t).

Since |CA(r)| = 3 and CA(r) 6= CA(t), we see that CA(r) = [CA(r), t] ≤ [A, t]. Using

Fitting’s lemma once more, we have [A, t] = CA(r) × [[A, t], r]. Again, both r and t will

invert all the elements of [[A, t], r] so rt centralizes every element in [[A, t], r]. Notice that

rt will invert every element in CA(t)CA(r) = CA(t) × CA(r). Since CA(rt) is nontrivial,



1070 Mark Lanning Lewis, Daria V. Lytkina, Viktor Danilovich Mazurov and Ali Reza Moghaddamfar

we must have [[A, t], r] = CA(rt). We conclude that A = CA(t) × CA(r) × CA(rt) and

|A| = 27.

If |S| = 8, then since S is nonabelian, S ∼= Q8 or S ∼= D8 and the conclusion follows

from Lemma 5.3.

Finally, if |S| > 8, then S contains an abelian subgroup of order 8 which is impossible

by Lemma 3.1.

Conversely, we show that if G is one of the groups mentioned, then G has a strict

3-split decomposition. If G is a Frobenius group with abelian Frobenius kernel of odd

order and abelian Frobenius complement of order 2, 3, or 4, then the result follows from

Lemmas 3.4 and 5.1.

Suppose that G = Z × F where Z ∼= Z3 and F is a Frobenius group with abelian

Frobenius kernel B and Frobenius complement S with |S| = 2. We write Z for Z × 1 and

F for 1 × F . Notice that Z(G) = Z ∼= Z3. Take A = ZB. Let t be the involution in S

and let z be a generator of Z. Since F is a Frobenius group, we see that the elements of

Bt do not commute. Since z and z2 are central in G, it will follow that the elements of

Bzt and Bz2t do not commute. It is not difficult to see that G = A ]Bt ]Bzt ]Bz2t is

a strict 3-split decomposition for G.

Next, suppose that S is cyclic of order 4 and G = AS such that A = [A,S] and

A = CA(t)× [A, t], where t is the involution in S, |CA(t)| = 3, and [A, t] > 1. Let S = 〈s〉
and CA(t) = 〈z〉, and note that t = s2. Notice that CA(s) = 1, so CG(s) = S. By

Lemma 2.1, no two elements in As commute, and in a similar fashion, no two elements

in As3 commute. Applying Lemma 2.1 to t = s2, we see that no two elements of [A, t]t

commute. Since z and z2 centralize t and [A, t], we conclude that no two elements in [A, t]zt

and no two elements in [A, t]z2t commute. Since A is partitioned by [A, t]∪[A, t]z∪[A, t]z2,

it follows that the coset At is partitioned by [A, t]t ∪ [A, t]zt ∪ [A, t]z2t.

The conjugacy class of s in G has size |G : CG(s)| = |G : S| = |A|. On the other hand,

it is easy to see that G′ ≤ A and cl(s) ⊆ G′s ⊆ As. We see that |A| = | cl(s)| ≤ |G′| ≤ |A|.
This implies that A = G′ and cl(s) = As. Similarly, we obtain cl(s3) = As3. We have

that CG(t) = CA(t) × S. This implies that | cl(t)| = |[A, t]|. Since [A, t]〈t〉 is a Frobenius

group, we have [A, t]t ⊆ cl(t), and hence, we conclude that cl(t) = [A, t]t. The centralizer

of s has the form {1, s, s2, s3} and every element in As is conjugate to s. For any element

in As, its centralizer will consist of 1, itself, a conjugate of s2, and a conjugate of s3. Since

the conjugacy classes of s, s2, and s3 are As, [A, t]t, and As3 respectively, we conclude

that no element in As will commute with any element of [A, t]zt. Similarly, no element

in As3 will commute with an element of [A, t]z2t. Thus, if we take B1 = As ∪ [A, t]zt,

B2 = [A, t]t, and B3 = As3 ∪ [A, t]z2t, then we obtain a strict 3-split decomposition of G.

