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A Class of a-Carleson Measures
Ting Mei* and Yong Ding

Abstract. In the present paper, we introduce a class of a-Carleson measures Cq ,, (RT‘U,
which is called by the vanishing oz—?arleson measures. We prove that C; /WJ(RT”)
is just a predual of the tent space T2 (0 < p < 1). Furthermore, we construct the
a-Carleson measures and the vanishing a-Carleson measures by the Campanato func-
tions and its a subclass, respectively. Moreover, a characterization of the vanishing
a-Carleson measure by the compactness of Poisson integral is given in this paper.
Finally, as some applications, we give the (LQ/ @ L?) boundedness and compactness

for some paraproduct operators.

1. Introduction

It is well known that the Carleson measure has been a very important tool in harmonic
analysis, complex analysis and PDE since which was introduced by L. Carleson in [7,8]

(see [3}/11},/13,24,[35] for some applications of the Carleson measure).
Definition 1.1 (Carleson measure). Suppose that p is a positive measure on ]R’rrl. For

any cube Q C R"™ and a > 0, let

N(p, Q) ===~ and Nu(p) = sup N(u, Q).
Q| Ql=a

A positive measure p on R:L_H is called a Carleson measure written by u € C(]R:L_H) if

there exists a constant C > 0 such that
|ullc :==supNa(p) < C,
a>0

where |||l is called the Carleson constant of . A well-known fact is that || - ||¢c is a norm

and C(RT*) is a Banach space in the norm || - |[c.

An important result is the duality between the Carleson measure space C (Riﬂ) and
the tent spaces given by Coifman, Meyer and Stein [14] in 1985. Before stating this result,

let us recall the definitions of the tent spaces.
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Definition 1.2 (tent space). For 0 < ¢ < oo and a measurable function f on ]R?fl, let

1/q
(fr‘ |f(y,t fﬁfi) if 0 < g < oo,

sup(y pyer(z) |f (1)l if ¢ = oo

Ag(f)(z) =

where and in the sequel, I'(z) = {(y,t) € R : |y — 2| < t}. For 0 < p < oo and
0 < g < oo, the tent space Ty is defined by

17 =S+ 1l = 1Ag(Hll e < o0}

For ¢ = oo and 0 < p < oo, the tent space Tk is defined by
7% = {f € CRT™) : Iflzz, = IAoe(N)llzr < 00 and lim || = fllrg, =0},

where C(R'7"!) denotes all continuous functions on R and f.(z,t) = f(z,t + ).

It was showed in [14] that all tent spaces T} (1 < p, ¢ < 0o) are Banach spaces with the
norm || - [|zz. See [3-5}/10,2729,31] for some applications of the tent spaces in harmonic
analysis and PDE.

Theorem 1.3. [14] The dual of the tent space T, is the Carleson measure space C(R7H1),
that is, (TL)* = C(RH1).

At almost same time, Han and Long [26] proved that the generalized a-Carleson mea-
sure space is the dual of the tent space T% (0 < p < 1). In 1987, Alvarez and Milman [2]

gave the same result independently.

Definition 1.4 (a-Carleson measure). Suppose o > 0. A positive measure p on ]R’}fl is

said to be an a-Carleson measure, if there exists a constant C' > 0 such that
HMHCa = supj\/a(u,a) S Ca
a>0

where for any ball B in R",

Na(p, @) = sup N(u, B,a) and N(u, B,a) = léﬁ?-
|Bl=a

The set of all a-Carleson measures on R is denoted by Co(R).

Remark 1.5. Obviously, the Carleson measure space C (RTFI) is just 1-Carleson measure
space C1 (R7).

The a-Carleson measure was studied intensively from various point of view by many
authors, see [16},23/26,30] and references therein for the properties and applications of the

a-Carleson measure.
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Theorem 1.6. [2,26] For 0 < p < 1, the dual of the tent space Tk, is the 1/p-Carleson
measure space Cl/p(RTrl), that is, (Th)* = Cl/p(RT'l).

Recently, in [19] we proved that the predual of the tent space T is the vanishing
Carleson measure space C, (R’ ") (see its definition in Remarkbelow). Thus, a natural
problem arises: What is the predual of the tent space Tk, for 0 < p < 17 In 1988,
Wang [36] discussed this problem. He pointed out that it is unsuitable to consider the
predual of T% (0 < p < 1). So, in [36], a tent space T2, (0 < p < 1) related to Tk
was introduced (see Definition [2.4), which is the completion of T%. The author of [36]
proved that the dual of T is also C; /p(]RiH). Further, Wang [36] introduced a subclass
of Cl/p(RT'l): for0<p<1,

In [36], the author pointed out that the dual of VCM,,(R*) is T (0 < p < 1) by using
the idea of |15]. Note that the author of [36] did not give the proof of his conclusion
and even did not introduce a dense subset of VCM,,(R*!), which is the key using the
Coifman-Weiss’s method in [15], so we do not know whether this conclusion in [36] is true
or not.

In the present paper, we introduce two subclasses of CQ(RTFI), one is the vanish-
ing a-Carleson measure space Co,,(R"™) (see Definition , another is Cq o(R") (see
Subsection for its definition). Then we show that for a > 1, Ca(R™) is dense in
Cow(R7T) in the norm || - ||¢, (see Lemma [2.8)), that is,

7CQ7C(R1+1)II-HCQ _ Ca,v(Ri+1)-
Further, we prove that (Cl/pﬂ,(RTrl))* =TE for 0 < p <1 (see Theorem. An obvious
fact is that C; /p,v(RTrl) C VCM,(R'T™) by their definitions.

