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Coderivatives Related to Parametric Extended Trust Region Subproblem

and Their Applications

Van Nghi Tran

Abstract. This paper deals with the Fréchet and Mordukhovich coderivatives of the

normal cone mapping related to the parametric extended trust region subproblems

(eTRS), in which the trust region intersects a ball with a single linear inequality

constraint. We use the obtained results to investigate the Lipschitzian stability of

parametric eTRS. We also propose a necessary condition for the local (or global)

solution of the eTRS by using the coderivative tool.

1. Introduction

Quadratic program forms an important class of mathematical programming problems.

Many interesting stability properties of the quadratically constrained quadratic program-

ming (QCQP) problems were presented (see [12,13,18,25]). Recently, many authors have

used coderivative tools to characterize the Lipschitzian stability of linearly constrained

quadratic programming (LCQP) problems and of the trust region subproblems (TRS),

which are two special subclasses of the QCQP problems (see [15, 22]). We are interested

in studying the stability of the parametric extend trust region subproblems (eTRS) as

follows:

(ET (w)) min f(x,Q, q) :=
1

2
xTQx+ qTx subject to x ∈ Rn : ‖x‖ ≤ r, aTx+ b ≤ 0,

where the real symmetric Q ∈ Rn×n, vectors a, q ∈ Rn and b, r ∈ R, r > 0, are parameters.

The eTRS is a subclass of QCQP, which is a generalization of TRS and of LCQP with a

linear constraint. Various aspects of eTRS were studied in the literatures (see [3, 4, 24]).

Burer and Anstreicher [3] have shown that, for the case where two parallel cuts are

added to TRS, the resulting nonconvex problem has an exact representation as a semidef-

inite program (SDP) with additional linear and second-order-cone constraints. When the

case where an additional ellipsoidal constraint is added to TRS, resulting in the two trust-

region subproblem, authors have provided a new relaxation including second-order-cone
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constraints that strengthens the usual SDP relaxation. The paper conclude that if the

feasible set is a ball cut by two parallel half spaces, then the problem is polynomial-time

solvable. On the other hand, if the two half-spaces are not parallel and furthermore

intersect within the ball, the complexity is unknown.

Bienstock and Michalka [2] have concerned the following generalized trust region sub-

problem

min

{
1

2
xTQx+ qTx : x ∈ P, ‖x− µh‖ ≤ rh for h ∈ S, ‖x− µh‖ ≥ rh for h ∈ K

}
,

with P ⊂ Rn being a polyhedral set and the µh ∈ Rn and the rh quantities being given.

The authors have proved that for each fixed pair S and K, the problem can be solved in

polynomial time provided that either |K| > 0 and the number of faces of P intersecting⋂
h{x ∈ Rn : ‖x − µh‖ ≤ rh} is polynomially bounded, or |K| = 0 and the number of

inequalities defining P is bounded.

This work deals with the Fréchet and Mordukhovich coderivatives of the normal cone

mapping related to the parametric eTRS. We also use the obtained results and the Mor-

dukhovich criterion (see [16, Theorem 4.10]) for the locally Lipschitz-like property of mul-

tifunctions to investigate the Lipschitzian stability of eTRS with respect to the linear

perturbations. Our results further develop some preceding works (see [15, 22]). It also

agrees with the common agreement that linear and pure quadratic forms are relatively

easy, but their combination is not.

Computing the Fréchet coderivative (also called the regular coderivative) and the Mor-

dukhovich coderivative (also called the limiting coderivative or the normal coderivative)

of the normal cone mapping of a system of inequalities plays an important role in sen-

sitivity and stability analysis of parameterized optimization and equilibrium problems.

This research started in the 90s with the paper [6], where the authors obtained an exact

formula for the Mordukhovich normal cone in the case when the given set is a convex

polyhedron, and then developed by Henrion et al. [9] and Ban et al. [1]. Recently, many

authors have studied coderivatives of the normal cone mapping of polyhedral convex sets

under linear and nonlinear perturbations (see, for instance, [1, 6,9–11,19,20]). In [15,22],

the coderivatives of the normal cone mapping of the Euclidean ball with perturbed radius

were estimated. Meanwhile, the researchers started to attack a more difficult case, when

the given set is defined by many nonlinear inequalities (see [8] and references therein).