When G = A4, we get a strict 3-split decomposition with A = 1 by taking B1 =
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{(12)(34), (123), (142), (234)}, B2 = {(13)(24), (132), (134), (243)}, and B3 = {(14)(23),

(124), (143)}.
For G = S3 × S3, we obtain a strict 3-split decomposition for A = A3 ×A3 by taking

B1 = {((12), (1)), ((13), (1)), ((23), (1)), ((123), (12)), ((123), (13)), ((123), (23))},

B2 = {((12), (123)), ((13), (123)), ((23), (123)), ((1), (12)), ((1), (13)), ((1), (23))},

B3 = {((12), (132)), ((13), (132)), ((23), (132)), ((132), (12)), ((132), (13)),

((132), (23)), ((12), (12)), ((12), (13)), ((12), (23)), ((13), (12)), ((13), (13)),

((13), (23)), ((23), (12)), ((23), (13)), ((23), (23))}.

Next, suppose S is a Klein 4-group and G = AS, where A is elementary abelian of

order 27, and G = AS satisfies A = CA(s1) × CA(s2) × CA(s3) where S = {1, s1, s2, s3}
and |CA(si)| = 3 for i = 1, 2, 3. For i = 1, 2, 3, let CA(si) = 〈ai〉. Notice that s1 will

normalize CA(s2) and since CA(s1) ∩ CA(s2) = 1, we have that CA(s2) = [CA(s2), s1] ≤
[A, s1]. Similarly, CA(s3) ≤ [A, s1]. By Fitting’s lemma, A = CA(s1)× [A, s1], and so, we

determine that [A, s1] = CA(s2) × CA(s3). Similarly, we have [A, s2] = CA(s1) × CA(s3)

and [A, s3] = CA(s1)× CA(s2). By Lemma 2.1, we have that no two elements in [A, s1]s1

commute. Since a1 commutes with s1 and [A, s1], we see that no two elements in [A, s1]a1s1

will commute and no two elements in [A, s1]a
2
1s1 will commute.

We see that CG(s1) = CA(s1)S, so the conjugacy class of s1 has size |G : CG(s1)| = |A :

CA(s1)| = |[A, s1]|. Notice that [A, s1]〈s1〉 is a Frobenius group, so [A, s1]s1 ≤ cl(s1). By

consideration of sizes, we have cl(s1) = [A, s1]s1. Similarly, cl(s2) = [A, s2]s2 and cl(s3) =

[A, s3]s3. Since CA(s1) ≤ [A, s2] ∩ [A, s3], we have CA(s1)s2 ⊆ [A, s2]s2 and CA(s1)s3 ⊆
[A, s3]s3. Hence, CA(s1) contains no elements in [A, s2]a2s2, [A, s2]a

2
2s2, [A, s3]a3s3, and

[A, s3]a
2
3a3. Since every element in [A, s1]s1 is conjugate to s1, we conclude that no element

in [A, s1]s1 commutes with any element in [A, s2]a2s2 or [A, s3]a3s3. Similarly, no element

in [A, s2]s2 commutes with any element in [A, s1]a1s1 or [A, s3]a
2
3s3 and no element in

[A, s3]s3 commutes with any element in [A, s1]a
2
1s1 or [A, s2]a

2
2s2.

Notice that 〈a1s1〉 ≤ CG(a1s1), so 6 ≤ |CG(a1s1)|. Since a1 commutes with s1 and

[A, s1], we conclude that all the elements [A, s1]a1s1 are conjugate as are all the ele-

ments in [A, s1]a
2
1s1. On the hand, since a1 ∈ CA(s1) ≤ [A, s2], we know that s2 inverts

a1, so (a1s1)
s2 = as11 ss12 = a21s1. Hence, a1s1 and a21s1 are conjugate. This implies

that [A, s1]a1s1 ∪ [A, s1]a
2
1s1 ⊆ cl(a1s1). This implies that 18 ≤ | cl(a1s1)|, and thus,

|CG(a1s1)| ≥ |G|/| cl(a1s1)| = 108/18 = 6. We deduce that CG(a1s1) = 〈a1s1〉. Now,

CG(a1s1) contains no elements in [A, s3]a
2
3s3. Using conjugacy, we conclude that no el-

ement in [A, s1]a1s1 commutes with any element in [A, s3]a
2
3s3. Similarly, no element in

[A, s1]a
2
1s1 will commute with any element in [A, s2]a

2
2s2, and no element in [A, s2]a2s2

commutes with any element in [A, s3]a3s3. Hence, we have a strict 3-split decomposition
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for G with respect to A by taking

B1 = [A, s1]s1 ∪ [A, s2]a2s2 ∪ [A, s3]a3s3,

B2 = [A, s2]s2 ∪ [A, s1]a1s1 ∪ [A, s3]a
2
3s3,

and

B3 = [A, s3]s3 ∪ [A, s1]a
2
1s1 ∪ [A, s2]a

2
2s2.