The another aim of this paper is to give the construction and characterization of the
vanishing a-Carleson measure Ca,v(RT'l). First, we construct an a-Carleson measure and
a vanishing a-Carleson measure by the Campanato functions in Section [3] In Section [4]
we give a characterization of the vanishing a-Carleson measure via the compactness of the
convolution operator £, defined in . As the consequence of above result, we see that
the vanishing a-Carleson measure can be characterized via the compactness of Poisson
integral (see Corollary below). In the final section, we will apply our results to give
the boundedness and compactness of some paraproducts. To be precise, we introduce a
paraproduct 7, via Campanato functions and establish its (L2/ @ L?) boundedness and
compactness. We also study the (L%, L?) boundedness and compactness of a kind of

paraproduct By(f) introduced by Coifman and Meyer [12].
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In this paper, C' will denote a positive constant that may change its value on each

statement without the special instruction.

2. Predual of tent spaces T& with 0 <p<1

In this section, we first introduce a subclass of C, (RT’I), the vanishing a-Carleson measure
space Cq,»(RTT1) and prove that for 0 < p < 1, the dual of Cl/pw(RTrl) is the tent space
T®,, which was introduced by Wang in [36].

Definition 2.1 (vanishing a-Carleson measure). Let a > 1. An a-Carleson measure p

on Rﬁ“ is called a vanishing a-Carleson measure denoted by 1 € Cq 4 (Rﬁ“) if p satisfies
(1) limg 0 Na(p, ) = 0;
(i) it o0 Ny (1, @) = 0
(iil) limy|—oo N'(pt, B +2,) = 0 for each ball B in R™.
See Definition for the definition of Ng(u, «).

Remark 2.2. When o = 1, the vanishing 1-Carleson measure is called by the vanish-
ing Carleson measure, the collection of all vanishing Carleson measures is denoted by
Cv(R’rﬂ).

In [14,26], the authors gave the atom decomposition of the tent space T, for 0 < p < 1.

A function a on R’?ﬁl is said to be a TL, atom if
(i) suppa C @ for some cube @) C R™;
(i) flall oy < Q1717

Lemma 2.3. [14,26] Suppose f € T& (0 <p <1). Then f =3 2, Nia;, where each a;
is a T% atom, \; € C, and > 2, NP < C||f]| the constant C is independent of {\;}
and f.

p
T2,

In [36], Wang introduced a tent space T2 (0 < p < 1).

Definition 2.4. For 0 < p < 1, the tent space TL. is defined by

TP = {f:Z)\iai:ai is a T atom and Z]/\Z\ <oo},
i i

and the T2 norm is defined by ”f”fé’o =inf {3, |Ni| 1 f =2, Niai }-
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It was showed in [36] that T2, is the completion of T%, for 0 < p < 1 and T2 and T
have the same dual. That is, (T%)* = Cy /(R

The first main result in this section is to prove that the tent space T& is the dual space
of Cl/pjv(RT“l).

Theorem 2.5. For 0 < p < 1, the dual of Cl/p’v(RTrl) is the tent space T&, that is,

(Cijpw)” = TE,. More precisely, the pairing (f,dp) = S f(,t) du(z,t) realizes the
’ +

duality of Cyp,,, with TE.

To prove Theorem we need some elementary properties of COC’U(]RTJ_H) and Tgo
which are given in Subsections [2.1] and respectively.
2.1. A dense subset of Co,(R")

In this subsection, we introduce a subclass Cq o (R") of Co(RT1) and prove that Cq o (R7)
is a dense subset of Cq»(R7*") in the norm || - [|c,. We first give two lemmas. The first

one is obvious, and we omit its proof.

Lemma 2.6. (i)

lin%)/\/a(,u,a) =0 <= lim sup NMN(y,Q,a) =0,
a—

4701Q|<a
lim MV,(p, ) =0 <= lim sup N(u,Q,a)=0.
a—00 a—00 ‘lea

lim M(p,Q+2z,0) =0 <= lim sup N(,Q + z,a) =0,
|x|—o00 4= |z1>q
where @) is any cube in R™.

Lemma 2.7. Co,(R"™) is a Banach space equipped with the norm || - ||c, -

Proof. Suppose {ux} is a Cauchy sequence in Caw(Rf_ﬂ), then {uy} is also the Cauchy

sequence in C, (Ri“). Applying the completeness of Ca(Rfrl), there exists a measure p €

Co(RTY), such that [|u—pullc, — 0 as k — oco. It remains to show that p € Co ., (R7).
For any a > 0, note that

Na(p, o) < No(p, o) + Na(p — prg, @) < Na(pg, @) + [l — pellca.-
Thus, for both cases s =0 and s = oo, we have

lim N (p, ) < || — prlle, — 0 as k — oo.
a—s
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We also notice that for any cube @ in R",

N(M7Q7O‘) < N(Mk:Qva) +N(M - Mkaaa) < N(/J,k,Q,Oé) + H,U, - /J'kHCa

So
lim N(p,Q+z,0) < |lu—pklle, =0 ask— oo
|z|—o00
That is, 1 € Co,» and Cayv(R’}rH) is a Banach space. O

Now we introduce a subclass of C, (]Rffl) as follows.
Ca,C(RTFI) = {p € C, : there exists a compact set K in RT‘l,

such that for any g-measurable set E in R, u(E) = u(E N K)}.
We claim that Cy (R"") is dense in Cq (R ) in the norm || - |c,..

Lemma 2.8. Co (R71) is dense in Coo(RYT) in the norm || - |lc, (RTTY). That is,

-llca

Coc (R = Co o (RT).

Proof. We first prove Co C Con. In fact, for any p € Cq, ., there exists a compact set
K C erfl such that for any u-measurable set E C Rffl, w(E) = pu(ENK). Fora>0
and a cube @ C R™ with |Q| = a, then we have the following facts:

(i) If a is small enough, then @ NK =10, so ,u(@)/]QP‘ = ,u(@ NK)/|Q|* =0.

(ii) If a is large enough, such that QN K # 0, then M(@)/\QP‘ < a “pu(K). Thus,
Na(p, @) < a *p(K) and limg—yo0 Ny (g, ) = 0.

