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Minimal Ruled Submanifolds Associated with Gauss Map

Sun Mi Jung, Dong-Soo Kim and Young Ho Kim*

Abstract. We set up the new models of product manifolds, namely a generalized

circular cylinder and a generalized hyperbolic cylinder as cylindrical types of ruled

submanifold in Minkowski space. We also establish some characterizations of gener-

alized circular cylinders and hyperbolic cylinders in Minkowski space with the Gauss

map. We also show that there do not exist non-cylindrical marginally trapped ruled

submanifolds with the pointwise 1-type Gauss map of the first kind, which gives a

characterization of non-cylindrical minimal ruled submanifolds in Minkowski space.

1. Introduction

Ruled submanifolds in Euclidean space or Minkowski space are defined in such a way that

they are foliated by totally geodesic submanifolds over a curve. By extending the classical

results on minimal surfaces in 3-dimensional Euclidean space to ruled submanifolds in

Euclidean space, minimal ruled submanifolds are proved to be generalized helicoids or

planes [3]. Similarly we can consider minimal ruled submanifolds in the Minkowski space

Lm. However, because of the causal characters of generators, not many works on ruled

submanifolds in the Minkowski space Lm including those of ruled surfaces in 3-dimensional

Minkowski space have been made. Very recently, two of the authors characterized minimal

ruled submanifolds of the Minkowski space Lm [20]. In [21, 22], some new examples of

ruled submanifolds with degenerate rulings in Lm were introduced.

A submanifold M in an Euclidean space Em or a pseudo-Euclidean space Ems is said to

be of finite-type if its isometric immersion x : M → Em or x : M → Ems can be represented

as a sum of finitely many eigenvectors of Laplacian ∆. In [6] B.-Y. Chen et al. proved that

a ruled surface of finite-type in an m-dimensional Euclidean space is an open part of either

a cylinder over a curve of finite-type or a helicoid in E3. It follows that a ruled surface of

Received March 7, 2017; Accepted September 30, 2017.

Communicated by Mu-Tao Wang.

2010 Mathematics Subject Classification. 53B25, 53B30.

Key words and phrases. generalized circular cylinder, generalized hyperbolic cylinder, marginally trapped

ruled submanifold, minimal ruled submanifold.

The second author was supported by Basic Science Research Program through the National Research

Foundation of Korea (NRF) funded by the ministry of Education (2015020387).

The third author was supported by the National Research Foundation of Korea (NRF) grant funded by

the Korea government (MSIP) (2016R1A2B1006974).

*Corresponding author.

567



568 Sun Mi Jung, Dong-Soo Kim and Young Ho Kim

finite-type in E3 is part of a plane, a circular cylinder or a helicoid. F. Dillen extended

these results to ruled submanifolds in Euclidean space with finite-type immersion [14]. (For

finite type immersions, see [4].) Of course, such a notion of finite-type can be extended to

any smooth maps on submanifolds.

As is well known that Gauss map plays an important role in the theory of submanifolds.

For oriented surfaces of 3-dimensional Euclidean space, it can be used to measure the total

curvature of the Gauss curvature which gives some topological character. However, a right

cone or a helicoid in Euclidean 3-space has its Gauss map G satisfying ∆G = f(G + C)

for some non-zero function f and a constant vector C. Generalizing such a notion, one

of the authors defined a notion of pointwise 1-type Gauss map: The Gauss map G on a

submanifold M in Lm is said to be of pointwise 1-type if it satisfies

∆G = f(G+ C)

for some non-zero smooth function f and a constant vector C [5]. More precisely speaking,

if C is zero, it is said to be of pointwise 1-type of the first kind. Otherwise, it is said to be of

pointwise 1-type of the second kind [5,8–12,26,27]. Especially, submanifolds of Euclidean

space or Minkowski space with pointwise 1-type Gauss map of the first kind have close

relationship with those with constant mean curvature. In [27,28], the authors proved that

ruled surfaces in Minkowski space with pointwise 1-type of the first kind are minimal or

of constant mean curvature depending on the dimension of the ambient space. Recently,

U. Dursun showed that all oriented hypersurfaces in Minkowski space with constant mean

curvature are characterized with pointwise 1-type Gauss map of the first kind [15]. In [16]

all flat timelike rotational surface of elliptic and hyperbolic types with pointwise 1-type

Gauss map of first and second kind are classified.

On the other hand, for the ruled surfaces with null rulings in Minkowski m-space,

two of the present authors et al. defined the extended B-scroll and the generalized B-

scroll which are generalizations of a usual B-scroll in 3-dimensional Minkowski space and

they completely classified the family of ruled surfaces of Minkowski space with finite-type

Gauss map [1,2,23,24]. In [19,25] the ruled surfaces and the ruled submanifolds of finite-

type immersion in Minkowski space were studied and classification theorems of such ruled

surfaces and ruled submanifolds were given.

Very recently the authors classified ruled submanifolds with harmonic Gauss map in

Minkowski space and characterized minimal ruled submanifolds in Minkowski space with

harmonic Gauss map [21].

A submanifold M in a pseudo Riemannian manifold N is said to be marginally trapped

(or pseudo-minimal) if its mean curvature vector is null. In particular, marginally trapped

surfaces in a space-time which play an important role in general relativity have been

studied by many scientists [7, 13, 17, 30]. In [29], V. Milousheva and N. C. Turgay proved
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that a non-flat marginally trapped surface with flat normal connection has pointwise 1-

type Gauss map if and only if it has constant mean curvature.

We now pose a natural question: Can we completely classify ruled submanifolds in

Minkowski space with pointwise 1-type Gauss map of the first kind?

In this paper, we study ruled submanifolds of Lm with the notion of the Gauss map of

pointwise 1-type of the first kind and examine an relationship regarding ruled submanifolds

of Lm with constant mean curvature.

2. Preliminaries

Let Ems be an m-dimensional pseudo-Euclidean space of signature (m−s, s). In particular,

for m ≥ 2, Em1 is called a Lorentz-Minkowski m-space or simply Minkowski m-space, which

is denoted by Lm. A curve in Lm is said to be space-like, time-like or null if its tangent

vector field is space-like, time-like or null, respectively.

Let x : M → Ems be an isometric immersion of an n-dimensional pseudo-Riemannian

manifoldM into Ems . From now on, a submanifold in Ems always means pseudo-Riemannian,

that is, each tangent space of the submanifold M in Ems is non-degenerate.

Let (x1, x2, . . . , xn) be a local coordinate system of M in Ems . For the components gij

of the pseudo-Riemannian metric 〈 · , · 〉 on M induced from that of Ems , we denote by (gij)

(respectively, G) the inverse matrix (respectively, the determinant) of the matrix (gij) of

the components of the induced metric 〈 · , · 〉. Then, the Laplacian ∆ defined on M is given

by

∆ = − 1√
|G|

∑
i,j

∂

∂xi

(√
|G|gij ∂

∂xj

)
.

We now define the Gauss map G on M with the Grassmannian manifold. Consider the

map G : M → G(n,m) of a point p of M mapped to the oriented tangent space at p, where

G(n,m) is the Grassmannian manifold consisting of all oriented n-planes passing through

the origin. Roughly speaking, it can be achieved by parallel displacement of the oriented

tangent space at p to the origin of Lm. By an isomorphism, G(n,m) can be identified

with G(m − n,m). Let us express the Gauss map rigorously. Choose an adapted local

orthonormal frame {e1, e2, . . . , em} in Ems such that e1, e2, . . . , en are tangent to M and

en+1, en+2, . . . , em normal to M . Define the map G : M → G(n,m) ⊂ EN (N = mCn),

G(p) = (e1 ∧ e2 ∧ · · · ∧ en)(p).

An indefinite scalar product 〈〈 · , · 〉〉 on G(n,m) ⊂ EN is defined by

〈〈ei1 ∧ · · · ∧ ein , ej1 ∧ · · · ∧ ejn〉〉 = det(〈eil , ejk〉).

Then, {ei1 ∧ ei2 ∧ · · · ∧ ein | 1 ≤ i1 < · · · < in ≤ m} is an orthonormal basis of ENk for

some positive integer k.
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Now, let us recall the notion of a ruled submanifold M in Lm. A non-degenerate

(r+ 1)-dimensional submanifold M in Lm is called a ruled submanifold if M is foliated by

r-dimensional totally geodesic submanifolds E(s, r) of Lm along a regular curve α = α(s)

on M defined on an open interval I. Thus, we can give a parametrization of a ruled

submanifold M in Lm by

(2.1) x = x(s, t1, t2, . . . , tr) = α(s) +
r∑
i=1

tiei(s), s ∈ I, ti ∈ Ii,

where Ii’s are some open intervals for i = 1, 2, . . . , r. Without loss of generality, we may as-

sume that 0 ∈ Ii for all i = 1, 2, . . . , r. For each s, E(s, r) is open in Span{e1(s), e2(s), . . . ,

er(s)}, which is the linear span of linearly independent vector fields e1(s), e2(s), . . . , er(s)

along the curve α. Here, we assume E(s, r) are either non-degenerate or degenerate for

all s along α. We call E(s, r) the rulings and α the base curve of the ruled submanifold

M . In particular, the ruled submanifold M is said to be cylindrical if E(s, r) are parallel

along α, or non-cylindrical otherwise.

Remark 2.1. [19, 20] (1) If the rulings of M are non-degenerate, then the base curve α

can be chosen to be orthogonal to the rulings as follows: Let V be a unit vector field on

M which is orthogonal to the rulings. Then α can be taken as an integral curve of V .

(2) If the rulings are degenerate, we can choose a null base curve which is transversal

to the rulings: Let V be a null vector field on M which is not tangent to the rulings. An

integral curve of V can be the base curve.

Definition 2.2. [7] A space-like submanifold M of the Minkowski space Lm is called

marginally trapped or pseudo-minimal if the mean curvature vector field is null.

Definition 2.3. [18] An (r+ 1)-dimensional cylindrical ruled submanifold M is called a

generalized circular cylinder Σ×Er−1 if the base curve α is a circle and the generators of

rulings are orthogonal to the plane containing the circle α, where Σ is a circular cylinder

in E3.

Similarly, we can define the generalized hyperbolic cylinder.

Definition 2.4. An (r + 1)-dimensional cylindrical ruled submanifold M is called a gen-

eralized hyperbolic cylinder Σh × Er−1 if the base curve α is a hyperbola in L2 and the

generators of rulings are orthogonal to the plane containing the hyperbola α, where Σh is

a hyperbolic cylinder over α in L3.

By solving a system of ordinary differential equations similarly set up relative to a

frame along a curve in Lm as given in [3], we have
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Lemma 2.5. [20] Let V (s) be a smooth l-dimensional non-degenerate distribution in the

Minkowski m-space Lm along a curve α = α(s), where l ≥ 2 and m ≥ 3. Then, we can

choose orthonormal vector fields e1(s), . . . , em−l(s) along α which generate the orthogonal

complement V ⊥(s) satisfying e′i(s) ∈ V (s) for 1 ≤ i ≤ m− l.