The remaining groups were handled in Lemma 5.3.

Lemma 5.5. Let G be a nonabelian group with a normal abelian subgroup A with even

order. Then G has a strict 3-split decomposition with respect to A if and only if one of

the following holds:

(1) G is a Frobenius group with Frobenius kernel A and a Frobenius complement of

order 3.

(2) A has index 2 in G, |A| ≥ 6, and |Z(G)| = 2.

(3) G is either D8 or Q8 and A = Z(G).

(4) G ∼= S4 and A is the Klein 4-subgroup.

Proof. We first suppose that G has a strict 3-split decomposition with respect to A.

Suppose b is an element of order 3 in G \ A. By Lemma 5.2(3), 3 does not divide |A|.
Moreover, Lemma 3.1(2) implies that (o(b)−1)|CA(b)| ≤ 3. Since o(b)−1 = 2, we conclude

that |CA(b)| = 1. This implies that A〈b〉 is a Frobenius group. If |G : A| is odd, then by

Lemma 5.2(3), we have G = A〈b〉 and conclusion (1) holds.

Let |G/A| be even and tA is an involution in G/A where t is an 2-element. Observe

that CA(t)〈t〉 is an abelian group. By Lemma 3.1(1), we have that |CA(t)| ≤ 3. Since |A|
is even, we see that CA(t) is not trivial. Thus |CA(t)| = 2. If G = A〈t〉, then A will have

index 2 and Z(G) = CA(t) will have order 2. Since the decomposition is strict, we see

that G \A must have three subsets each having size at least 2, so |A| = |G \A| ≥ 6. This

gives conclusion (2).

We now assume that |G/A| ≥ 4. Let T be the Sylow 2-subgroup of A. By Lemma 4.3,

we know that 〈T, t〉 either has order 4 or is isomorphic to a dihedral, semidihedral, quater-

nion, or generalized quaternion group. It follows that T is cyclic or |T | = 4.

Suppose that |T | > 2. Let S be a Sylow 2-subgroup of G and observe that S∩A = T . If

CS(T ) > T , then there exists s ∈ CS(T )\T . Observe that T 〈s〉 is abelian and not contained

in A. Since |T | > 3, this would violate Lemma 3.1(1). Thus, we have CS(T ) = T . Let T0

be a subgroup of order 4 in T . If CG(T0) 6= A, then for b ∈ CG(T0) \A, T0〈b〉 is abelian so

it would also violate Lemma 3.1(1). Thus, CG(T0) = A. We know that G/A is isomorphic
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to a subgroup of the automorphism group of T0. Since |G : A| ≥ 4, we must have that

T0 is a Klein 4-group and G/A ∼= S3. Observe that G/A acts fixed-point-freely on the

Hall 2-complement N of A. Since S3 is not a Frobenius complement, we have N = 1.

Notice that T0 being not cyclic implies that T = T0, and so, G ∼= S4 where A is the Klein

4-subgroup, and (4) holds.

Now, let |T | = 2. Then T ≤ Z(G) and in light of the first paragraph, we see that

G/A is a 2-group. If G/A contains an element of order 4, then G contains an abelian

subgroup of order 8 that is not contained in A and this violates Lemma 3.1(1). Thus G/A

is elementary abelian. Letting N be the Hall 2-complement of A, we see that G/A acts

fixed-point-freely on N ; so N 6= 1 would imply that |G/A| = 2 and conclusion (2) holds.

Thus, we may assume that N = 1; so A = T = Z(G). This implies that G is a 2-group.

We know that if G has order greater than 8, then G has an abelian subgroup of order at

least 8 and this violates Lemma 3.1(2). We conclude that G is nonabelian of order 8 and

conclusion (3) holds.

Conversely, notice that each of the groups mentioned has a strict 2-split decomposition,

and so, we obtain a strict 3-split decomposition by appealing to Lemma 5.1. The lemma

is proved.

Lemma 5.6. Let G be a nonabelian group and let A be a nonnormal abelian subgroup

of G. Then G has a strict 3-split decomposition with respect to A if and only if either

G ∼= A4 and A is a subgroup of order 2 or 3 or G ∼= S4 and A is a subgroup of order 2, 3,

or 4.