(iii) If || — oo, then @ + xNK = . Thus, u(Q + x) = 0. So limyy_00 p(Q + 2)/|Q|* =
0. Hence, Cy,c C Cqo and @”'”ca C Cq,» by Lemma

Below we verify Cq, C @,CH.”C“. Let By = {(y,t) € RT™ : |y| < k,1/k <t <k} for
any k € N. For y € Cyp, denote i (E) = pu(E N EBy,) for any p-measurable set E in R’
then it is easy to see uy € Cq . So, to finish the proof of Lemma it remains to show
that

(2.1) lim [|p — pglle, = 0.
k—o00
Let
Fp={(y,t) eR" ¢t >k},

F,?:{(y,t)eR’};“:O<t<

= {(w) ERM: |y > k.
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Then it is easy to see that Riﬂ =E, U Fk1 U Fk2 U F,S’ for any k£ € N, and for any cube @
in R™ with center z¢ and side length ¢(Q),

— ) (Q QN F} QN F? QN E}
(1 Nka)(Q) < M@ ak)+u(Q ak)+u(Q ak)_ Nt Lt
Q| Q| Q| Q|
Thus, to get (2.1)) we only need to show that
(2.2) lim sup I; =0 fori=1,2,3.
k—o00 QcRn

Case i = 1. If £(Q) < k/2, we have Q N F! = 0. Then we have sup|g|<(k/2)r 11 = 0.
If £(Q) > k/2, then |Q| > (k/2)" — oo as k — oo. Thus, limg— o0 SUP|g|>(k/2)n 1 = 0 by
it € Cqp and Lemma Hence holds for 7 = 1.

Case i =2. If {(Q) < 2/k, since p € Cq, and applying Lemma we have

sup I < sup M—)O as k — oo.
0(Q)<2/k wQ)<2/k QI

If /(Q) > 2/k, applying Besicovitch covering lemma (see |25, p. 39]), then there exists a

sequence of cubes {Q;} and ¢, only depending on the dimension n such that:
(i) €(Q;) € (1/k,2/k);
(i) @ cU; Qj;
(iil) >2; x@; (%) < ¢y for each z € R™.

Then it is easy to see that (@ NE?) C Uj @j. Notice that o > 1, we have

[0}

w@Q)) @ @y Q)
I, < sup
? Q — Z |Q|°‘ E(Q <2/k \Q Z \Q| wQ)<2/k QI
< cg sup M —0 ask— oo.
Q)<2/k 1QI*

From this we see that (2.2)) holds for i = 2.
Case i = 3. Obviously, we need only to consider the limit of SUD 5 349 I3 as k — oo.
k
By p € Cqp and Lemma we have

sup I3 < sup I3+ sup I3
QNF3#0 lzq|>k lzql<k
FUQ)>k—|zq]

< sup Is+ sup I3+ sup I3
lzq|>k lzg|<k/2 k/2<|zg|<k
FUQ)>k—zq] FUQ)>k—|zq]
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< sup I3+ sup I3+ sup I3
lzgl>k {(Q)>k k/2<|zq|<k

<2 sup @—i— sup MQ)

wolzk/2 QY @)k 1QI*

—0 ask— oo.

Thus, (2.2)) still holds in this case. We therefore show that u € EH'”C“ and complete the
proof of Lemma [2.8 O]
2.2. Some facts on tent spaces fgo 0<p<1)

In this subsection, we give some facts on the tent space T % (0 < p < 1), which will be
used in the proof of Theorem

Lemma 2.9. For 0 < p < 1, the norm of T% can be characterized via Cl/p,C(RTrl). More

precisely,
flge = swo | [t duun].
/"/ecl/p,c Ri+1
elle, ,, <1

Proof. Since (T%)* = Cy (R and €y (R € €1, (R%FY), we have

23)  Iflg = sup / Pt duly,t) > sup / .t dp(y, 1))
,uECl/p R1+1 Mecl/p’c Ri+1
e, ,, <1 !

It remains to prove that for any e > 0, there exists yo € Cy . with [|uollc, , < 1 such that

> | fllz —c.

/ f(y,t) duo(y,t)
Ry

In fact, from (2.3), there exists a measure p € Cy, with [|ulc, , <1 such that

€
> fllgs — =

/ f(y,t) du(y,t)
Ry

For k € N, let xr = X{(y,t) ERT L |y|<k 1k <t <k} Note that

—0 ask — oo.

/R”‘H f(y7t)(1 - Xk(y,t)) du(y’ t)

Thus, there exists kg > 0, such that

<

DO

[ F0 )0 = 01 dlt)
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Hence,

Lo 00000 )| = 1y e

Denote dpug := Xk, dpt, then it is easy to see po € Cijp. and [luolle,,, < 1. We prove
Lemma 2.9 O

Notice that from Definition we know that the space TZ (0 < p < 1) has an atom
decomposition. But the relationship of the support set of each atom is not clear. In [36],

Wang gave a more delicate atom decomposition of A (0<p<1).

Lemma 2.10. [36] For every fived k € 7Z, there is a sequence {Qjr}; of cubes in R™

which satisfies
(1) |Qjl = 8%, B=3" for any j =1,2,..;
(i) UjZ, @jx =R";

(it)) D272 Xq,(2) < B for any x € R™;

(iv) for each f € TE, (0 < p < 1), we have f = > ohez Dje1 Njk@jk, where ajy is
the T% atom supported in @jk and Y ez dioy [Nkl < Cllfllzo , the constant C'is
independent of the sequence {\;i} and f.

In order to prove Theorem we also need the following lemma which is given by

Coifman and Weiss in [15].

Lemma 2.11. [15] Suppose A\jx > 0, j,k = 1,2,..., satisfies 33221 Ajr, < 1 for each
k=1,2,..., then there exists an increasing sequence of natural numbers k1 < ko < --+ <
ky < --- such that lim;_,oc Aji, = \; for each j and Z;’il A< 1.