In this paper, we present the coderivatives of the normal cone mapping of the following

set

F(r, b) := {x ∈ Rn : ‖x‖ ≤ r, aTx+ b ≤ 0},

which depends on the parameter (r, b).
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The organization of the paper is as follows. Section 2 recalls some concepts and facts

from variational analysis. In Sections 3 and 4, the Fréchet and Mordukhovich coderiva-

tives of normal cone mapping related to the parametric eTRS are evaluated. Section 5

estimates the Mordukhovich coderivative of the KKT point set map and characterizes the

Lipschitzian stability for eTRS. Finally, Section 6 gives a necessary condition for the local

(or global) solution of the extended trust region subproblem by using the coderivative

tool.

2. Preliminaries

In this section, we recall the tools of variational analysis which will be used in the rest of

the paper (see, [16]). The Fréchet normal cone to a set Ω ⊂ Rn at x ∈ Ω is given by

N̂(x; Ω) :=

{
x∗ ∈ Rn : lim sup

x
Ω→x

〈x∗, x− x〉
‖x− x‖

≤ 0

}
,

where x
Ω→ x means x → x with x ∈ Ω. By convention, N̂(x; Ω) = ∅ when x /∈ Ω. For a

multifunction F : Rn ⇒ Rn, the sequential Painlevé-Kuratowski upper limit with respect

to the norm topology of Rn is defined by

Lim sup
x

Ω→x

F (x) := {x∗ ∈ Rn : ∃xk → x and x∗k → x∗ with x∗k ∈ F (xk), for k = 1, 2, . . .} .

If Ω is locally closed around x ∈ Ω, the cone

N(x; Ω) = Lim sup
x

Ω→x

N̂(x; Ω)

is said to be the limiting (or basic/Mordukhovich) normal cone to Ω at x ∈ Ω. If x /∈ Ω,

N(x; Ω) = ∅ by convention.

The graph of a multifunction Φ: Rn ⇒ Rm is defined by

gph Φ := {(x, y) ∈ Rn × Rm : y ∈ Φ(x)}.

For every (x, y) ∈ gph Φ, we call the multifunction D̂∗Φ: Rm ⇒ Rn,

D̂∗Φ(x, y)(y∗) :=
{
x∗ ∈ Rn : (x∗,−y∗) ∈ N̂((x, y); gph Φ)

}
, ∀ y∗ ∈ Rm

the Fréchet coderivative of Φ at (x, y). The multifunction D∗Φ(x, y) given by setting

D∗Φ(x, y)(y∗) := {x∗ ∈ Rn : (x∗,−y∗) ∈ N((x, y); gph Φ)} , ∀ y∗ ∈ Rm

is called the Mordukhovich (or limiting/normal) coderivative of Φ at (x, y). One says that

Φ is graphically regular at (x, y) ∈ gph Φ if

D̂∗Φ(x, y)(y∗) = D∗Φ(x, y)(y∗).
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The last condition can be written equivalently as

N̂((x, y); gph Φ) = N((x, y); gph Φ).

The feasible region of the problem (ET (w)) is rewritten as follows

F(r, b) := {x ∈ Rn : ‖x‖ ≤ r, aTx+ b ≤ 0},

which depends on the parameter (r, b).

Denote by

N(x;F(r, b)) := {v ∈ Rn : 〈v, y − x〉 ≤ 0, ∀ y ∈ F(r, b)}

the normal cone to the convex set F(r, b) at x.

It is easy to see that

N(x;F(r, b)) =



{0} if ‖x‖ < r, aTx+ b < 0,

{θx : θ ≥ 0} if ‖x‖ = r, aTx+ b < 0,

{γa : γ ≥ 0} if ‖x‖ < r, aTx+ b = 0,

{θx+ γa : θ ≥ 0, γ ≥ 0} if ‖x‖ = r, aTx+ b = 0,

∅ if ‖x‖ > r or aTx+ b > 0.