Let M be a non-cylindrical ruled submanifold in Lm whose some of generating vector

fields of rulings are constant vectors fields. By modifying a similar argument to get

Proposition 3.3 in [18], we have

Proposition 2.6. Let M be an (r + 1)-dimensional non-cylindrical ruled submanifold of

Lm parametrized by (2.1). Suppose that some of generators ej1 , ej2 , . . . , ejk (1 ≤ k < r)

of the rulings are constant vectors along α. Then, M has pointwise 1-type Gauss map of

the first kind if and only if the ruled submanifold M1 has pointwise 1-type Gauss map of

the first kind, where M1 is non-cylindrical ruled submanifold defined over the base curve

α with the rulings generated by ej for j 6= j1, j2, . . . , jk.

3. Marginally trapped ruled submanifolds in Lm

Let M be a marginally trapped ruled submanifold in the Minkowski space Lm parameter-

ized by

(3.1) x = x(s, t1, t2, . . . , tr) = α(s) +
r∑
i=1

tiei(s), s ∈ I, ti ∈ Ii,

where Ii’s are some open intervals for i = 1, 2, . . . , r. Without loss of generality, we

may assume that α is a unit speed curve, that is, 〈α′(s), α′(s)〉 = 1, and 0 ∈ Ii for all

i = 1, 2, . . . , r. Also, by Remark 2.1 and Lemma 2.5, we may assume that orthonormal

vector fields e1(s), . . . , er(s) along α satisfy

〈α′, ei〉 = 0 = 〈e′j , ei〉 and 〈ei, ej〉 = δij

for i, j = 1, 2, . . . , r. From now on, the prime ′ stands for d/ds unless otherwise stated.

Then, the mean curvature vector field H of M is defined by

H =
1

r + 1

{
h

(
xs
‖xs‖

,
xs
‖xs‖

)
+

r∑
i=1

h(xti , xti)

}

=
1

r + 1

{
1

q
h(xs, xs) +

r∑
i=1

h(xti , xti)

}
,

where h is the second fundamental form of M and q is the function of s and ti defined by

q = 〈xs, xs〉 = 1 +

r∑
i=1

2uiti +

r∑
i,j=1

wijtitj ,
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where ui(s) = 〈α′, e′i〉 and wij(s) = 〈e′i, e′j〉 for i, j = 1, 2, . . . , r. Note that q is a polynomial

in t = (t1, . . . , tr) with functions in s as coefficients. From now on, for a polynomial F (t)

in t = (t1, t2, . . . , tr), degF (t) denotes the degree of F (t) in t = (t1, t2, . . . , tr) unless

otherwise stated.

Since M is marginally trapped and xtiti = 0,

(3.2) H =
1

2q

(
xss −

1

q
〈xss, xs〉xs −

r∑
i=1

〈xss, xti〉xti

)

is null at each point of M . Therefore, we can consider a pseudo-orthonormal normal frame

field {n1, n2, er+3, . . . , em−1} such that

n1 = H, 〈n1, n1〉 = 0 = 〈n2, n2〉, 〈n1, n2〉 = −1,

〈n1, ea〉 = 0 = 〈n2, ea〉 and 〈ea, eb〉 = δab

for a, b = r + 3, r + 4, . . . ,m− 1.

Now, we will show that there do not exist marginally trapped ruled submanifolds in

Lm with pointwise 1-type Gauss map of the first kind.

Suppose that a marginally trapped ruled submanifold M of Lm has pointwise 1-type

Gauss map of the first kind.

First, we consider the case that e′i are non-null for all i = 1, 2, . . . , r. If e′i = 0 for all

i, that is, M is cylindrical, then

q = 1

and the mean curvature vector field H, the Gauss map G and the Laplacian ∆ of M are

respectively given by

H =
1

r + 1
α′′, G = α′ ∧ e1 ∧ · · · ∧ er and ∆ = − ∂2

∂s2
−

r∑
i=1

∂2

∂t2i
,

where 0 denotes zero vector. Note that α′′ is null for all s. Equation ∆G = fG provides

that

∆′α′ ∧ e1 ∧ · · · ∧ er = fα′ ∧ e1 ∧ · · · ∧ er,

which gives

α′′′ = −fα′,

where ∆′ = −∂2/∂s2 is the Laplacian of α. But,

0 = 〈α′′, α′′〉 = −〈α′′′, α′〉 = f〈α′, α′〉 = f

for all s, a contradiction. Therefore, according to Proposition 2.6, we may assume that

e′i is non-zero for all i. In this case, deg q = 2. As will be used the same argument to be
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developed in Section 4, we quote the result

∂q

∂s
= 0

if ∆G = fG. Thus, the mean curvature vector field H of (3.2) is expressed as

H =
1

(r + 1)q2


(
α′′ +

r∑
i=1

uiei

)
+

r∑
i=1

2uiα
′′ + e′′i + 2ui

r∑
j=1

ujej +

r∑
j=1

wijej

 ti

+

r∑
i,j=1

(
wijα

′′ + 2uie
′′
j + 2ui

r∑
k=1

wjkek + wij

r∑
k=1

ukek

)
titj

+

r∑
i,j,k=1

(
wije

′′
k + wij

r∑
l=1

wklel

)
titjtk

 .

(3.3)

Also, the Gauss map G and the Laplacian ∆ of M are given by respectively,

G =
1

|q|1/2

Φ +

r∑
j=1

tiΨj

 ,

∆ =
1

2q2

∂q

∂s

∂

∂s
− 1

q

∂2

∂s2
− 1

2q

r∑
i=1

∂q

∂ti

∂

∂ti
−

r∑
i=1

∂2

∂t2i
,

where Φ and Ψi are the vectors defined by

Φ = α′ ∧ e1 ∧ · · · ∧ er and Ψi = e′i ∧ e1 ∧ · · · ∧ er.

Then, the equation ∆G = fG can be rewritten as

q

Φ′′ +

r∑
j=1

tjΨ
′′
j

− 1

2
q

r∑
i=1

qtiΨi

+

{
1

2

r∑
i=1

(q2
ti − qqtiti) + fq2

}Φ +
r∑
j=1

tjΨj

 = 0.

(3.4)

Note that the left-hand side of (3.4) is a polynomial of t with the functions of s as the

coefficients.

Meanwhile, along the curve α, we may put

(3.5) α′′ = −
r∑
i=1

uiei + (α′′)⊥,

where ⊥ denotes the normal parts of the corresponding vector fields. Since the mean

curvature vector field H is null along the base curve α, (3.3) and (3.5) tell us that (α′′)⊥

has to be null for all s. Furthermore, we can see that

H =
1

r + 1
(α′′)⊥
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along the curve α. Therefore, using the frame {α′, e1, . . . , er, n1, n2, er+3, . . . , em−1}, along

the curve α, we can put

α′′ = −
∑

uiei − 〈α′′, n2〉n1,

α′′′ = −
(∑

u2
i

)
α′ +

∑
〈α′′′, ej〉ej − 〈α′′′, n2〉n1 − 〈α′′′, n1〉n2 +

∑
〈α′′′, ea〉ea,

e′i = uiα
′ − 〈e′i, n2〉n1 − 〈e′i, n1〉n2 +

∑
〈e′i, ea〉ea,

e′′i = 〈e′′i , α′〉α′ −
∑

wijej − 〈e′′i , n2〉n1 − 〈e′′i , n1〉n2 +
∑
〈e′′i , ea〉ea,

e′′′i = 〈e′′′i , α′〉α′ +
∑
〈e′′′i , ej〉ej − 〈e′′′i , n2〉n1 − 〈e′′′i , n1〉n2 +

∑
〈e′′′i , ea〉ea

(3.6)

for i, j = 1, 2, . . . , r and a = r + 3, . . . ,m− 1. Here, 〈α′′, n2〉 has to be non-zero for all s.

We now examine (3.4), from the definitions of Φ and Ψj , we obtain

Φ′′ = α′′′ ∧ e1 ∧ · · · ∧ er + 2

r∑
i=1

α′′ ∧ e1 ∧ · · · ∧ e′i ∧ · · · ∧ er

+ 2

r∑
i<k

α′ ∧ e1 ∧ · · · ∧ e′i ∧ · · · ∧ e′k ∧ · · · ∧ er +

r∑
i=1

α′ ∧ e1 ∧ · · · ∧ e′′i ∧ · · · ∧ er,

Ψ′′
j = e′′′j ∧ e1 ∧ · · · ∧ er + 2

r∑
i=1

e′′j ∧ e1 ∧ · · · ∧ e′i ∧ · · · ∧ er

+ 2

r∑
i<k

e′j ∧ e1 ∧ · · · ∧ e′i ∧ · · · ∧ e′k ∧ · · · ∧ er +

r∑
i=1

e′j ∧ e1 ∧ · · · ∧ e′′i ∧ · · · ∧ er.

(3.7)

From which, we see that equation (3.4) consists of ten different types of vectors formed

with the wedge products of (r + 1) vectors. Putting (3.6) into Ψj and (3.7), we can

decompose the left-hand side of (3.4) into the tangential and the normal parts. By using

the orthogonality of α′, ei, n1, n2 and ea, we have

r∑
i<k

α′ ∧ e1 ∧ · · · ∧ e′i ∧ · · · ∧ e′k ∧ · · · ∧ er = 0,

r∑
i<k

e′j ∧ e1 ∧ · · · ∧ e′i ∧ · · · ∧ e′k ∧ · · · ∧ er = 0

as the vectors containing α′ and two normal vectors for i, j, k ∈ {1, 2, . . . , r}. Considering

the normal components of vectors contained in Φ′′ as part of the constant terms of the

left-hand side of (3.4), we obtain

2uj〈α′′, n2〉 − 〈e′′j , n2〉 = 0,(3.8)

〈α′′, n2〉〈e′j , n1〉 = 0, 〈α′′, n2〉〈e′j , ea〉 = 0,(3.9)

〈e′′j , n1〉 = 0 and 〈e′′j , ea〉 = 0(3.10)
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as the coefficients of α′∧e1∧· · ·∧ej−1∧n1∧ej+1∧· · ·∧er, n1∧e1∧· · ·∧ej−1∧n2∧ej+1∧· · ·∧er,
n1 ∧ e1 ∧ · · · ∧ ej−1 ∧ ea ∧ ej+1 ∧ · · · ∧ er, α′ ∧ e1 ∧ · · · ∧ ej−1 ∧ n2 ∧ ej+1 ∧ · · · ∧ er and

α′ ∧ e1 ∧ · · · ∧ ej−1 ∧ ea ∧ ej+1 ∧ · · · ∧ er for all j = 1, . . . , r and a = r + 3, . . . ,m − 1,

respectively. Equations (3.8), (3.9) and (3.10) yield that

(3.11) e′j = ujα
′ − 〈e′j , n2〉n1,

e′′j = 〈e′′j , α′〉α′ +
r∑
i=1

wjiei − 〈e′′j , n2〉n1.