The following result plays a key important role in the proof of Theorem

Lemma 2.12. Suppose 0 < p < 1, {fitien C TE, with I fillze < M, where M > 0 is

independent of | = 1,2,.... Then there exist a function f € T2 and a subsequence {fi.}s
such that

. _ n+1
@ Jm [ 0t = / o D) for amy € Cyp (R

Proof. Applying Lemma(2.10} f; = 3 47 > 721 Mijkaji With 307 3222 [Arji| < Cllfill 7 ,
where C' is independent of {)\; j1} and f;. For any fixed k € Z and j € N, by Lemmam,
there exist a subsequence {\;, ji}s and \j; such that

oo
Jim Ay, k| = [Ajk| and DY il < Clifillg < CM.
keZ j—1
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Notice that all a; ;, are T, atoms supported in @jk with Qi satisfying (i), (ii), (iii) in
Lemmam From the proof of lemma it is easy to see that the cube sequence {Q;}
is independent of Is. And for (j, k) fixed,

(2.5) la, il < Q7P = B7H/P < o0

holds uniformly with the bound independent of [;. Hence there exist a subsequence, which

is still denoted by {a;, ji}s, and a function aj, € L supported in @jk such that

(2.6)
. dydt dydt ~  dydt
i [ sl 090:0 % = [ 00000 B forailg e 2t (Q ).

5700 @jk Qjk t
Thus, by (2.6)) it is easy to see that

dydt
| antvng.n @t
Qjk

lajkll Lo = sup
HQHLI(@J_M%)S]'

i dydt
= ol sup slggo /@ azs,jk(y,t)g(y,t) -
! Ll(@.fk;dyT‘“)Sl ik
< sup |ij|*1/p”9HL1(@.k;M)
HgllLl(@jk;@>Sl j ;
< ’ij!_l/p.

Thus, ajy, is a T% atom. Let f =37, 7> 22 Ajkaji, then f € T%,. Below we prove that

f satisfies ([2.4]).

Assume that p € Cy /p,c(RTrl), then there exists a compact set K C Rf‘fl such that
for any p-measurable set F C IR{’}FH, w(E) = p(ENK), then

Lohwodn=[ | ¥+ 3 3| S sl dutnt

—N<kE<N k<—-N k>N/ j=1

=1L +1I,+1I1Is.

Since K is a compact set in R’/!, so there is a to > 0 such that K C {(z,t) e R : ¢ >
to}. We now take N large enough such that B=N/m <ty
Estimate of I1. Note that £(Q;i) = BE/m < g=N/m < ¢4 for all j € N. Thus,

U Udw | & =0

k<—N j=1

Therefore, 115 = 0.
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Estimate of 113. By (2.5)), it is easy to see that

o0
1131 <Y I wlllar, jilloe n(K)

k>N j=1
oo
< Ckllulle,, D > P ullQaul 777
k>N j=1
< C’MC’KHMHCUPB_N/Z’ —0 as N — co.

Estimate of I1;. Notice that for any k € [N, N]| fixed, the set {j € N: @jk NK #0}

is a finite set. That is, there exists a integer m > 0 such that

th= /Rn+1 Z Z)\ls ]kals’jk y,t) duly, 1)

~N<E<N j=1

= ) Z)\ls,jk:/ oy gy 1) dpa(y, 1)

~N<k<N j=1

Notice that tdu € Ll(@jk; @), then from ([2.6)),

lim 11 = > Zm/ ajk(y,t) dpu(y,t).

—N<k<N j=1

Thus,

Jim Jim I = lim > Z/\Jk/ ajr(y,t) dp(y,t)
_N<k<N j=1

- ]\}gnoo /Rn-H Z ZA kaJk y? d,u(y, )

—N<k<N j=1

= / f(yvt) d/"(ya t)'
R7H

+

We therefore complete the proof of Lemma O

2.3. Proof of Theorem

The proof of Theorem needs to use a general result in functional analysis. Let us give
the definition of the total set, which can be found in [21] p. 58].

Definition 2.13 (total set). A set W of maps which map a vector space X into another
vector space Y is called a total set if # = 0 is the only vector for which ¢(z) = 0 for all
peW.
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Lemma 2.14. |21} p. 439] Let X be a locally convez linear topological space and W be

a linear subspace of X*. Then W is X-dense in X* if and only if W is a total set of

functionals on X.

Proof of Theorem 2.5 Note that (T2)* = Cl/p(RiH) D Cl/pjv(RTH), so T C (Cr/pw)*
On the other hand, if there exists a u € Cl/pvv(RﬁH), such that

(2.7) [ f@ 0t =0 forall f € T2,
B
then by (T2)* = Cl/p(R’ffl), we see that

HNHCl/p = Sup — 0

Ifll7p <1

/ f(y,t) du(y,t)
R+

Thus, © = 0. In particular, since C; /p,v(RﬁH) is a Banach space, so it is obvious that
i is the only measure in C; /p’v(R’er) such that (2.7) holds. Thus, T is a total set on
¢y /pm(R’}rH) by Definition Clearly, Cy/p,, (]Rffl) is locally convex linear topological

space by Lemma Applying Lemma [2.14] T%, is weak* dense in (C; /pw) - So, for any
0 € (Cy/pn)*, there exists a sequence of functions {fx} C TE, such that

. . n+1
Up) = lm (fy, p) = lim /R - fe(y,t) du(y,t) for all € Cypp,(RYE).
From this, we see that for each fixed p € Cl/p’v(RTrl),

(2.8) su
k

The uniform boundedness principle (Banach-Steinhaus Theorem) and (2.8)) imply that

< 0.