Proof. Suppose that G has a strict 3-split decomposition with respect to A. Let A1 =

Ag 6= A. Then |A1 ∩ A| · (|A : A1 ∩ A| − 1) ≤ 3 by Lemma 3.1(1), and hence one of

the following holds: (1) |A1 ∩ A| = 1 and |A : (A1 ∩ A)| ≤ 4, (2) |A1 ∩ A| = 2 and

|A : A1 ∩ A| ≤ 2, or (3) |A1 ∩ A| = 3 and |A : A1 ∩ A| = 2. Notice that in case (1) we

have |A| = 2, 3, or 4, in case (2), we have |A| is either 2 or 4, and in case (3), we have

|A| = 6. If x is any element of G outside A, then o(x) ≤ 6 by Lemma 3.1(3). Note that

if o(x) = 5, then 〈x〉 ∩ A = 1, and applying Lemma 3.1(2) we obtain o(x) ≤ 4 which

is a contradiction. Thus, every nonidentity element of G has order 2, 3, 4, or 6. Thus,

|G| = 2a · 3b for nonnegative integers a, b, and hence G is solvable.

By Lemma 3.1(1), we see that any abelian subgroup of G has order at most 6. Since

G is nonabelian, we see that if G were a 3-group, then |G| ≥ 27 and G would have an

abelian subgroup of order 9 which is a contradiction. If G is a 2-group of order at least

16, then G would have an abelian subgroup of 8 which is a contradiction. This would

force G to have order 8. By Lemma 3.1(5), we see that G′ = Z(G) ≤ A which implies A

is normal, a contradiction. We conclude that G is neither a 2-group nor a 3-group.
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Let Q be a Sylow 3-group of G. We have just shown that Q is nontrivial. On the other

hand, if |Q| ≥ 9, then G will have an abelian subgroup of order 9, and we have seen that

this is a contradiction. Thus, we have that |Q| = 3. Similarly, if P is a Sylow 2-subgroup

of G, then if |P | ≥ 16, then G will have an abelian subgroup of 8 which is not allowed.

Thus, we have that |P | ≤ 8. We see that the possibilities for |G| are 6, 12, and 24. Since

G has a strict 3-split decomposition, there must be at least 6 elements of G outside of A.

This rules out |G| = 6.

Notice that if Q is normal in G, then |G : QCP (Q)| ≤ 2 since G/QCP (Q) is isomorphic

to a subgroup of Aut(Q) ∼= Z2. Since CP (Q) > 1, we have that Z = Z(P ) ∩ CP (Q) > 1.

Notice that both P and Q will centralize Z, so Z is normal in G. By Lemma 3.1(5),

we know that Z ≤ A, and since A is not normal, we have Z < A. From the available

orders for A, this implies that either A = ZQ or |A| = 4. Since A is not normal, we have

A 6= ZQ, so |A| = 4. Also, ZQ is an abelian subgroup of G and ZQ∩A = Z. This implies

that (|ZQ : ZQ∩A| − 1)|ZQ∩A| = (3− 1)2 = 4 which violates Lemma 3.1(1). Thus, the

case Q is normal cannot occur.

Now, we have that Q is not normal. Since the number of Sylow 3-subgroups in G is

congruent to 1 mod 3, Q must have 4 conjugates in G. Let K be the kernel of the action

of G on the Sylow 3-subgroups of G. Observe that G/K has order at least 12 and is

isomorphic to a subgroup of S4. If K > 1, then since |G| ≤ 24, we must have |K| = 2 and

|G : K| = 12. Notice that K will be central in G, so K ≤ A. Notice that KQ is an abelian

subgroup. Replacing Q by a conjugate if necessary, we may assume that QK ∩ A = K.

We have (|QK : QK ∩ A| − 1)|QK ∩ A| = (3 − 1)2 = 4 which violates Lemma 3.1(1).

Thus, K = 1. This implies that G is either A4 or S4. If G is A4, then A can have order 2

or 3. When G is S4, then A can have order 2, 3, or 4.

Note that the 2-split decompositions for A4 when A is a subgroup of order 2 in the

Klein 4-subgroup that appeared in Lemma 4.5 yields strict 3-split decomposition. The

following gives a strict 3-split decomposition for A4 when A is a Sylow 3-subgroup:

A = {1, (123), (132)}, B1 = {(12)(34), (124), (234)},

B2 = {(13)(24), (142), (143)}, B3 = {(14)(23), (134), (243)}.