Together with (3.6), (3.11) and u′j = 0, 〈e′′j , α′〉+ 〈e′j , α′′〉 = 0 implies that

(3.12) e′′j =

r∑
i=1

wjiei − 〈e′′j , n2〉n1.

Note that uj(s) 6= 0 because e′j is non-null for all j and for s ∈ I. Similarly, with the help

of (3.11) and (3.12), considering the normal parts of vector fields contained in Ψ′′j of the

left-hand side of (3.4), we get

(3.13) 2uk〈e′′j , n2〉 − uj〈e′′k, n2〉 = 0

as the coefficients of α′ ∧ e1 ∧ · · · ∧ ej−1 ∧ n1 ∧ ej+1 ∧ · · · ∧ er for all j, k = 1, . . . , r. Using

(3.8), (3.13) implies

2ujuk〈α′′, n2〉 = 0

which is a contradiction.

Therefore, we can conclude that e′j has to be null for some j ∈ {1, 2, . . . , r}. So, we

suppose that some generators ej1 , ej2 , . . . , ejk of the rulings have null derivatives along the

base curve α for j1 < j2 < · · · < jk ∈ {1, 2, . . . , r}. We can rewrite the parametrization

(3.1) of M as

x(s, t1, · · · , tr) = α(s) +
∑

i 6=j1,j2,...,jk

tiei(s) +

k∑
i=1

tjieji(s).

Then, there are two possible cases such that either all of ejk+1
, . . . , ejr generating the

rulings except ej1(s), ej2(s), . . . , ejr(s) are constant vector fields or not.

Case 1. Suppose that ejk+1
, . . . , ejr are constant vector fields. In this case, according

to Proposition 2.6, we may assume that e′i is null for all i = 1, . . . , r, otherwise the ruled

submanifold M is a cylinder over the ruled submanifold parameterized by the base curve

α and the rulings generated by ei’s except those constant vector fields. We then have

three possible subcases according to the degree of q.
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Subcase 1.1. Let deg q(t) = 0. In this case, e′i are null with e′i(s) ∧ e′l(s) = 0 for

i, l = 1, 2, . . . , r and 〈α′(s), e′j(s)〉 = 0 for j = 1, 2, . . . , r. The mean curvature vector field

H is given by

(3.14) H =
1

r + 1

(
α′′ +

r∑
i=1

tie
′′
i

)
.

Clearly, H is null along the curve α which implies that α′′ has to be null for all s ∈ I.

Also, the nullity of H yields that

〈α′′, α′′〉 = 〈α′′, e′′i 〉 = 〈e′′i , e′′i 〉 = 0

and hence

α′′ ∧ e′′i = 0

for all i. Therefore, we can put

(3.15) e′′i (s) = φi(s)α
′′(s)

for some functions φi of s and for all i. With the help of (3.14) and (3.15), we have

(3.16) H =
1

r + 1

(
1 +

r∑
i=1

φiti

)
α′′.

On the other hand, the Gauss map of M is given by

G = Φ +

r∑
i=1

tiΨi

and ∆G = fG implies

(α′ ∧ e1 ∧ · · · ∧ er)′′ = −fα′ ∧ e1 ∧ · · · ∧ er,

(e′i ∧ e1 ∧ · · · ∧ er)′′ = −fe′i ∧ e1 ∧ · · · ∧ er,

or, equivalently,

α′′′ ∧ e1 ∧ · · · ∧ er + 2

r∑
j=1

α′′ ∧ e1 ∧ · · · ∧ e′j ∧ · · · ∧ er

+

r∑
j=1

α′ ∧ e1 ∧ · · · ∧ e′′j ∧ · · · ∧ er = −fα′ ∧ e1 ∧ · · · ∧ er,
(3.17)

(3.18) e′′′i ∧ e1 ∧ · · · ∧ er +

r∑
j=1

e′′i ∧ e1 ∧ · · · ∧ e′j ∧ · · · ∧ er = −fe′i ∧ e1 ∧ · · · ∧ er.
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By (3.15) and (3.16), using the frame {α′, e1, . . . , er, n1, n2, er+3, . . . , em−1}, along the

curve α, we have

α′′ = −〈α′′, n2〉n1,

α′′′ =
∑
j

〈α′′′, ej〉ej − 〈α′′′, n2〉n1 − 〈α′′′, n1〉n2 +
∑
a

〈α′′′, ea〉ea,

e′i = −〈e′i, n2〉n1 − 〈e′i, n1〉n2 +
∑
a

〈e′i, ea〉ea,

e′′i = −〈e′′i , n2〉n1,

e′′′i = −〈e′′′i , n2〉n1 − 〈e′′′i , n1〉n2 +
∑
a

〈e′′′i , ea〉ea

(3.19)

for i, j = 1, 2, . . . , r and a = r+ 3, . . . ,m− 1. Using (3.18) and (3.19), we repeat the same

methods to get (3.8), (3.9), (3.10) and (3.13). Then, from (3.18), we get

〈e′′′i , n2〉 = −f〈e′i, n2〉,(3.20)

〈e′′′i , n1〉 = −f〈e′i, n1〉,(3.21)

〈e′′′i , ea〉 = −f〈e′i, ea〉,(3.22)

〈e′′i , n2〉〈e′j , n1〉 = 〈e′′i , n2〉〈e′j , ea〉 = 0(3.23)

as the coefficients of n1 ∧ e1 ∧ · · · ∧ er, n2 ∧ e1 ∧ · · · ∧ er, ea ∧ e1 ∧ · · · ∧ er, n1 ∧ e1 ∧ · · · ∧
ej−1 ∧ n2 ∧ ej+1 ∧ · · · ∧ er and n1 ∧ e1 ∧ · · · ∧ ej−1 ∧ ea ∧ ej+1 ∧ · · · ∧ er for all j = 1, . . . , r

and a = r + 3, . . . ,m− 1, respectively.

If 〈e′′i , n2〉 6= 0, then

(3.24) 〈e′j , n1〉 = 〈e′j , ea〉 = 0

for all j = 1, 2, . . . , r by (3.23). Together with (3.19) and (3.24), equation (3.17) gives us

the following

α′′′ ∧ e1 ∧ · · · ∧ er −
r∑
j=1

〈e′′j , n2〉α′ ∧ e1 ∧ · · · ∧ ej−1 ∧ n1 ∧ ej+1 ∧ · · · ∧ er

= −fα′ ∧ e1 ∧ · · · ∧ er,

which implies that 〈e′′j , n2〉 = 0, a contradiction. Therefore, we have

〈e′′j , n2〉 = 0,

which, together with (3.19) implies e′′j = 0 for all s and all j. In (3.20), (3.21) and (3.22),

we get

f〈e′j , n2〉 = f〈e′j , n1〉 = f〈e′j , ea〉 = 0
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for all j. Since f is non-zero, e′j of (3.19) have the value zero at some point s0 ∈ I. This

contradicts the character of e′j . Thus, this case never occur.

Subcase 1.2. Let deg q(t) = 1. In this case, 〈α′(s), e′i(s)〉 6= 0 for some i (1 ≤ i ≤ r) and

the null vector fields e′i satisfy e′i ∧ e′l = 0 for i, l = 1, 2, . . . , r. By the same reason to get

∂q/∂s = 0 previously, we have u′i = 0 for all i from ∆G = fG. Thus, the mean curvature

vector field H is given by

(3.25) H =
1

(r + 1)q

(
α′′ +

r∑
i=1

tie
′′
i +

r∑
i=1

uiei

)
.

We now put

(3.26) α′′ = −
r∑
i=1

uiei + (α′′)⊥.

The nullity of H of (3.25) guarantees that (α′′)⊥ is null for all s. Furthermore, it gives us

(3.27) 〈α′′, α′′〉 =

r∑
i=1

u2
i and 〈α′′, e′′j 〉 = 0 = 〈e′′j , e′′j 〉

for all j. Combining (3.26) and (3.27), we see that

e′′j = φj(s)(α
′′)⊥

for some function φj of s. Therefore, we have

H =
1

(r + 1)q

(
1 +

r∑
i=1

φiti

)
(α′′)⊥

and hence

α′′ = −
∑
j

ujej − 〈α′′, n2〉n1,

α′′′ = −
∑
j

u2
jα
′ +
∑
j

〈α′′′, ej〉ej − 〈α′′′, n2〉n1 − 〈α′′′, n1〉n2 +
∑
a

〈α′′′, ea〉ea,

e′i = uiα
′ − 〈e′i, n2〉n1 − 〈e′i, n1〉n2 +

∑
a

〈e′i, ea〉ea,

e′′i = −〈e′′i , n2〉n1,

e′′′i = 〈e′′′i , α′〉α′ +
∑
j

〈e′′′i , ej〉ej − 〈e′′′i , n2〉n1 − 〈e′′′i , n1〉n2 +
∑
a

〈e′′′i , ea〉ea

along the curve α for i, j = 1, . . . , r and a = r + 3, . . . ,m− 1. Then, equation ∆G = fG

is rewritten as

q

Φ′′ +
r∑
j=1

tjΨ
′′
j

− 1

2
q

r∑
i=1

qtiΨi +

{
1

2

r∑
i=1

(qti)
2 + fq2

}Φ +
r∑
j=1

tjΨj

 = 0,
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which provides

(3.28) 2uj〈α′′, n2〉 = 〈e′′j , n2〉 and 〈α′′, n2〉〈e′j , n1〉 = 0 = 〈α′′, n2〉〈e′j , ea〉

for all j = 1, . . . , r and a = r+ 3, . . . ,m− 1 by applying the similar approaches as we did

previously. Since 〈α′′, n2〉 in (3.28) is non-vanishing for all s, we have

e′j = ujα
′ − 〈e′j , n2〉n1

which implies that

uj = 0

because of wjj = 〈e′j , e′j〉 = 0 for all j. This is a contradiction to deg q = 1. Therefore,

this case also never occur.

Subcase 1.3. Let deg q(t) = 2. In this case, by referring to the case that e′1, e
′
2, . . . , e

′
r

are non-null, we can get (3.11), that is,

e′j = ujα
′ − 〈e′j , n2〉n1

for all j = 1, . . . , r. The nullity of e′j implies that

uj = 0 and hence e′i ∧ e′j = 0

for all i, j = 1, . . . , r. This contradicts deg q = 2.

Consequently, we can see that in this case, there is no marginally trapped ruled sub-

manifold in Lm with pointwise 1-type Gauss map of the first kind.

Case 2. Suppose that e′i 6= 0 for some i = jk+1, . . . , jr.

In this case, we may also assume that e′i 6= 0 for all i = jk+1, . . . , jr. Then, e′i
are non-null for all i = jk+1, . . . , jr and deg q = 2. If we follow the similar argument

for the case that e′1, e
′
2, . . . , e

′
r are non-null, we obtain e′j = −〈e′j , n2〉n1 if e′j is null, or,

e′j = ujα
′ − 〈e′j , n2〉n1 for some non-zero function uj . Then, we have

wij = 〈e′i, e′j〉 = 0

which is a contradiction.