P /Ri“ fe(y, 1) duly, 1)

sup < Cllplle,,, for any pe Cl/p,v(Riﬂ)-

1 /RKH ey, 1) duly,1)

Thus, by Lemma we get || fxll72 < C where C is independent of k. Now, applying
Lemma we can obtain a subsequence { Ik; }; and a function f € T2 such that

lim Fr, (s t) dp(y, t) = / fly,t)dp(y,t) for any p € Cypp o (RTF).
Jj—00 Rrrrl Riﬂ
Therefore,
(2.9) Up) = /R"“ f(y,t)du(y,t) for any u € Cl/p,C(R’}fl).
+

Finally, by the density of Cl/p7C(Rﬁ+1) in Cl/pﬂ)(RTrl) (i.e., Lemma , we can check
that (2.9)) still holds for all u € C; /pvv(RﬁH), which ihows that the linear functional ¢ on
Cy /pm(R’}fllcan be represented by a function f in T%. Therefore, we prove indeed that
(Ci/pw)* C T& and complete the proof of Theorem O
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3. a-Carleson measure and Campanato functions

It is known that one may construct a Carleson measure on Rﬁ“ via a BMO(R"™) function.
More precisely, if b € BMO(R") and ¢ € S(R") (the Schwartz class) with [¢ = 0, then
iy b(x) 2 42 ¢ C(RTH) (see [35], for example). In 2007, J. Xiao constructed an a-
Carleson measure via a Campanato function (see Lemma 2.1 in [37]). First let’s recall the

definition of the Campanato space.

Definition 3.1. [32] Suppose 1 < p < oo, A > 0. For any ball B = B(z,r) CR", a >0
and f € L (R"), let

loc

1/p
w50 = (5 1560 - solran)

and

Ma(f,p, ) = sup M(f,B,p, ),

|Bl=a

where fp = ﬁ [ f(y) dy. Then the Campanato space £LP*(R™) is defined as

LPAR™) = {f € Lipo(R") : [|fllpx < o0},

loc
where

1 fllp == SI;ISMa(f,p, \) < 0.

Lemma 3.2. [37, p. 233] Let ¢ € S(R™) with [z, ¥(x)dz = 0. Suppose b € L2"*(R")
with o > 1. Let du(w,t) := |b* ¢y(2)[> €L, then p is an a-Carleson measure on RIH,
and ||MHCa < CHbH%,na

3.1. A vanishing a-Carleson measure constructed via a vanishing Campanato function

Recently, in [18], we give a construction of vanishing Carleson measures via CMO space,
a subspace of BMO space. In this subsection, we can use a similar way to construct a
vanishing a-Carleson measure via a subclass of the Campanato space, which we define as

the vanishing Campanato space.

Definition 3.3 (vanishing Campanato functions). Suppose 1 < p < oo and A > 0. If
f € LPAMR™) which satisfies:

(1) hmaﬁo Ma(fan )‘) = 07
(11) limg oo Ma(f7p> >\) =0;

(iil) lim|y|oo M(f, B +x,p,A) = 0 for any ball B in R™.
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Then f is called a vanishing Campanato function. The set of all vanishing Campanato
functions is defined by £5*(R™).

Theorem 3.4. Let 1) € S(R™) with [p, ¥(x)dx = 0. Suppose b € L™ (R™) with a > 1.
Let du(x,t) := |b* i (x)|? @, then  is a vanishing a-Carleson measure on RT‘l.

Proof. Fix a > 0, for any ball B C R" with |B| = a, let B* = 2B. From the proof of
Lemma we know

2
1 o dzdt 1

< — bp-|?
a [ u@P St < om [ ) - e Pay+C

> Brgk(b, B)

k=1

holds. Since b € £™*(R™) , then

lim sup gg(b, B) = lim sup gx(b,B) = lim gg(b, B+ z)=0.
|z|—o00

a—>O|B|:a a—)OOIBl:a
Combining with Lemma 3.2 in [18] and the fact

supsup sup |gx(b, B)| < C,
k a>0|B|=a

we have, for both cases s =0 and s = oo,

lim sup > Brge(b, B) =0

a—s |B|:(l 1

and
(e.)
li b,B =0
i > Brgr(b, B +x) =0,
k=1
which implies that p € Cy 4. Thus, we prove Theorem O

3.2. The weakened results

Note that in Lemma [3.2] and Theorem [3.4] we assumed the smoothness condition on the
function . In this subsection, we show that the smoothness condition assumed on v can
be removed. Before stating our result, let us recall some known results. Suppose that the

function 2 satisfies the following conditions:
(3.1) Q(Az) = Q(z) for any A > 0 and z € R™\ {0},

(3.2) /S @) do(e!) =0,
Qe LS.
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Let ¢(z) = Q(x)]z[*~"x{jz)<1} (2), then the Littlewood-Paley operator g, (i.e., Marcinkiewicz
integral introduced by Stein [34]) associated with 1 is defined by

gy(f)(x) = (/OO"U*%@)'QC?)UQ
Oz —y)

-/ N /my@ ) dy

It is well known that g is bounded on L for 1 < p < oo with  satisfying (3.1]) and
(3:2) and Q € H*(S" 1) or Q € L(log™ L)/2(S*1) (see [1,[17)).

2
= | = galf)(@)

Remark 3.5. The following containing relation between some function spaces on S*~! is

well known:
L°°(S”’1) C L’”(S”’l) (I<r<oo)C Llog™ L(S”’l) - Hl(Snfl) - Ll(S”’I).

Moreover, the spaces H'(S"1) and L(log™ L)*/2(S"~!) do not contain each other.

Now we may construct an a-Carleson measure and a vanishing a-Carleson measure

under some weaker conditions.

Theorem 3.6. Let b € L2>"(R") with o > 1. Suppose that V(z) = |IQ|(TJ:—)1X{|2|<1}(1')

with Q satisfying (3-1) and [B-2). Let dv := |b* ()| 2% if Q € HY(S"Y) or Q €
L(logt L)Y2(S"1), then v € Co(RH).

Proof. For any ball B = B(xzg,r) C R", let B* = B(xq,2r). Decompose b as follows:
b=bp+ (b—bp)xp+ (b— bB*)X(B*)c =:bg + by + ba.