Now, we present 3-split decompositions for S4 with respect to various possible A’s. We

present an example for one representative of each of the conjugacy classes of the possible

A’s.

A = {(1), (12)(34)},

B1 = {(13)(24), (123), (134), (234), (1243), (1324), (12), (14)},

B2 = {(14)(23), (132), (142), (143), (1432), (1423), (34), (24)},

B3 = {(1234), (1342), (124), (243), (13), (23)};
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A = {(1), (24)},

B1 = {(13)(24), (123), (134), (234), (1243), (1324), (12), (14)},

B2 = {(14)(23), (132), (142), (143), (1432), (1423), (34)},

B3 = {(12)(34), (1234), (1342), (124), (243), (13), (23)};

A = {(1), (123), (132)},

B1 = {(13)(24), (134), (234), (1243), (1324), (12), (14)},

B2 = {(14)(23), (142), (143), (1432), (1423), (34), (24)},

B3 = {(12)(34), (1234), (1342), (124), (243), (13), (23)};

A = {(1), (12), (34), (12)(34)},

B1 = {(13)(24), (123), (134), (234), (1243), (1324), (14)},

B2 = {(14)(23), (132), (142), (143), (1432), (1423), (24)},

B3 = {(1234), (1342), (124), (243), (13), (23)};

A = {1, (1234), (13)(24), (1432)},

B1 = {(13), (23), (123), (124), (1243), (1324)},

B2 = {(34), (14), (12)(34), (132), (243), (143), (1342)},

B3 = {(12), (24), (14)(23), (134), (234), (142), (1423)}.

The lemma is proved.

6. Decompositions of L2(q), Sz(q), and PGL2(q)

Let G be a nonabelian group and min(G) the minimal number n for which the group G

has a strict n-split decomposition for some abelian group A. Clearly, if H and K are two

maximal abelian subgroups of G with H ∩K = 1, then min(G) ≥ min{|H|, |K|} − 1. In

particular, if G has a maximal abelian subgroup A which intersects trivially with some

of its conjugates, then min(G) ≥ |A| − 1. We now investigate min(G) for two families of

groups.

In what follows, we restrict our attention to the almost simple groups (recall that G

is almost simple if S ≤ G ≤ Aut(S) for some nonabelian simple group S). We begin with

the following result:

Lemma 6.1. Suppose that q = pm ≥ 4, with p a prime and m ≥ 1 an integer. Then the

following assertions hold.

(1) If p = 2 and G = L2(q) ∼= PGL(2, q), then min(G) = q.

(2) When p is an odd prime, then min(G) = q − 1 if G = L2(q), and min(G) = q, if

G = PGL(2, q).
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In particular, we have the following:

• If S ∼= A5
∼= L2(4) ∼= L2(5), then min(S) = 4.

• If S ∼= L3(2) ∼= L2(7), then min(S) = 6.

• If S ∼= A6
∼= L2(9), then min(S) = 8.

• If S ∼= S5
∼= PGL2(5), then min(S) = 5.

Proof. It is known that G contains abelian subgroups C, D, F , of orders (q − 1)/k, q,

and (q + 1)/k, respectively where k = 1 if either p = 2 or G = PGL(2, q) when p is odd

and k = 2 if G = L2(q) when p is odd; and every two distinct conjugates of any of these

groups intersect trivially. Furthermore, every element of G is a conjugate of an element

in C ∪ D ∪ F (see Satz II.8.5 of [4]). Label the elements C = {1, c1, . . . , c(q−1)/k−1},
D = {1, d1, . . . , dq−1}, and F = {1, f1, . . . , f(q+1)/k−1}. Let {a1, . . . , ar} be a transversal

for NC = NG(C) in G, let {b1, . . . , bs} be a transversal for ND = NG(D) in G, and let

{g1, . . . , gt} be a transversal for NF = NG(F ) in G. Note that each of C, D, and F are

the centralizers for the nonidentity element they contain. So the only way two nonidentity

elements of G can commute is if they lie in the same conjugate of one of these three

subgroups. Now, we can define the sets

Ri = {ca1i , . . . , cari }, i = 1, 2, . . . , (q − 1)/k − 1,

Sj = {db1j , . . . , dbsj }, j = 1, 2, . . . , q − 1,

Tk = {fg1
k , . . . , fgt

k }, k = 1, 2, . . . , (q + 1)/k − 1.