Consequently, we have

Theorem 3.1. There do not exist marginally trapped ruled submanifolds in Lm with

pointwise 1-type Gauss map of the first kind.
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4. Characterizations of generalized circular and hyperbolic cylinders

Let M be an (r + 1)-dimensional ruled submanifold in Lm with non-degenerate rulings.

Then, by Remark 2.1 and Lemma 2.5, we may assume that

(4.1) 〈α′(s), α′(s)〉 = ε (= ±1), 〈α′(s), ei(s)〉 = 0 and 〈e′i(s), ej(s)〉 = 0

for i, j = 1, 2, . . . , r. A parametrization of M is given by

(4.2) x = x(s, t1, t2, . . . , tr) = α(s) +

r∑
i=1

tiei(s).

In this section, we always assume that the parametrization (4.2) satisfies Condi-

tion (4.1). Then, the Gauss map G of M is given by

G =
1

‖xs‖
xs ∧ xt1 ∧ · · · ∧ xtr ,

or, equivalently

G =
1

|q|1/2

(
Φ +

r∑
i=1

tiΨi

)
.

First, we consider the case of cylindrical ruled submanifolds that are the ones of two

typical types of ruled submanifolds. Before discussing cylindrical ruled submanifolds, we

consider the following lemma.

Lemma 4.1. Suppose that a unit speed curve α(s) in the m-dimensional Minkowski space

Lm defined on an interval I satisfies

α′′′(s) = f(s)(α′(s) + C),

where f is a function and C is a constant vector in Lm. Then, the curve α lies in a

3-dimensional space in Lm. In particular, if the constant vector C is zero, we see that α

is a plane curve.

Proof. See Lemma 3.1 of [18].

Let M be a cylindrical (r+1)-dimensional ruled submanifold in Lm generated by non-

degenerate rulings, which is parameterized by (4.2). Without loss of generality, we may

assume that e1, e2, . . . , er generating the rulings are constant vectors.

The Laplacian ∆ of M is then naturally expressed by

∆ = −ε ∂
2

∂s2
−

r∑
i=1

εi
∂2

∂t2i
,
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where εi = 〈ei(s), ei(s)〉 = ±1 and the Gauss map G of M is given by

G = α′ ∧ e1 ∧ · · · ∧ er.

If we denote by ∆′ the Laplacian of α, that is ∆′ = −ε ∂2
∂s2

, the Laplacian ∆G of the Gauss

map becomes

∆G = ∆′α′ ∧ e1 ∧ · · · ∧ er.

We now suppose that the Gauss map G is of pointwise 1-type of the first kind, that

is, ∆G = fG for some non-zero smooth function f . Then we have

∆′α′ ∧ e1 ∧ · · · ∧ er = fα′ ∧ e1 ∧ · · · ∧ er

and hence

(4.3) ∆′α′ = fα′.

From (4.3), we see that f = 〈α′′, α′′〉 is a non-zero constant by considering the Frenet

equations in Minkowski space. Thus, the curvature of the non-null base curve is non-

zero constant. Furthermore, Lemma 4.1 implies that the curve α is contained in the

2-dimensional subspace of Lm. Therefore, we can see that the plane curve α is part of a

circle or a hyperbola.

Conversely, it is easy to show that a generalized circular cylinder or a generalized

hyperbolic cylinder has the Gauss map of pointwise 1-type of the first kind.

Therefore, we have

Theorem 4.2. The cylindrical ruled submanifold M in Lm has pointwise 1-type Gauss

map of the first kind if and only if M is part of a generalized circular cylinder or a

generalized hyperbolic cylinder.

Next, we consider the case of non-cylindrical ruled submanifolds. Let M be an (r+1)-

dimensional non-cylindrical ruled submanifold parameterized by (4.2) in Lm. Then, we

have

xs = α′(s) +

r∑
j=1

tje
′
j(s), xti = ei(s)

for i = 1, 2, . . . , r. As we introduced in Section 3, the function q is given by

(4.4) q = 〈xs, xs〉 = ε+
r∑
i=1

2uiti +
r∑

i,j=1

wijtitj ,

where ui(s) = 〈α′, e′i〉 and wij(s) = 〈e′i, e′j〉 for i, j = 1, . . . , r.
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Based on Proposition 2.6, without loss of generality, we may assume that e′j 6= 0 for

all j = 1, 2, . . . , r on the domain I of α. Then, we get the components of the metric 〈 · , · 〉
on M

g11 = q, g1j = 0 and gij = εiδij

for i, j = 2, 3, . . . , r + 1. By definition of ∆, we have the Laplacian

(4.5) ∆ =
1

2q2

∂q

∂s

∂

∂s
− 1

q

∂2

∂s2
− 1

2q

r∑
i=1

εi
∂q

∂ti

∂

∂ti
−

r∑
i=1

εi
∂2

∂t2i
.

First, we suppose that e′1, e
′
2, . . . , e

′
r are non-null. Then, using (4.5), ∆G = fG is

rewritten as

(
∂q

∂s

)2
Φ +

r∑
j=1

Ψjtj

− 3

2
q
∂q

∂s

Φ′ +
r∑
j=1

Ψ′jtj

− 1

2
q
∂2q

∂s2

Φ +
r∑
j=1

Ψjtj


+ q2

Φ′′ +
r∑
j=1

Ψ′′j tj

+
1

2
q

r∑
i=1

εi

(
∂q

∂ti

)2
Φ +

r∑
j=1

Ψjtj

− 1

2
q2

r∑
i=1

εi
∂q

∂ti
Ψi

− 1

2
q2

r∑
i=1

εi
∂2q

∂t2i

Φ +
r∑
j=1

Ψjtj

+ fq3

Φ +
r∑
j=1

Ψjtj

 = 0.

(4.6)

To deal with the above equation (4.6), we use the indefinite scalar product 〈〈 · , · 〉〉 on

G(r + 1,m). We then have

〈〈Φ,Φ〉〉 = ε̃, 〈〈Φ,Φ′〉〉 = 0,

〈〈Φ,Φ′′〉〉 = −ε̃εµ+ 2
r∑

k=1

ε̃εεku
2
k −

r∑
k=1

ε̃εkwkk,

〈〈Φ,Ψi〉〉 = ε̃εui, 〈〈Φ,Ψ′i〉〉 = ε̃εpi,

〈〈Φ,Ψ′′i 〉〉 = ε̃εyi + 2
r∑

k=1

ε̃εεkukwik −
r∑

k=1

ε̃εεkuiwkk,

〈〈Ψi,Φ
′〉〉 = ε̃εzi, 〈〈Ψi,Ψj〉〉 = ε̃εwij , 〈〈Ψi,Ψ

′
j〉〉 = ε̃εξij ,

where we put ε̃ = εε1 · · · εr, µ = 〈α′′, α′′〉, pi = 〈α′, e′′i 〉, yi = 〈α′, e′′′i 〉, zi = 〈α′′, e′i〉 and

ξij = 〈e′i, e′′j 〉. For later use, we note that

(4.7) u′i(s) = pi(s) + zi(s) and w′ij = ξij + ξji

for i, j = 1, 2, . . . , r. By taking the indefinite scalar product with the vector Φ to the both



Minimal Ruled Submanifolds Associated with Gauss Map 583

sides of (4.6), we obtain

(
∂q

∂s

)2
1 +

r∑
j=1

εujtj

− 3

2
q
∂q

∂s

r∑
j=1

εpjtj −
1

2
q
∂2q

∂s2

1 +
r∑
j=1

εujtj


+ q2

ε̃φ+
r∑
j=1

ε̃ϕjtj

+
1

2
q

r∑
i=1

εi

(
∂q

∂ti

)2
1 +

r∑
j=1

εujtj

− 1

2
q2

r∑
i=1

εi
∂q

∂ti
εui

− 1

2
q2

r∑
i=1

εi
∂2q

∂t2i

1 +
r∑
j=1

εujtj

+ fq3

1 +
r∑
j=1

εujtj

 = 0,

(4.8)

where we have put

φ = 〈〈Φ,Φ′′〉〉 and ϕi = 〈〈Φ,Ψ′′i 〉〉.

From (4.8), we can see that the function f is a rational function in t with functions in s

as coefficients which is of the form

(4.9) f(t) = − P (t)

q3
(

1 +
∑r

j=1 εujtj

) ,
where we put

P (t) =

(
∂q

∂s

)2
1 +

r∑
j=1

εujtj

− 3

2
q
∂q

∂s

r∑
j=1

εpjtj −
1

2
q
∂2q

∂s2

1 +
r∑
j=1

εujtj


+ q2

ε̃φ+
r∑
j=1

ε̃ϕjtj

+
1

2
q

r∑
i=1

εi

(
∂q

∂ti

)2
1 +

r∑
j=1

εujtj


− 1

2
q2

r∑
i=1

εi
∂q

∂ti
εui −

1

2
q2

r∑
i=1

εi
∂2q

∂t2i

1 +

r∑
j=1

εujtj

 .

Putting (4.9) into (4.6) and multiplying
(
1 +

∑r
j=1 εujtj

)
with the equation obtained in

such a way, we get

− 3

2
q

(
∂q

∂s

)Φ′ +

r∑
j=1

tjΨ
′
j

(1 +

r∑
k=1

εuktk

)
+

3

2
q

(
∂q

∂s

)Φ +

r∑
j=1

tjΨj

 r∑
k=1

εpktk

+ q2

Φ′′ +

r∑
j=1

tjΨ
′′
j

(1 +

r∑
k=1

εuktk

)
− q2

Φ +

r∑
j=1

tjΨj

(ε̃φ+
r∑

k=1

ε̃ϕktk

)

− 1

2
q2

r∑
i=1

εi

(
∂q

∂ti

)
Ψi

(
1 +

r∑
k=1

εuktk

)
+

1

2
q2

r∑
i=1

εi

(
∂q

∂ti

)
εui

Φ +
r∑
j=1

tjΨj

 = 0.

(4.10)
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Lemma 4.3. Let M be an (r+ 1)-dimensional non-cylindrical ruled submanifold parame-

terized by (4.2) in Lm with pointwise 1-type Gauss map of the first kind. Let e1, e2, . . . , er

be the orthonormal generators of the rulings along the base curve α. If e′i are non-null for

i = 1, 2, . . . , r, then the functions

ui(s) = 〈α′(s), e′i(s)〉 and wij(s) = 〈e′i(s), e′j(s)〉

are constant functions for all i, j = 1, 2, . . . , r.