From (3.2)), we have by * ¢, = 0.
Applying Theorem one may see that

1 dxdt 1
< [l @R BE < (e B
Bl /3 i =B
(3.4) :
<Cogia [ ) = ba Py < CIp1E
B Sy

For (z,t) € Bandye (B*)¢, we see that |z —y| > |y — zo| — |z — zo| > 2r —r =r and
t < r. Thus, when (z,t) € §,

9] —
bwine) = [ 00) ~ b gm0 dy =0

Therefore, v € C, and ||v|lc, < C’Hb||%?m. We finish the proof of Theorem O
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Similarly, from (3.4)), we can obtain a vanishing a-Carleson measure under improved

conditions. We omit the proof.

Theorem 3.7. Let b € L2"*(R™) with a > 1. Suppose that (z) = mg )1X{|m|<1}( )
with Q satisfying (3.1) and (3.2). Let dv := |b * ¢y ()|? @, if Q€ HY (S 1) or Q €
L(log™ L)Y2(S"1), then v € Co o (R').

4. A characterization of the vanishing a-Carleson measure

It is well known that the Carleson measure can be characterized via the boundedness of

Poisson integral (see [7,[8]). For f € LP(R™) (1 < p < o0), Poisson integral of f is defined

by u(x,t) == ps x f(x) (t > 0), where p(z) = C"W with ¢, = %11))//22) is the

Poisson kernel on R’}fl.
For the a-Carleson measure, Barker [6] and Johnson [30] showed respectively that
if @« > 1, then the a-Carleson measure p on R?fl can also be characterized via the

boundedness of Poisson integral.

Theorem 4.1. (see [6,30]) Suppose o > 1, the following are equivalent:
(i) The measure p is an a-Carleson measure on RIH;

(ii) Poisson integral is bounded from LP(R™;dz) to LPO‘(RTFI; dp) for every 1 < p < oo;

iii) Poisson integral is bounded from LP(R™; dxz) to LP*(R™™:; du) for some 1 < p < co.
+ H

Further, using the method of proving Theorem 7.3.7 in [24], one can give an extension
of Theorem (see Corollary below), we omit its proof here. Suppose that the function

o on R" satisfies

(4.1) lo(x)] < C(1+ |z|)" "¢ for some C,e > 0 and all z € R™.
The convolution operator associated with ¢ is denoted by

(4.2) Lo f=@uxf,

where and in the sequel, pi(x) =t "p(z/t) for t > 0 and = € R™.
Corollary 4.2. Suppose o > 1 and ¢ satisfies .

(i) If the measure p on RIH is an a-Carleson measure, then for every 1 < p < oo, the
operator /Eq, is bounded from LP(R"; dx) to LP* (R dp) with I Lol Lr (da)— Lo (dp) <
1 pa
,p||ﬂ||
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(ii) If ¢ > 0 and f\rlﬁl ¢(x)dx > 0 yet, and a measure pi is defined on R’ such that
the operator Ly, is bounded from LP(R";dzx) to LPQ(R’}FH; dp) for some 1 < p < o0,
then p is an a-Carleson measure, and ||p)|c, < ||Ly| ii(dz)ﬁLpa(du)‘

Remark 4.3. Similarly, using the idea of proving Theorem 9.5 in [22], it is easy to see that
Corollary still holds if the condition assumed on ¢ is replaced by ¢ € L' N L>®
with ¢(x) := ess SUD|g|<|y| lo(y)]-

Now, we want to give a characterization of the vanishing a-Carleson measure via the

compactness of the convolution operator L.
Theorem 4.4. Suppose a > 1 and ¢ satisfies (4.1).

(i) If the measure p on R:‘_H is a vanishing a-Carleson measure, then for every 1 <

p < 00, the operator L, is a compact operator from LP(R™;dx) to L”C“(R?fl; du).

(ii) If ¢ > 0 and f\’£|<1 o(x)dr > 0 yet, and a measure u is defined on RTFI such that
the operator L, is compact from LP(R™;dx) to LPO‘(RZT_H; dp) for some 1 < p < o0,

then w s a vanishing a-Carleson measure.
The following consequence of Theorem is obvious.
Corollary 4.5. Suppose o > 1, the following are equivalent:
(i) The measure p is a vanishing a-Carleson measure on RTFI;
ii) Poisson integral is a compact operator from ;dx) to ; or every
ii) Poi integral i t t LP(R™;dx) to LP*(R s dp
1 <p<oo;
iii) Poisson integral is a compact operator from ;dx) to ;dup) for some
iii) Poi integral i t t LP(R™;dx) to LP*(RH:d
1 <p<oo.

Remark 4.6. For the case a = 1, the conclusions of Theorem [£.4] and Corollary have

been given by authors in |18].

Proof of Theorem [4.4] (i) Note that LP(R™) (1 < p < oo) is a reflexive space, by [33,
p. 113], to show that L, is compact from LP(R";dzx) to LPQ(RTFI; dp), it suffices to prove
that

(4.3) Lo (Fo)ll o rrta) = 0

holds for any sequence {fy} C LP(R™) which converges to zero weakly. Since p €
Cow(R), then for any e > 0, there exist §,M,N > 0, for any ball B C R" with
the radius rp and center z g, then

1(B)

(4.4) T

<e ifrg<dorrg>Mor|zg|> N.
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Set
Ey = B(0,6) x (0,8) = B(0,9),
E;:= (B(0,M + N +1)\ B(0,0)) x (0,6/8),
E3:= (B(0,M + N +1)\ B(0,0)) x [§/8,6) UB(0, M + N +1) x [0, M + N +1),
Ey:= (B(0O,M + N +1) x (0,M + N +1)).