We take Bi = Ri ∪Si ∪Ti when 1 ≤ i ≤ (q− 1)/k− 1. Note that (q− 1)/k = (q+ 1)/k− 1

for both choices of k. We take B(q−1)/k = S(q−1)/k ∪ T(q−1)/k. Finally, we take Bj = Tj

where j = q if p is even and (q + 1)/k + 1 ≤ j ≤ q − 1 when p is odd. Set A = F . Then

G = A]B1]· · ·]Bq is a strict q-split decomposition of G when p is 2 or when G = PGL2(q)

when p is odd and G = A ] B1 ] · · · ] Bq−1 is a strict (q − 1)-split decomposition when

G = L2(q) when p is odd.

Suppose now that G has a strict u-split decomposition: G = A′ ]B′1 ] · · · ]B′u. Then

we can assume that A′ ∩F = 1 and hence u+ 1 ≥ |F : A′ ∩F | = |F | = (q + 1)/k. When p

is even or when G = PGL2(q), we conclude that u ≥ q, and so, min(G) = q. In a similar

fashion, we may assume that A′ ∩ D = 1, and hence, u + 1 ≥ |D| = q. We deduce that

u ≥ q − 1. Therefore, we obtain min(G) = q − 1 when G = L2(q) and p is odd.

Lemma 6.2. Let S be a simple group with min(S) = n. Then |S| ≤ (n + 1)n+1. In

particular, A5
∼= L2(4) ∼= L2(5) is the only simple group S with min(S) ≤ 4.
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Proof. Let S = A]B1]· · ·]Bn be a strict n-split decomposition of S, where n = min(S).

From [10] one can deduce that |S| ≤ |B||B| where B is an abelian subgroup of maximal

order. By [11], there exists x ∈ S such that A∩Bx = 1 and hence |B| ≤ n+ 1. This gives

the desired estimate.

Suppose that min(S) ≤ 4. By the previous paragraph |S| ≤ 55 = 3125, and hence S is

isomorphic to A7 or L2(q), q = 4, 8, 9, 11, 13, 17. By Lemma 6.1(1) and (2), min(L2(4)) =

4, while min(L2(q)) ≥ 8, for q = 8, 9, 11, 13, 17. Finally, if S ∼= A7, then S has a maximal

abelian subgroup of order 7, which intersects trivially with some of its conjugates, and

hence min(S) ≥ 6. This completes the proof.

The Suzuki groups Sz(q), an infinite series of simple groups of Lie type, were defined

in [8, 9] as subgroups of the groups L4(q) with q = 22n+1 elements and set r = 2n+1.

By [9, Theorem 7], the order of Sz(q) is

| Sz(q)| = q2(q − 1)(q2 + 1) = q2(q − 1)(q + r + 1)(q − r + 1),

note that these factors are mutually coprime. We are now ready to find a strict k-split

decomposition for the Suzuki groups.

Lemma 6.3. If G = Sz(q), where q = 22n+1 ≥ 8, then min(G) = 2q − 1.

Proof. By Lemma XI.11.6 of [6], G is partitioned by its Sylow 2-subgroups and its cyclic

subgroups of order q− 1, q− r+ 1, and q + r+ 1. Looking at the proof of Lemma XI.11.6,

we see that the cyclic subgroups of order q−1, q−r+1, and q+r+1 are the centralizers of

their nonidentity elements. We obtain the sets C1, . . . , Cq−2 so that each Ci contains one

nonidentity element from each of the cyclic subgroups of order q−1, the sets D1, . . . , Dq−r

so that each Di contains one nonidentity element from each of the the cyclic subgroups of

order q−r+1, and the sets E1, . . . , Eq+r so that each Ei contains one nonidentity element

from each of the the cyclic subgroups of order q+r. Note that r < q−1, so q+r < 2q−1.