Proof. We suppose that ∂q/∂s 6= 0 on some open interval I1. Then, on I1, since each term

of the left-hand side in (4.10) involves ∂q/∂s or q2, by rearranging (4.10), we get

(4.11) − 3

2

(
∂q

∂s

)
R(t) = qQ(t),

where

R(t) =

Φ′ +
r∑
j=1

tjΨ
′
j

(1 +
r∑

k=1

εuktk

)
−

Φ +
r∑
j=1

tjΨj

( r∑
k=1

εpktk

)

and

Q(t) = −

Φ′′ +

r∑
j=1

tjΨ
′′
j

(1 +

r∑
k=1

εuktk

)
+

Φ +

r∑
j=1

tjΨj

(ε̃φ+

r∑
k=1

ε̃ϕktk

)

+
1

2

r∑
i=1

εi

(
∂q

∂ti

)
Ψi

(
1 +

r∑
k=1

εuktk

)
− 1

2

r∑
i=1

εi

(
∂q

∂ti

)
εui

Φ +

r∑
j=1

tjΨj

 .

Recall that q is a polynomial in t of degree 2 with functions in s as coefficients. Then,

we have two cases whether the function q is of the form q(t) = ε
(
1 +

∑r
i=1 εuiti

)2
or not.

Case 1. Suppose that q 6= ε
(
1 +

∑r
i=1 εuiti

)2
. If we use a similar argument to get

Lemma 3.4 in [18], equation (4.11) with the aid of (4.4) yields that R(t) has to be expressed

as

R(t) = B(s)q

for some vector field B(s) along α. Namely, we haveΦ′ +
r∑
j=1

tjΨ
′
j

(1 +
r∑

k=1

εuktk

)
−

Φ +
r∑
j=1

tjΨj

 r∑
k=1

εpktk

= B(s)

ε+
r∑
i=1

2uiti +
r∑

i,j=1

wijtitj

 .

(4.12)
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Considering the constant terms in (4.12) with respect to t, we see that the vector B(s) is

given by

(4.13) B(s) = εΦ′(s).

Using (4.13), we compare the coefficients of the terms containing ti and titj for any

i, j = 1, 2, . . . , r in (4.12). Then, we obtain the following two equations:

Ψ′i = εuiΦ
′ + εpiΦ,(4.14)

εuiΨ
′
j + εujΨ

′
i − εpiΨj − εpjΨi = 2εwijΦ

′(4.15)

for i, j = 1, 2, . . . , r. Taking the indefinite product with Ψj to the both sides of (4.14), we

have

ξji = εuizj + εpiuj

for i, j = 1, 2, . . . , r. So we get

ξji + ξij = (εuizj + εpiuj) + (εujzi + εpjui)

= εui(pj + zj) + εuj(pi + zi)
(4.16)

for i, j = 1, 2, . . . , r. Due to (4.7), (4.16) yields

w′ij = εuiu
′
j + εuju

′
i

which means that

(4.17) wij = εuiuj + cij

for some constants cij and i, j = 1, 2, . . . , r.

Let er+1, er+2, . . . , em−1 be the orthogonal normal vector fields to M along α. If we

apply Lemma 2.5 to the normal space Tα(s)N of M , then there exists an orthonormal

frame {ea}m−1
a=r+1 of the normal space Tα(s)N satisfying

〈e′a(s), eb(s)〉 = 0

for all a, b = r + 1, . . . ,m− 1. Then we can put

(4.18) e′i = εuiα
′ +

m−1∑
a=r+1

εa〈e′i, ea〉ea,

where εa = 〈ea, ea〉 = ±1 for a = r + 1, . . . ,m − 1. From (4.17) and the definitions of ui

and wij , the constants cij are given by

(4.19) cij =

m−1∑
a=r+1

εa〈e′i, ea〉〈e′j , ea〉
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for i, j = 1, 2, . . . , r.

In (4.15), we replace i with j and then we have

(4.20) ujΨ
′
j − pjΨj = wjjΦ

′.

Putting (4.14) into (4.20), we obtain

εu2
jΦ
′ + εpjujΦ− pjΨj = wjjΦ

′,

or,

(4.21) pj(εujΦ−Ψj) = cjjΦ
′

because of (4.17). Taking the indefinite product with Ψj to (4.21), we have

pj(εu
2
j − wjj) = cjjzj

which implies that

cjj(zj + pj) = cjju
′
j = 0

for j = 1, 2, . . . , r.

If the constant cjj 6= 0 for some j ∈ {1, 2, . . . , r}, then

u′j = 0.

We consider the case of cj0j0 = 0 for some j0. If M is Lorentzian, then the normal

space of M at each point is space-like. From (4.19), we can see that

e′j0 = εuj0α
′.

We now suppose that M is space-like. Then ε = 1 and εi = 1 for i = 1, 2, . . . , r. Since

wj0j0 = u2
j0

, the vector field
∑

a εa〈e′j0 , ea〉ea of (4.18) is vanishing or a null vector field

along α.

Suppose that
∑

a εa〈e′j0 , ea〉ea is a null vector field along α. Then, from e′j0 = uj0α
′ +∑

a εa〈e′j0 , ea〉ea, we have

(4.22) Ψj0 = uj0Φ +

m−1∑
a=r+1

εa〈e′j0 , ea〉ξa,

where ξa = ea ∧ e1 ∧ · · · ∧ er for a = r + 1, . . . ,m− 1. Substituting (4.22) into (4.21) and

using cj0j0 = 0, we get

pj0

m−1∑
a=r+1

εa〈e′j0 , ea〉ξa = 0.
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By the hypothesis, the vector field
∑

a εa〈e′j0 , ea〉ξa is non-vanishing for all s. Therefore,

we see that the function

(4.23) pj0 ≡ 0

on I. Equations (4.14), (4.22) and (4.23) yield

(4.24) u′j0Φ +

m−1∑
a=r+1

εa〈e′j0 , ea〉
′ξa +

m−1∑
a=r+1

εa〈e′j0 , ea〉ξ
′
a = 0.

Note that 〈〈Φ, ξb〉〉 = 〈〈ξ′a, ξb〉〉 = 0 and 〈〈ξa, ξb〉〉 = εaδab for a, b = r + 1, . . . ,m − 1. By

taking the indefinite product with ξb to the both sides of (4.24) for b = r + 1, . . . ,m− 1,

we obtain

〈e′j0 , ea〉
′ = 0

and hence

(4.25) u′j0Φ = −
m−1∑
a=r+1

εa〈e′j0 , ea〉ξ
′
a

for all a = r + 1, . . . ,m− 1. By straightforward computation of ξ′a, (4.25) takes the form

u′j0Φ = −
m−1∑
a=r+1

εa〈e′j0 , ea〉uaΦ

−
r∑
i=1

m−1∑
a=r+1

εaui〈e′j0 , ea〉ea ∧ e1 ∧ · · · ∧ ei−1 ∧ α′ ∧ ei+1 ∧ · · · ∧ er,

where ua = 〈α′, e′a〉 for a = r+ 1, . . . ,m− 1. Since the vectors Φ and ea ∧ e1 ∧ · · · ∧ ei−1 ∧
α′ ∧ ei+1 ∧ · · · ∧ er are linearly independent, we get

ui〈e′j0 , ea〉 = 0

for all i = 1, . . . , r and a = r+1, . . . ,m−1. Note that uj0 6= 0 for all s ∈ I. Thus, we have

〈e′j0 , ea〉 = 0 for all a = r+1, . . . ,m−1, which means that the vector field
∑

a εa〈e′j0 , ea〉ea
is zero that is a contradiction.

Therefore, we can conclude that if cjj = 0 for some j = 1, 2, . . . , r, then

e′j = εujα
′.

Now, we will show that u′j = 0 when cjj = 0 for j = 1, 2, . . . , r. To do that, we

consider the set Λ = {i | cii = 0} ⊂ {1, 2, . . . , r}. Note that for i ∈ Λ, wik = εuiuk for all

k = 1, 2, . . . , r. Then, the function q = ε+
∑

2uiti +
∑
wijtitj can be rewritten as

q = ε

(
1 +

∑
i∈Λ

εuiti

)2

+ 2
∑
k/∈Λ

εuktk +
∑
i∈Λ

∑
k/∈Λ

wiktitk +
∑
k,h/∈Λ

wkhtkth.
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Since uk and wkh are constant for k, h /∈ Λ,

∂q

∂s
= 2ε

(
1 +

∑
i∈Λ

εuiti

)∑
i∈Λ

εu′iti + 2
∑
i∈Λ

∑
k/∈Λ

εuku
′
ititk

= 2ε

1 +
r∑
j=1

εujtj

∑
i∈Λ

εu′iti.

Then, (4.11) implies

− 3

1 +

r∑
j=1

εujtj

(∑
i∈Λ

εu′iti

)
Φ′

= −

Φ′′ +

r∑
j=1

tjΨ
′′
j −

r∑
j=1

εjujΨj −
r∑
l=1

 r∑
j=1

εjwjlΨj

 tl

1 +

r∑
j=1

εjujtj


+

Φ +
r∑
j=1

tjΨj

ε̃φ+
r∑
j=1

ε̃ϕjtj − ε
r∑
j=1

εju
2
j − ε

r∑
l=1

 r∑
j=1

εjujwjl

 tl

 .

(4.26)

In (4.26), considering the constant terms with respect to t and the coefficients of terms

containing ti for i ∈ Λ, we have the following equations

−Φ′′ +
r∑
j=1

εjujΨj + ε̃φΦ− ε

 r∑
j=1

εju
2
j

Φ = 0,(4.27)

−3εu′iΦ
′ = −εuiΦ′′ + ε

 r∑
j=1

εjujΨj

ui −Ψ′′i +
r∑
j=1

εjwijΨj

+ ε̃ϕiΦ− ε

 r∑
j=1

εjujwij

Φ + ε̃φΨi − ε

 r∑
j=1

εju
2
j

Ψi.

(4.28)

Putting (4.27) into (4.28) and using the fact that Ψi = εuiΦ for i ∈ Λ, we get

(4.29) − 3εu′iΦ
′ = −Ψ′′i +

r∑
j=1

εjwijΨj + ε̃ϕiΦ− ε

 r∑
j=1

εjujwij

Φ.

From Ψi = εuiΦ, we have

(4.30) Ψ′′i = εu′′i Φ + 2εu′iΦ
′ + εuiΦ

′′ and ϕi = ε̃εu′′i + εuiφ

for i ∈ Λ. By (4.27) and (4.30), equation (4.29) yields that

u′iΦ
′ = 0
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for i ∈ Λ.

If Φ′ ≡ 0, then, by definition,

Φ′ = α′′ ∧ e1 ∧ · · · ∧ er +
∑
k/∈Λ

α′ ∧ e1 ∧ · · · ∧ e′k ∧ · · · ∧ er ≡ 0.

This implies that

α′ ∧ e1 ∧ · · · ∧ e′k ∧ · · · ∧ er ∧ ek = 0

for k /∈ Λ. Thus, the vector fields α′, e1, . . . , er, e
′
k are linearly dependent for all s which

means that e′k = εukα
′ for k /∈ Λ. But it contradicts the definition of q, which is not of

the form of completing the square. Therefore, we have

u′i = 0

for i ∈ Λ.