Denote dy; = xg,dp (1 < i < 4), then pp = p1 + p2 + ps + pa. Since p € Ca(Rfrl),
so it is easy to see that p; € CQ(RﬁH) for 1 <4 < 4. Thus, to prove it suffices to
show the following four limits hold for any sequence { fi} which converges to zero weakly
in LP(R"):

(4.5) Jim o | fi* ()P dpi(z,t) =0, 1<i<4

Note that the weak convergence of {fx} in LP(R") together with the uniform bound-
edness principle implies that {fx} is uniformly bounded in LP(R™). That is, there exists
a constant Cp > 0, independent of k, such that | fi|, < Co.

We first give the estimate of for i = 3. Notice that for any (x,t) € E3, we have

s\ /P
fore@<Co(3)  lel

and
[ dnatant) < p(BONFN +1)) < Coilile, < o,
w

where the constant C), o ar,n only depends on the dimension n, a, M and N. Applying
Lebesgue dominated convergence theorem and note that { i} converges weakly to zero in
LP(R™), we get for i = 3.

In order to prove for i = 1,2, 4, we only need to give the following estimates

(4.6) lnille, < Cne fori=1,24,

where the constant C), > 0 only depends on the dimension n. In fact, by the conclusion (i)
of Corollary and (4.6)), the following inequalities hold uniformly in k:

1/(p)
(/ ﬂ\fwt(xwadm(x,t)) < CaColl il < CCoet/ ¥, i=1,2,4,
Rn

+

where C),, and C are constants depending only on the dimension n.

Hence, to finish the proof of conclusion (i) in Theorem it remains to verify (4.6)).
That is, we need to show that there exists C), > 0, depending on the dimension n only,
such that holds. For any fixed ball B := B(xp,rg) C R".
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Case I: rg <dorrg > M or |zg| > N. By (4.4)

Case II: 6 <rp < M and |zp| < N. In this case, by the definition of x; and using

(4.4), we get

m(B) _ n(B(0,3))
Bl = [BO,0)] €

Notice that B C E§. Thus, pa(B) = 0. Tt remains to verify (.6) for i = 2.
Let F:= {z € R" : § < |z| < M + N + 1}, then {J,.p B(z,0/4) D F. Applying
Besicovitch covering lemma (see [25, p. 39]), there exist {x;}1<j<m C F and ¢, > 0

depending only on the dimension n such that

(i) U1§j§m B(z;,6/4) D F;

(i) D 1<jem XB;(®) < ¢ for each z € R", where B; := B(;,6/4).
Note that BN F # 0, let H :={B; : B;N(BNF)# 0,1 <j<m}. Then

BnFc |J Bj and BNnEcC J B;.
B;eH B;eH

Moreover, it is clear that | UBJ-EH Bj| < 4™ B| since rg > ¢. Therefore, notice that o > 1,

B -y 11(B; | Bjl Bl "
pa(B) < ZBJEH 1(B;) < EZBJG’H| i < e |UB]eH il < (47, ).
| B| | B| | B| |B|

Thus, we finish the proof of conclusion (i) of Theorem 4.4

(ii) Since L, is a compact operator from LP(R"™;dx) to Lpa(R’}fl; dp), so L, is also
bounded from LP(R™;dx) to LP*(R*!; dp). Thus, p € Co(RET) by the conclusion (ii) of
Corollary Below we verify p satisfies the conditions (i)—(iii) in Definition

Note that in the definitions of C, (Definition and Co, (Definition , we may
replace B by T(B) := {(x,t) € R"™ : B(x,t) C B} for any ball B in R". Hence, in order
to prove p € Cq v (R’fﬁl), we only need to verify

lim (T (By))

=0
k—0c0 ‘Bk’a

holds for any sequence of balls {Bj} in R"™, which satisfies one of the following three

conditions:
(a) hmk—)oo ’Bk| = 0;

(b) limp—ye0 |Bi| = 00;
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(¢) By = B + xp with limg_, |zx| = oo for each ball B in R™.

Let fx(z) = W}(ggk (x), then from Lemma 2.3 in [18], { f} converges to zero weakly
in L? under one of the above cases (a), (b) and (c). Since the linear operator L, is compact
from LP(R";dz) to LP*(R; dp), so

(47) klinc}o |"C50(f/€)||LP0¢(Ri+1,du) =0.

Notice that for any ball B = B(zg,r) C R", for any (z,t) € T(B), we have

(4.8)  xeB*@i(x) = / otz —y)dy > / oi(y) dy = / o(y)dy =: A.
B(zo,2r) B(0,t) B(0,1)

Thus, by (4.7) and (4.8), we have

w(T(By)) < A~re
|Br|* 7 |Bgl|*

[ s s e dute. )

T(By)

< A_po‘/ " | fx * or(x) [P dp(z,t) — 0 as k — oo.
RY

Hence, we finish the proof of conclusion (ii). O

5. Applications: Boundedness and compactness of some paraproducts

As some applications of our results obtained above, we will give the boundedness and
compactness of some paraproducts in this section.
Let us recall the definition of the paraproduct m, with b € Llloc(]R”),

(5.1) m(f) () = /0 T n ((F ) (b)) (@) 2

t )
where ¢ satisfies (4.1]). It is well known that the paraproduct plays an important role in
proving T'1 Theorem (see [9,22,24], for example). We know that when 7 and v satisfy
some appropriate conditions, the paraproduct 7, is bounded on L? if b € BMO(R") and
compact on L? if b € CMO(R™) (see [18,,20,35]), where CMO(RR") is the closure of C2°(R")
in BMO(R"™) norm.