Let P be a Sylow 2-subgroup of G. By Theorem VIII.7.9 of [5] and Lemma XI.11.2

of [6], Z(P ) is an elementary abelian 2-group of order q = 22n+1 and every element

outside Z(P ) has order 4. Observe that P is the centralizer in G of all of the nontrivial

elements of Z(P ). Label elements in Z(P ) = {z0 = 1, z1, . . . , zq−1}. If x ∈ P \ Z(P ),

then P0 = 〈Z(P ), x〉 ≤ CG(x). In the proof of Lemma XI.11.7 of [6], we see that the

elements of order 4 in G lie in two conjugacy classes. It follows that |CG(x)| = 2|Z(P )|.
This implies that CG(x) = P0. It follows that if {x1, . . . , xq} is a transversal for Z(P )

in P , then CG(xizj) = 〈Z(P ), xi〉 for i = 1, . . . , q and j = 1, . . . , q − 1. Let {a1, . . . , at}
for a transversal for NG(P ) in G. We define Fi as follows. For 1 ≤ i ≤ q − 1, set

Fi = {za1i , . . . , zati }. For q ≤ i ≤ 2q − 1, we define

Fi =

q⋃
j=1

{(xjzi−q)a1 , . . . , (xjzi−q)ar}.
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Finally, we define the Bi’s. For 1 ≤ i ≤ q − r, set Bi = Ci ∪Di ∪ Ei ∪ Fi; for q − r + 1 ≤
i ≤ q − 2, set Bi = Ci ∪ Ei ∪ Fi; for q − 1 ≤ i ≤ q + r, set Bi = Ei ∪ Fi; and for

q + r + 1 ≤ i ≤ 2q− 1, set Bi = Fi. Take A = 1. Then G = A]B1 ] · · · ]B2q−1 is a strict

(2q − 1)-split decomposition of G.

Note that G has a maximal abelian subgroup A of order 2q and A has a conjugate

that it intersects trivially, so we know that min(G) ≥ 2q − 1. This gives the conclusion

that min(G) = 2q − 1.

7. Some upper bounds

Suppose G has an n-split decomposition with respect to an abelian subgroup A. In what

follows, we show that the index |G : A| is bounded by some function of n. Since for every

positive integer n we can find Frobenius groups with arbitrarily large abelian Frobenius

kernels whose Frobenius complements are cyclic of order n + 1, we can use Lemma 3.4 to

see that it is not possible to bound |G|, particularly |A|, in terms of n. However, we now

show that we can bound the index |G : A| in terms of n. We have not worked to obtain

optimal bounds, and in fact, we are sure that the bounds obtained are far from optimal.

We see from the first couple of paragraphs of the proof that when A is not normal in G,

then it is possible to bound |G| in terms of n.

Theorem 7.1. There exists a positive integer valued function f defined on the positive

integers so that if G has an n-split decomposition with respect an abelian subgroup A, then

|G : A| is bounded by f(n).

Proof. Notice that we have the result when n = 2 and 3. Thus, we may assume that n ≥ 4.

We begin by noting that it suffices to prove that the size of all the abelian subgroups of

G are bounded by a function of n. In fact, if all of the abelian subgroups of G have order

at most m, then |G| ≤ m!, see Problem 1D.11 in [7].

Suppose first that A is not normal. Let U be an abelian subgroup of G that is not

contained in A. We know that |U | ≤ 2n by Lemma 3.1(1). Also, since A is not normal,

there is some conjugate of A that does not contain A. The above work shows that the size

of the conjugate is bounded by 2n, and so |A| is bounded by 2n. Therefore, we conclude

that the size of every abelian subgroup of G is bounded by 2n, and we see that |G| ≤ (2n)!.

Since |G : A| ≤ |G|, this gives the result

We now assume that A is normal in G. If U is an abelian subgroup of G that is not

contained in A, then |U : U ∩ A| ≤ n + 1 and |U | ≤ 2n by Lemma 3.1. If x lies in G \ A,

then o(Ax) ≤ n+ 1 by Lemma 3.1. Thus, the only primes that can divide |G : A| must be

less than or equal to n + 1. In particular, the number of distinct prime divisors of |G : A|
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is at most the number of primes less than or equal to n+ 1 which is certainly bounded by

n.

Let P be a Sylow p-subgroup of G. It suffices to show that |PA : A| is bounded in

terms of n. Suppose p does not divide |A|. If U is an abelian subgroup of P , then we have

U ∩ A = 1, so |U | ≤ n + 1. Applying the observation in the first paragraph of the proof,

we have |P | ≤ (n + 1)!.

Thus, we may assume that p divides |A|. We see that P will be a p-group that has the

k-split decomposition (A ∩ P ) ] (B1 ∩ P ) ] · · · ] (Bn ∩ P ) where k is the number of the

sets Bi ∩ P that are not empty. Note that we have not required that the decomposition

be strict, so sets of size one are allowed. We will prove that |P : P ∩A| ≤ (n2)!. If k < n,

then (k2)! ≤ (n2)!, so working by induction on n, we may assume that k = n.