So, for the case of q 6= ε
(
1 +

∑r
i=1 εuiti

)2
we can see that ui are constant functions for

i = 1, 2, . . . , r and hence the functions wij are constant for all i, j = 1, 2, . . . , r because of

(4.17). Therefore, we can conclude that

∂q

∂s
= 0

for all s, which contradicts ∂q/∂s 6= 0 on the open interval I1.

Case 2. Suppose that q = ε
(
1 +

∑r
i=1 εuiti

)2
. Then wij = εuiuj and the constants cij

defined in (4.17) are zero for all i, j = 1, 2, . . . , r. In Case 1, we showed that if cjj = 0 for

some j, then e′j = εujα
′.

So, we easily see that Ψi = εuiΦ for all i = 1, 2, . . . , r. Therefore, G = Φ and hence

∆G = fG is rewritten as

(4.31)
ε (
∑r

i=1 εu
′
iti)

(1 +
∑r

i=1 εuiti)
3 Φ′ − ε

(1 +
∑r

i=1 εuiti)
2 Φ′′ = fΦ.

Taking the indefinite scalar product with Φ to the both sides of (4.31), we have

(4.32) f = − εε̃

(1 +
∑r

i=1 εuiti)
2φ.

Then, equation (4.31) with the help of (4.32) implies

(4.33)

(
r∑
i=1

εu′iti

)
Φ′ −

(
1 +

r∑
i=1

εuiti

)
Φ′′ = −ε̃φ

(
1 +

r∑
i=1

εuiti

)
Φ.

From (4.33), we can see that

(4.34) Φ′′ = ε̃φΦ and hence u′iΦ
′ = 0
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for all i = 1, 2, . . . , r.

If Φ′ ≡ 0, (4.32) and (4.34) yield that the function f is identically zero because Φ is

non-zero vector field for all s ∈ I. It is a contradiction. Thus, we have u′i = 0 on some open

interval I2 ⊂ I1 for all i = 1, 2, . . . , r and hence ∂q/∂s = 0 on I2 ⊂ I1, a contradiction.

Therefore, we can conclude that
∂q

∂s
= 0

for all s ∈ I. This is a contradiction.

According to Cases 1 and 2, we conclude from equation (4.6) that

∂q

∂s
= 0

for all s ∈ I.

The following lemma helps us examine the mean curvature of the ruled submanifold

on Lm with pointwise 1-type Gauss map of the first kind:

Lemma 4.4. [28] Let M be an n-dimensional submanifold of a pseudo-Euclidean space

Ems with pointwise 1-type Gauss map G of the first kind. Then, the mean curvature vector

field H is parallel in the normal bundle.

For a ruled submanifold M in Lm, the mean curvature vector field H is defined by

H =
1

r + 1

{
εh

(
xs
‖xs‖

,
xs
‖xs‖

)
+

r∑
i=1

εih(xti , xti)

}

=
ε

(r + 1)q

(
xss −

ε

q
〈xss, xs〉xs −

r∑
i=1

εi〈xss, ei〉ei

)
by virtue of xtiti = 0 for all i. By computation, we can see easily

〈xss, xs〉 =
∑
i,j

ξijtitj = 0 and 〈xss, ei〉 = −ui −
∑
j

wijtj .

So, we have

H =
ε

(r + 1)q

α′′(s) +

r∑
i=1

tie
′′
i (s) +

r∑
i=1

εiuiei(s) +

r∑
j=1

(
r∑
i=1

εiwijei(s)

)
tj

 ,

which yields

〈H,H〉 =
1

(r + 1)2q2

〈α′′, α′′〉 −
r∑

k=1

εku
2
k + 2

r∑
i=1

〈α′′, e′′i 〉ti − 2
r∑

i,j=1

εjujwijti

+
r∑

i,j=1

〈e′′i , e′′j 〉titj −
r∑

i,j=1

(
r∑

k=1

εkwikwjk

)
titj

 .

(4.35)
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Now, we show that 〈H,H〉 = 0 on M .

Differentiating (4.35) with respect to ti0 for some i0 and using Lemma 4.4, we have

0 =
−2

(r + 1)2q3

(
∂q

∂ti0

)〈α′′, α′′〉 −
r∑

k=1

εku
2
k + 2

r∑
i=1

〈α′′, e′′i 〉ti − 2

r∑
k,i=1

εkukwkiti

+
r∑

i,j=1

〈e′′i , e′′j 〉titj +
r∑

i,j=1

(
r∑

k=1

εkwikwjk

)
titj


+

2

(r + 1)2q2

〈α′′, e′′i0〉 −
r∑

k=1

εkukwi0k +
r∑
j=1

〈e′′i0 , e
′′
j 〉tj −

r∑
j=1

(
r∑

k=1

εkwi0kwjk

)
tj

 ,

or, equivalently,

0 = −2

ui0 +

r∑
j=1

wi0jtj

〈α′′, α′′〉 −
r∑

k=1

εku
2
k + 2

r∑
i=1

〈α′′, e′′i 〉ti − 2

r∑
k,i=1

εkukwkiti

+
r∑

i,j=1

〈e′′i , e′′j 〉titj +
r∑

i,j=1

(
r∑

k=1

εkwikwjk

)
titj


+

ε+
r∑
i=1

2uiti +
r∑

i,j=1

wijtitj


×

〈α′′, e′′i0〉 −
r∑

k=1

εkukwi0k +
r∑
j=1

〈e′′i0 , e
′′
j 〉tj −

r∑
j=1

(
r∑

k=1

εkwi0kwjk

)
tj

 .

(4.36)

Considering the coefficients of terms containing tj , t
2
j and t3j for some j = 1, 2, . . . , r in

(4.36), we obtain

− 4ui0〈α′′, e′′j 〉+ 4ui0

r∑
k=1

εkukwkj − 2wi0j〈α′′, α′′〉+ 2wi0j

r∑
k=1

εku
2
k

+ ε〈e′′i0 , e
′′
j 〉 − ε

r∑
k=1

εkwi0kwjk + 2uj〈α′′, e′′i0〉 − 2uj

r∑
k=1

εkukwi0k = 0,

(4.37)

− 2ui0〈e′′j , e′′j 〉+ 2ui0

r∑
k=1

εkw
2
jk − 4wi0j〈α′′, e′′j 〉+ 4wi0j

r∑
k=1

εkukwkj

+ 2uj〈e′′i0 , e
′′
j 〉 − 2uj

r∑
k=1

εkwi0kwjk + wjj〈α′′, e′′i0〉 − wjj
r∑

k=1

εkukwi0k = 0,

(4.38)

−2wi0j〈e′′j , e′′j 〉+ 2wi0j

r∑
k=1

εkw
2
jk + wjj〈e′′i0 , e

′′
j 〉 − wjj

r∑
k=1

εkwi0kwjk = 0.(4.39)
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Without loss of generality, we may assume that wi0i0 6= 0. By replacing j with i0 in

(4.37), (4.38) and (4.39), we can get easily

(4.40) 〈α′′, α′′〉 =
r∑

k=1

εku
2
k, 〈α′′, e′′i0〉 =

r∑
k=1

εkukwi0k and 〈e′′i0 , e
′′
i0〉 =

r∑
k=1

εkw
2
i0k.

Equation (4.37) with the help of (4.40) yields

(4.41) 〈e′′i , e′′j 〉 =
r∑

k=1

εkwikwjk

and hence

(4.42) 〈α′′, e′′i 〉 =
r∑

k=1

εkukwik

for all i, j = 1, 2, . . . , r. Together with equations (4.35), (4.40), (4.41) and (4.42), we can

conclude that on M ,

〈H,H〉 = 0.

According to Theorem 3.1, we see that there does not exist an non-empty open subset

Θ = {p ∈ M | H 6= 0 and 〈H,H〉 = 0} of a ruled submanifold M in Lm with pointwise

1-type Gauss map of the first kind.

Therefore, we have

Theorem 4.5. Let M be an (r + 1)-dimensional non-cylindrical ruled submanifold pa-

rameterized by (4.2) in Lm. Let e1, e2, . . . , er be the orthonormal generators of the rulings

along the base curve α such that e′i are non-null for all i = 1, 2, . . . , r. If M has pointwise

1-type Gauss map of the first kind, then M is minimal.

We now deal with the case that some of generators of rulings have null derivatives. Let

M be an (r+ 1)-dimensional non-cylindrical ruled submanifold parameterized by (4.2) in

Lm. We suppose that some generators ej1 , ej2 , . . . , ejk of the rulings have null derivatives

along the base curve α for j1 < j2 < · · · < jk ∈ {1, 2, . . . , r}. We can rewrite the

parametrization (4.2) of M as

x(s, t1, . . . , tr) = α(s) +
∑

i 6=j1,j2,...,jk

tiei(s) +
k∑
i=1

tjieji(s)

and its Laplace operator is given by (4.5)

∆ =
1

2q2

∂q

∂s

∂

∂s
− 1

q

∂2

∂s2
− 1

2q

r∑
i=1

εi
∂q

∂ti

∂

∂ti
−

r∑
i=1

εi
∂2

∂t2i
.
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Then, there are two possible cases such that either all of ejk+1
, . . . , ejr generating the

rulings except ej1(s), ej2(s), . . . , ejr(s) are constant vector fields or not.

Case 1. Suppose that ejk+1
, . . . , ejr are constant vector fields. In this case, we may

assume that e′i is null for all i = 1, . . . , r, otherwise the ruled submanifold M is a cylinder

defined over the ruled submanifold parameterized by the base curve α and the rulings

generated by ei’s except those constant vector fields. We then have three possible cases

according to the degree of q.

Subcase 1.1. Let deg q(t) = 0, that is, e′i are null with e′i(s) ∧ e′l(s) = 0 for i, l =

1, 2, . . . , r and 〈α′(s), e′j(s)〉 = 0 for j = 1, 2, . . . , r. Note that ε = 1 and εi = 1 for all

i = 1, 2, . . . , r. Then M has the Gauss map

G = Φ +
r∑
i=1

tiΨi

and ∆G = fG implies

(4.43) Φ′′ = −fΦ and Ψ′′i = −fΨi

for all i = 1, 2, . . . , r. The mean curvature vector field H is given by

(4.44) H =
1

r + 1

(
α′′ +

r∑
i=1

tie
′′
i

)
,

from which,

(4.45) 〈H,H〉 =
1

(r + 1)2

〈α′′, α′′〉+ 2
r∑
i=1

〈α′′, e′′i 〉ti +
r∑

i,j=1

〈e′′i , e′′j 〉titj

 .

Differentiating (4.45) with respect to ti0 for some i0 and using Lemma 4.4, we have

0 =
1

(r + 1)2

2〈α′′, e′′i0〉+ 2

r∑
j=1

〈e′′i0 , e
′′
j 〉tj

 ,

which gives

〈α′′, e′′i 〉 = 0 = 〈e′′i , e′′j 〉

for all i, j = 1, 2, . . . , r.