5.1. Paraproduct with the smooth kernel

We first consider the case where both of ¥ and n are Schwartz functions.
Theorem 5.1. Suppose that the paraproduct m is defined by (5.1)), where

(i) ¢ € SR™) with [p, () dx = 0;
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(ii) n € S(R™) with [z, n(x)dx = 0;

(iii) ¢ satisfies (or ¢ € L' N L™ with ¢(x) := ess SUpP|g|<|y| |P(Y)]);
(iv) be L2(R") with 1 < a < 2.
Then my, is bounded from L**(R") to L*(R™) with the bound C||b||2.na-

Proof. By Lemma |b % 9y ()]? @ is an a-Carleson measure. Applying Corollary
(or Remark , for any 1 < p < oo and f € LP(R"™), we get

1/(pa)
dzd o
(52) (/R+ !f*w(x)\””‘b*wt(x)\?”f) < Cb130E ) £l -
Now, for any h € L?(R") with ||h|| 2 < 1, we have
ﬂb(f)( )h(zx) d
/R/ [ ((F % @0 (0 )] (@)h(ax) 28

=\ [ [T @@
1/2

1/2
s(/RTJh*'ﬁt(x)Pdﬁdt) (/RTI|fwt<x>12|b*wt<x>|2dﬁ‘“> ,

where 7j(z) = n(—z). So, applying the L? boundedness of the Littlewood-Paley operator
gy defined in (3.3) and (5.2) (for pa = 2), we obtain

d:L‘dt

(5.3) d:cdt

Im(Hlie = sw || w(f)@h(e)ds| < OISl Pllno:
heL? ||kl 2 <1 /R
Thus, we complete the proof of Theorem O

Further, if replacing £27*(R™) by £2"*(R™) in Theorem then we get the (L%/*, L?)

compactness of 7.

Theorem 5.2. Under the same conditions of Theorem if replacing b € L>™ by
be L™, then m, is a compact operator from L¥*(R™) to L2(R™).

Proof. First note that du(x,t) := |b* ¢y (x)|? @ is a vanishing a-Carleson measure by
Theorem Applying Theorem the operator L, is compact from LP(R";dx) to
Lpa(RTrl; dp) for all 1 < p < co. Hence, for any sequence { f;.} in LP(R™), which converges
weakly to zero, we have

(5.4) im [ Ifis pu@)b « (@) 2

k—o00 t
R

=0.
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Now, to prove 7, is a compact operator from L *(R") to L?(R"), it suffices to verify
that for any sequence { fi} in L?/®(R") which converges weakly to zero, {my(fx)} converges

to zero in L? norm. Equivalently, we need to show that

=0.

/;muMWMWMx

(5.5) lim sup
k=00 ||nl2<1

In fact, for any h € L?(R") with ||h|2 < 1, by (5.3) with f instead by f, then

sup
lAll2<1

1/2 1/2
~ dxdt dxdt
< sw ([ mea@P ) ([ e a@P e S
Ihllz<t \JRo* R

1/2
dxd
= sup |gz(h)| L2 (/Rn+1 | fie % ()] ]b * () ?) .

IAll2<1 "

| mli@hia) do

Hence (5.5) holds by using again the L? boundedness of the operator gy and (5.4) (for
pa = 2) and we prove Theorem ]

5.2. Paraproduct with the rough kernel

In this subsection, one will see that the conditions 1,7 € S(R™) in Theorems and

can be weakened.
Theorem 5.3. Suppose that the paraproduct m, is defined by , where
(1) () = Q) |[2]""Xqa)<1y () with Q satisfying B.1), (-2);
(il) n(z) = w(@)|z'""X{jej<1y (z) with w satisfying B.1), (B.2);
(iii) ¢ satisfies (or ¢ € L' N L™ with ¢(x) := ess SUp|g|<|y| |P(Y)]);
(iv) b€ L2"(R") with 1 < a < 2.

IfQe HY(S™ 1) orQ € Llogt L)Y2(S" 1) andw € H (S" ') orw € L(log"™ L)/2(S*~1),
then m, is bounded from L*/*(R™) to L*(R™) with the bound C/||b||2.na-

Theorem 5.4. Under the same conditions of Theorem if replacing b € L>™ by
be L™, then m, is compact from L¥*(R") to L2(R™).

Applying Theorems Corollary Theorems [4.4] and we may get Theo-
rems [5.3] and its proof is similar to proving Theorems [5.1] and we omit the details

here.
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5.3. Coifman-Meyer-type paraproduct

As an application of Theorems and we give the (L2/ @ L?) boundedness and com-
pactness of a kind of paraproduct introduced by Coifman and Meyer in [12], which is

defined by
o(t)
Tt

Bf)(w) = [ T re)@ o) @) D ar,

where b € L] _(R™), § € L>°(R") and
(i) ¢, € SR™);
(ii) @, @/D\ have compact support;
(iii) 0 ¢ supp .

There Coifman and Meyer proved that the paraproduct By is a bounded operator on
L?(R"™) with b € BMO(R"). Recently, in [18], we verified that By is a compact operator
on L?(R"™) with b € CMO(R™) and ¢, ¢ satisfying

(iv) O & supp @ + supp ¢.
In this paper, we can give the (L%, L?) boundedness of By with b € £2".

Theorem 5.5. Assume that 0 € L>®(R™), ¢, 1 satisfy the above conditions (i)—(iv) and
b€ L2M(R™) with 1 < a < 2. Then there exists a constant C' > 0, depending on ¢, ¥
and 6 only, such that for all f € L?>*(R™),

(5.6) 1Bo(f)ll2 < Clibllznallfll2/a-

Proof. By the condition (iv), we can choose an n € S(R") such that € C°, 7 =1 on
supp @ + Supp?Z and 0 ¢ supp 7. Thus, it is easy to see that

Bil) = | Tnen (o)™ a

By Theorem (note that 8 € L®(R™)), the paraproduct By is bounded from L2?/®(R™)
to L2(R™) and (5.6)) holds. O

Similarly, we can obtain the (L%, L?) compactness of B, with b € £2"*(R"). From
the discussion in the proof of Theorems and we can easily obtain the following

result.

Theorem 5.6. Assume that 0 € L>®(R"™), ¢, ¥ satisfy the above conditions (i)—(iv) and
be L2"(R") with 1 < a < 2. Then By is compact from L¥*(R™) to L*(R™).
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