For the rest of this proof, we assume that G is a p-group for some prime p ≤ n. Suppose

B is an abelian normal subgroup of G that is not contained in A and CG(B) = B. Then

as above |B| ≤ 2n. Also, by the N/C-theorem, we have that

G/B = NG(B)/CG(B) ≤ Aut(B) ≤ Sym(B),

so |G : B| ≤ (2n)!. It follows that

|G : A| < |G| ≤ (2n)(2n)! ≤ (n2)!,

which yields the desired conclusion.

Suppose U is an abelian normal subgroup of G that is not contained in A. We claim

that there exists a subgroup B normal in G so that U ≤ B, B is abelian, and B = CG(B).

Observe that U ≤ CG(U) and CG(U) is normal in G. If U = CG(U), then take B = U ,

and we are done. Thus, we may assume U < CG(U). Since G is a p-group, we can find

V normal in G so that U < V ≤ CG(U) and |V : U | = p. Notice that U is central

in V and V/U has order p, so V/U is cyclic. This implies that V is abelian. Also,

CG(V ) ≤ CG(U), so |CG(V ) : V | < |CG(U) : U |. Working by induction, on |CG(U) : U |,
we obtain the conclusion. Using the existence of B and the previous paragraph, we see

that |G : A| ≤ (n2)!.

Thus, we may assume that A contains every normal abelian subgroup of G and that

A = CG(A). Suppose U is a subgroup of A that is maximal such that it is normal in G

and CG(U) is not contained in A. Notice that such a subgroup U > 1 must exist since

1 < Z(G) ≤ A and G = CG(Z(G)) is not contained in A. Thus, there is an element g in

G \A that centralizes U . Thus, U〈g〉 is an abelian subgroup of G that is not contained in

A. Observe that U = U〈g〉∩A, and by Lemma 3.1(1), we know that |U | = |U〈g〉∩A| ≤ n.

Since A = CG(A), we know that U < A. Hence, we can find V so that U < V ≤ A, V

is normal in G, and |V : U | = p. Since p ≤ n, we have |V | ≤ n2. Now, G/CG(V ) is a
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subgroup of Aut(V ), so |G : CG(V )| is bounded by (n2)!. Now, the choice of V implies

that CG(V ) ≤ A and since V ≤ A and A is abelian, we have CG(V ) = A. Thus, we now

have that |G : A| ≤ (n2)!.

We do have some cases where we can obtain a better bound.

Lemma 7.2. Suppose G has an n-split decomposition with respect to A = 1, then |G| ≤ n!.

Proof. Let p be a prime divisor of |G|, and let P ∈ Sylp(G). Let M be a maximal abelian

normal subgroup of P and set m = |M |. Then M = CP (M). Thus, P/M is isomorphic

to a subgroup of Aut(M) ≤ Sm, which forces |P : M | to divide m!. Since m ≤ n, we

conclude that |P | divides the p-part of n!. The claim follows from the fact that |G| is the

least common multiple of the orders of Sylow subgroups of G.

Lemma 7.3. If G has an n-split decomposition with respect to A = Z(G) where |A| = n,

then |G : A| ≤ 2n.

Proof. Let k = |G : A|. As the cosets of the center are commuting subsets of G, no Bi

can contain more than one element of any coset of A, and it cannot contain an element of

A. We see that |Bi| ≤ k − 1. On the one hand, we have |G| = |G : A||A| = kn, and on

the other hand, we obtain

|G| = |A|+
n∑

i=1

|Bi| ≤ n + (k − 1)n = kn.

We must have equality throughout this inequality, so |Bi| = k − 1 for all i. Thus each Bi

contains representatives of every nontrivial coset of A. This shows that the complementary

graph of ∆(G), which is called noncommuting graph of G and denoted by ∇(G), is a

complete (k − 1)-partite graph. Now, by Proposition 3(ii) in [1], G/A is an elementary

abelian 2-group and the size of the class of g, for every noncentral element g ∈ G, is k/2.

Finally, since G/A is abelian, the entire conjugacy class of g is contained in the coset Ag,

which has size n. Thus k/2 ≤ n, so k ≤ 2n.

Some examples. Both D8 and Q8 have 2-split decompositions with respect to their

centers who have order 2. There are also many examples where n is large. One family of

examples is the Suzuki 2-groups (see [3]). We omit the details here.
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