On the other hands, Lemma 4.4 tells us that the derivatives of the mean curvature

vector H with respect to ti are tangent to M for all i ∈ {1, 2, . . . , r}. Together with this

fact and (4.44), we can see that

(4.46) e′′i = 〈e′′i , α′〉α′
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for all i = 1, 2, . . . , r. Since 〈e′′i , e′′j 〉 = 0, taking the scalar product with e′′i to (4.46) implies

that

〈e′′i , α′〉 = 0 and hence e′′i = 0

for all i = 1, 2, . . . , r. From Ψi = e′i ∧ e1 ∧ · · · ∧ er and the above equation, we obtain

Ψ′′i = 0

for all i = 1, 2, . . . , r. Thus, we can see that the function f is identically zero by virtue

of (4.43) because Ψi is a non-zero vector field for all s ∈ I, which is a contradiction.

Therefore, no ruled submanifold with deg q(t) = 0 has pointwise 1-type Gauss map of the

first kind.

Subcase 1.2. Let deg q(t) = 1. In this case, 〈α′(s), e′i(s)〉 6= 0 for some i (1 ≤ i ≤ r) and

the null vector fields e′i satisfy e′i ∧ e′l = 0 for i, l = 1, 2, . . . , r. Then, ∆G = fG implies

that

(
∂q

∂s

)2
(

1 +
r∑
i=1

εuiti

)
− 3

2
q
∂q

∂s

r∑
i=1

εpiti −
1

2
q
∂2q

∂s2

(
1 +

r∑
i=1

εuiti

)
+ q2

(
ε̃φ+

r∑
i=1

ε̃ϕiti

)

+
1

2
q

r∑
j=1

εj

(
∂q

∂tj

)2
(

1 +
r∑
i=1

εuiti

)
− 1

2
q2

r∑
j=1

εj
∂q

∂tj
εuj + fq3

(
1 +

r∑
i=1

εuiti

)
= 0

(4.47)

with the help of (4.8). Using the function f which is obtained from (4.47), we repeat the

same process to get (4.10). Then, we have the following equation

− 3

2

∂q

∂s


Φ′ +

r∑
j=1

tjΨ
′
j

(1 +
r∑
i=1

εuiti

)
−

(
r∑
i=1

εpiti

)Φ +
r∑
j=1

tjΨj


= −q


Φ′′ +

r∑
j=1

tjΨ
′′
j

(1 +
r∑
i=1

εuiti

)
−

(
ε̃φ+

r∑
i=1

ε̃ϕiti

)Φ +
r∑
j=1

tjΨj


−

 r∑
j=1

εjujΨj

(1 +

r∑
i=1

εuiti

)
+

(
r∑
i=1

εεiu
2
i

)Φ +

r∑
j=1

tjΨj

 .

(4.48)

From q = ε+
∑

i 2uiti and ∂q/∂s =
∑

i 2u′iti, equation (4.48) implies

(4.49)

Φ′ +
r∑
j=1

tjΨ
′
j

(1 +
r∑
i=1

εuiti

)
−

(
r∑
i=1

εpiti

)Φ +
r∑
j=1

tjΨj

 = qW (t)

for some vector W (t). Considering the degree of (4.49) and comparing the constant terms

of both sides with respect to t in (4.49), we can put

(4.50) W (t) = εΦ′ +
r∑
i=1

Υiti
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for some vector fields Υi along α. Using (4.50) and considering the coefficients of the

terms containing ti0 for some i0 with ui0 6= 0, we have

εΥi0 + 2εui0Φ′ = εui0Φ′ + Ψ′i0 − εpi0Φ,

or,

(4.51) Υi0 = −ui0Φ′ + εΨ′i0 − pi0Φ.

Putting (4.51) into (4.49) and comparing the coefficients of the terms containing t2i0 , we

get

(4.52) − 2u2
i0Φ′ − 2ui0pi0Φ + εui0Ψ′i0 + εpi0Ψi0 = 0.

Taking the indefinite product with Ψi0 to (4.52), we obtain

(4.53) − 2u2
i0zi0 − 2ui0pi0ui0 + εui0ξi0i0 + εpi0wi0i0 = 0.

In this case, wjk = 0 and ξjj = 0 for all j, k = 1, 2, . . . , r, so (4.53) becomes

−2u2
i0zi0 − 2u2

i0pi0 = 0

which yields that

u2
i0u
′
i0 = 0.

Thus, ui0 (i0 = 1, 2, . . . , r) is a non-zero constant function on I and hence

∂q

∂s
= 0

for all s ∈ I.

On the other hand, the mean curvature vector field H is given by

(4.54) H =
ε

(r + 1)q

α′′ + r∑
i=1

tie
′′
i +

r∑
j=1

εjujej

 .

Note that εj = 1 for all j = 1, 2, . . . , r. By straightforward computation, we have

Hti0
=

−ε
(r + 1)q2

(
∂q

∂ti0

)α′′ + r∑
i=1

tie
′′
i +

r∑
j=1

εjujej

+
ε

(r + 1)q
e′′i0

=
ε

(r + 1)q2

−2ui0α
′′ − 2ui0

r∑
i=1

tie
′′
i − 2ui0

r∑
j=1

εjujej +

(
ε+

r∑
i=1

2uiti

)
e′′i0



(4.55)
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for some i0 ∈ {1, 2, . . . , r} with ui0 6= 0. From Lemma 4.4, the partial derivative of the

mean curvature vector H with respect to ti0 , Hti0
, is tangent to M . That is, the vector

in (4.55) of the form

(4.56) − 2ui0α
′′ − 2ui0

r∑
i=1

tie
′′
i +

(
ε+

r∑
i=1

2uiti

)
e′′i0

has to be tangent to M for all s and t = (t1, t2, . . . , tr). Recall that the vector α′′ is

expressed as

(4.57) α′′ = −
r∑
i=1

uiei −
m−1∑
a=r+1

εauaea.

By differentiating (4.18) with respect to s, we have

(4.58) e′′j = ε

(
m−1∑
a=r+1

εaua〈e′j , ea〉

)
α′ +

m−1∑
a=r+1

εa〈e′′j , ea〉ea

with the aid of (4.17),(4.19), (4.57) and the fact wij = 0 for all i, j = 1, 2, . . . , r. Putting

(4.57) and (4.58) into (4.56) and arranging the equation obtained in such a way, we obtain

the normal part of the vector given in (4.56) as follows:

(4.59)

m−1∑
a=r+1

εa

2ui0ua −
r∑
j=1

(2ui0〈e′′j , ea〉)tj + ε〈e′′i0 , ea〉+

r∑
j=1

(2uj〈e′′i0 , ea〉)tj

 ea

which becomes identically zero. It means that the coefficients of ea are vanishing for all

a = r + 1, . . . ,m − 1. Therefore, by considering the constant terms of the coefficients of

ea with respect to t in (4.59), we get

2ui0ua = −ε〈e′′i0 , ea〉

and hence

(4.60) 2ujua = −ε〈e′′j , ea〉

for all j = 1, 2, . . . , r and a = r + 1, . . . ,m− 1. By (4.60), (4.58) is rewritten as

(4.61) e′′j = ε

(
m−1∑
a=r+1

εaua〈e′j , ea〉

)
α′ − 2εuj

m−1∑
a=r+1

εauaea.

On the other hand, from e′i0 ∧ e
′
j = 0, we can put

e′i0 = f i0j e
′
j
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for all j = 1, 2, . . . , r, where f i0j are non-vanishing functions for all s. By the definition of

uj , we have that

ui0 = f i0j uj .

Since ui0 6= 0 and uj are constant, f i0j are also non-zero constant and hence uj 6= 0 for all

j = 1, 2, . . . , r. Equations (4.18), (4.61) and ξjj = 〈e′j , e′′j 〉 = 0 yield that

−εuj

(
m−1∑
a=r+1

εaua〈e′j , ea〉

)
= 0, j = 1, 2, . . . , r

and hence

(4.62)
m−1∑
a=r+1

εaua〈e′j , ea〉 = 0.

By (4.61) and (4.62), we see that

(4.63) e′′j = −2εuj

m−1∑
a=r+1

εauaea

for all j = 1, 2, . . . , r. Together with (4.57) and (4.63), the mean curvature vector field H

given in (4.54) is rewritten as

(4.64) H =
−1

r + 1

m−1∑
a=r+1

εauaea

and hence we have

u′a = 0

by virtue of Lemma 4.4 and the fact that e′a are tangent to M for all a = r+ 1, . . . ,m− 1.

Equation 〈e′j , e′′j 〉 = 0 also tells us that

(4.65) 〈e′′j , e′′j 〉 = −〈e′j , e′′′j 〉.

With the help of (4.18), (4.63) and the fact that ua are constant, equation (4.65) can be

rewritten as

4u2
j

m−1∑
a=r+1

εau
2
a = 2u2

j

m−1∑
a=r+1

εau
2
a

which yields

(4.66)

m−1∑
a=r+1

εau
2
a = 0.
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Therefore, from (4.66) we can see that

〈e′′j , e′′j 〉 = 0 and 〈H,H〉 = 0

by virtue of (4.63) and (4.64) for all j = 1, 2, . . . , r.

If e′′j = 0 for all j = 1, 2, . . . , r, since uj 6= 0, (4.63) and (4.64) yield

H = 0.

If e′′j is null for some j ∈ {1, . . . , r}, then the mean curvature vector field H given in (4.64)

is also null for all s because of the continuity of ua

Therefore, together with Theorem 3.1 we can conclude that if a ruled submanifold M

with deg q(t) = 1 has pointwise 1-type Gauss map of the first kind, then M is minimal.

Subcase 1.3. Let deg q(t) = 2. In this case, we can easily see that if a ruled submanifold

M with deg q(t) = 2 has pointwise 1-type Gauss map of the first kind, then M is minimal

by referring to the case that e′1, e
′
2, . . . , e

′
r are non-null and Theorem 3.1.

Case 2. Suppose that e′i 6= 0 for some i = jk+1, . . . , jr.

In this case, we may also assume that e′i 6= 0 for all i = jk+1, . . . , jr by virtue of

Proposition 2.6. Then, e′i are non-null for all i = jk+1, . . . , jr and deg q = 2. If we follow

the similar argument for the case that e′1, e
′
2, . . . , e

′
r are non-null, then we can obtain the

sufficient condition of the minimality of M by means of the Gauss map with the Laplace

operator together with Theorem 3.1.

Conversely, suppose that a non-cylindrical ruled submanifold with non-degenerate rul-

ings in Lm is minimal. Let M be an (r+1)-dimensional non-cylindrical ruled submanifold

parameterized by (4.2) in Lm and let e1, e2, . . . , er be orthonormal generators of the rulings

along the base curve α.

For the case that e′1, e
′
2, . . . , e

′
r are non-null, it is sufficient to refer to Theorem 3.6

of [18]. To deal with the case that some of generators of rulings have null derivatives, as

we see in the above cases according to the degree of q, it is enough to consider the subcase

of deg q(t) = 1. So, we suppose that M is minimal with deg q(t) = 1. Since the mean

curvature vector field H is given by

H =
1

(r + 1)q

{
xss − 〈xss, xs〉xs −

r∑
i=1

〈xss, ei〉ei

}

=
1

(r + 1)q

{
α′′ +

r∑
i=1

tie
′′
i +

r∑
i=1

uiei

}
,

the minimality of M implies that

α′′ = −
r∑
i=1

uiei and e′′i = 0



Minimal Ruled Submanifolds Associated with Gauss Map 599

and hence

u′i = 〈α′′, e′i〉+ 〈α′, e′′i 〉 = 0

which means that ui are constant functions for all i = 1, 2, . . . , r.

By direct computation, we have

Φ′′ =
1

2

r∑
k=1

∂q

∂tk
Ψk and Ψ′′i = 0

for all i = 1, 2, . . . , r. Since ∂q/∂s = ∂2q/∂s2 = ∂2q/∂t2i = 0 on M for all i = 1, 2, . . . , r,

by using terms in (4.6), we obtain

∆G = − 1

2q5/2

r∑
k=1

(
∂q

∂tk

)2
(

Φ +
r∑
i=1

tiΨi

)
which means that the Gauss map G of M is of pointwise 1-type of the first kind. That is,

∆G = fG

for some function

f = − 1

2q2

r∑
k=1

(
∂q

∂tk

)2

.

Therefore, together with Theorem 4.5 we have

Theorem 4.6. Let M be an (r + 1)-dimensional non-cylindrical ruled submanifold with

non-degenerate rulings in the Minkowski m-space Lm. Then, M has pointwise 1-type

Gauss map of the first kind if and only if M is minimal.

Let us consider an example of a marginally trapped ruled submanifold M whose Gauss

map is not of pointwise 1-type of the first kind.

Example 4.7. Let N be a null constant vector in the Minkowskim-space Lm. We consider

the ruled submanifold M parameterized by

(4.67) x(s, t1, . . . , tr) = s2N + Fs+
r∑
j=1

tj(Ns+ Dj)

for some constant vectors F, Dj with 〈N,F〉 = 〈N,Dj〉 = 〈F,Dj〉 = 0, 〈F,F〉 = 1 and

〈Dj ,Di〉 = δji. Then, the mean curvature vector field H of M is given by

H =
2

1 + r
N

which is null for all s. That is, M is a marginally trapped ruled submanifold with deg q = 0.

In this case, the straightforward computation provides that the vectors ∆G and G defined

on (4.67) are not parallel, i.e., the Gauss map G is not of pointwise 1-type of the first

kind.
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5. Ruled submanifolds with degenerate rulings in Lm

Let M be an (r+ 1)-dimensional ruled submanifold in Lm with degenerate rulings E(s, r)

along a regular curve and let its parametrization be given by x̃(s, t) where t = (t1, t2, . . . , tr).

Since E(s, r) is degenerate, it can be spanned by a degenerate frame {B(s) = e1(s), e2(s),

. . . , er(s)} such that

〈B(s), B(s)〉 = 〈B(s), ei(s)〉 = 0, 〈ei(s), ej(s)〉 = δij , i, j = 2, 3, . . . , r.

Without loss of generality as Lemma 2.5, we may assume that

〈e′i(s), ej(s)〉 = 0, i, j = 2, 3, . . . , r.

Since the tangent space of M at x̃(s, t) is non-degenerate and contains the degenerate

ruling E(s, r), there exists a tangent vector field A to M which satisfies

〈A(s, t), A(s, t)〉 = 0, 〈A(s, t), B(s)〉 = −1, 〈A(s, t), ei(s)〉 = 0, i = 2, 3, . . . , r

at x̃(s, t).

Let α(s) be an integral curve of the vector field A on M . Then we can define another

parametrization x of M as follows:

x(s, t1, t2, . . . , tr) = α(s) +

r∑
i=1

tiei(s),

where α′(s) = A(s).

Lemma 5.1. [20] We may assume that 〈A(s), B′(s)〉 = 0 for all s.

If we put P = 〈xs, xs〉 and Q = −〈xs, xt1〉, Lemma 5.1 implies

P (s, t) = 2

r∑
i=2

ui(s)ti +

r∑
i,j=1

wij(s)titj and Q(s, t) = 1 +

r∑
i=2

vi(s)ti,

where vi(s) = 〈B′(s), ei(s)〉, ui(s) = 〈A(s), e′i(s)〉 and wij(s) = 〈e′i(s), e′j(s)〉 for i, j =

1, 2, . . . , r. Note that P and Q are polynomials in t = (t1, t2, . . . , tr) with functions in s as

coefficients. Then the Laplacian ∆ of M can be expressed as follows:

∆ =
1

Q2

{
∂P

∂t1

∂

∂t1
− 2Q

r∑
i=2

vi
∂

∂ti
+ 2Q

∂2

∂s∂t1
+ P

∂2

∂t21
− 2Q

r∑
i=2

vit1
∂2

∂t1∂ti
−Q2

r∑
i=2

∂2

∂t2i

}
,

where P = P − t21
∑r

i=2 v
2
i .

By definition of the indefinite scalar product 〈〈 · , · 〉〉 on G(r + 1,m), we may put

〈〈xs ∧ xt1 ∧ xt2 ∧ · · · ∧ xtr , xs ∧ xt1 ∧ xt2 ∧ · · · ∧ xtr〉〉 = −Q2.
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Let ε = signQ(t). Then the Gauss map G is given by

G =
1

εQ
xs ∧ xt1 ∧ xt2 ∧ · · · ∧ xtr

=
1

εQ

{
A ∧B ∧ e2 ∧ · · · ∧ er + t1B

′ ∧B ∧ e2 ∧ · · · ∧ er +
r∑
i=2

tie
′
i ∧B ∧ e2 ∧ · · · ∧ er

}
.

Suppose that the Gauss map G is of pointiwse 1-type of the first kind, i.e., ∆G = fG for

some non-zero smooth function f . The straightforward computation provides

2ε

Q3

m−1∑
h=r+1

{(
r∑
i=1

〈B′, e′i〉ti −
r∑
i=2

v′iti

)
vh + v′hQ

}
eh ∧B ∧ e2 ∧ · · · ∧ er

+
2ε

Q2

m−1∑
h=r+1

v2
hA ∧B ∧ e2 ∧ · · · ∧ er

+
2ε

Q2

r∑
i=2

m−1∑
h=r+1

vivheh ∧B ∧ e2 ∧ · · · ∧ ei−1 ∧A ∧ ei+1 ∧ · · · ∧ er

− 2ε

Q2

r∑
i=2

m−1∑
h,l=r+1

vhzi,leh ∧B ∧ e2 ∧ · · · ∧ ei−1 ∧ el ∧ ei+1 ∧ · · · ∧ er

= f
ε

Q

{(
1 +

r∑
i=2

tivi

)
A ∧B ∧ e2 ∧ · · · ∧ er

+
m−1∑
h=r+1

(
t1vh −

r∑
i=2

zi,hti

)
eh ∧B ∧ e2 ∧ · · · ∧ er

}

= εfA ∧B ∧ e2 ∧ · · · ∧ er +
εf

Q

m−1∑
h=r+1

(
t1vh −

r∑
i=2

zi,hti

)
eh ∧B ∧ e2 ∧ · · · ∧ er,

(5.1)

where we have put

B′ =
m−1∑
i=2

viei and e′j = vjA− ujB +
m−1∑
l=r+1

(−zj,l)el

for j = 2, . . . , r and l = r + 1, . . . ,m− 1. Considering the orthogonality of the vectors in

(5.1), we can see that

vivh = 0 and vhzi,l = 0

for i = 2, 3, . . . , r and h, l = r + 1, . . . ,m− 1.

If the function vh(s) ≡ 0 for all s ∈ I and h = r + 1, . . . ,m− 1, then the coefficient of

the vector A ∧B ∧ e2 ∧ · · · ∧ er on the left-hand side of (5.1) vanishes. Thus the function

f becomes identically zero because of the orthogonality of the vectors on the right-hand

side of (5.1), a contradiction.
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Therefore, vh 6= 0 for some h ∈ {r + 1, . . . ,m− 1}, say vh0 . Then, we have

vi = 0, zi,l = 0 and hence Q = 1

for i = 2, 3, . . . , r and l = r + 1, . . . ,m− 1. So, equation (5.1) implies

2ε

m−1∑
h=r+1

{(
r∑
i=1

〈B′, e′i〉ti

)
vh + v′h

}
eh ∧B ∧ e2 ∧ · · · ∧ er

+ 2ε

(
m−1∑
h=r+1

v2
h

)
A ∧B ∧ e2 ∧ · · · ∧ er

= εfA ∧B ∧ e2 ∧ · · · ∧ er + εf

m−1∑
h=r+1

(t1vh)eh ∧B ∧ e2 ∧ · · · ∧ er.

(5.2)

Equation (5.2) yields

(5.3) f = 2
m−1∑
h=r+1

v2
h = 2〈B′, B′〉 and 2

r∑
i=2

(〈B′, e′i〉vh)ti + v′h = 0

for i = 2, 3, . . . , r and h = r + 1, . . . ,m− 1. From (5.3), we can see that vh0 is a non-zero

constant function which means that the function f is also non-zero constant, that is, the

Gauss map G of M is of usual 1-type.

Thus, we have

Theorem 5.2. Let M be a ruled submanifold in the Lorentz-Minkowski m-space Lm with

degenerate rulings. Then, M has pointwise 1-type Gauss map of the first kind if and only

if the Gauss map is of non-null 1-type in usual sense.

6. Minimal ruled submanifolds in Lm

In Section 3, we characterized minimal ruled submanifolds with non-degenerate rulings in

terms of pointwise 1-type Gauss map of the first kind in the Lorentz-Minkowski space Lm.

In [21], the authors defined a minimal ruled submanifold with degenerate rulings called a

G-kind ruled submanifold in Lm.

Therefore, considering Theorem 4.5 of [21] and Theorem 4.6, we have

Theorem 6.1. Let M be a non-cylindrical ruled submanifold in a Lorentz-Minkowski m-

space Lm. Then, M is minimal if and only if, according to the character of the base curve,

M is one of the followings:

(1) The Gauss map of M is of pointwise 1-type of the first kind if the base curve is

non-null.
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(2) M is an open portion of a G-kind ruled submanifold if the base curve is null.

Remark 6.2. We would like to correct the authors’ statement of Theorem 4.3 in [22]. In

their proof of Case 1 of the theorem, they accidently dropped one trivial case of Gauss

map which is of 1-type. The statement of the theorem should be “Let M be a ruled

submanifold in Lm with degenerate rulings. If M has finite-type Gauss map G, G is of

either 1-type or null 2-type.”
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