For every (x, r, b) ∈ Rn × R× R, we put

N (x, r, b) = N(x;F(r, b)).

If r ≤ 0 then it is convenient to setN (x, r, b) = ∅ for all x ∈ Rn. HenceN : Rn×R×R ⇒ Rn

is a multifunction with closed convex values and is called the normal cone mapping related

to (ET (w)).

In the next sections, we calculate and estimate the Fréchet and Mordukhovich coderiva-

tives of the normal cone mapping related to the parametric (ET (w)).

3. Fréchet coderivative of N (·)

Fix ω := (x, r, b, v) ∈ gphN , we compute and estimate the Fréchet coderivative of the

normal cone mapping. Before stating the main result, we consider the following lemmas.

Lemma 3.1. The assertions are valid:

(a) If ‖x‖ < r and aTx+ b < 0, then v = 0 and

D̂∗N (ω)(v∗) = {(0Rn , 0R, 0R)};
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(b) If ‖x‖ = r, aTx+ b < 0, and v = θx with θ > 0 then

D̂∗N (ω)(v∗) =

Ω1(ω)(v∗) if 〈v∗, x〉 = 0,

∅ if 〈v∗, x〉 6= 0;

(c) If ‖x‖ = r, aTx+ b < 0, and v = 0 then

D̂∗N (ω)(v∗) =

Ω2(ω)(v∗) if 〈v∗, x〉 ≥ 0,

∅ if 〈v∗, x〉 < 0;

(d) If ‖x‖ < r, aTx+ b = 0, and v = γa with γ > 0 then

D̂∗N (ω)(v∗) =

Ω3(ω)(v∗) if 〈v∗, a〉 = 0,

∅ if 〈v∗, a〉 6= 0;

(e) If ‖x‖ < r, aTx+ b = 0, and v = 0 then

D̂∗N (ω)(v∗) =

Ω4(ω)(v∗) if 〈v∗, a〉 ≥ 0,

∅ if 〈v∗, a〉 < 0;

where

Ω1(ω)(v∗) :=

{
(x∗, r∗, b∗) ∈ Rn × R× R : b∗ = 0, x∗ = −r

∗

r
x+ θv∗

}
,

Ω2(ω)(v∗) :=

{
(x∗, r∗, b∗) ∈ Rn × R× R : b∗ = 0, r∗ ≤ 0, x∗ = −r

∗

r
x

}
,

Ω3(ω)(v∗) := {(x∗, r∗, b∗) ∈ Rn × R× R : r∗ = 0, x∗ = b∗a},

Ω4(ω)(v∗) := {(x∗, r∗, b∗) ∈ Rn × R× R : r∗ = 0, x∗ = b∗a, b∗ ≥ 0}.

Proof. Put

F1(r) := {x ∈ Rn : ‖x‖ ≤ r}, F2(b) := {x ∈ Rn : aTx+ b ≤ 0},

N1(x, r) := N(x;F1(r)), N2(x, b) := N(x;F2(b)).

If aTx+ b < 0, then N (ω) = N1(x, r). Since N1(·) does not depend on b, we have

D̂∗N (ω)(v∗) = {(x∗, r∗, b∗) ∈ Rn × R× R : b∗ = 0, (x∗, r∗) ∈ D̂∗N1(x, r, v)(v∗)}.

Similarly, if ‖x‖ < r, then N (ω) = N2(x, r). Since N2(·) does not depend on r, we obtain

D̂∗N (ω)(v∗) = {(x∗, r∗, b∗) ∈ Rn × R× R : r∗ = 0, (x∗, b∗) ∈ D̂∗N2(x, b, v)(v∗)}.

Applying [21, Theorem 3.2] to F1(r) and F2(b), we deduce immediately the desired

results.
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Lemma 3.2. The following assertions hold:

(i) If ‖x‖ = r, aTx+ b = 0 and v = θx+ γa, θ > 0, γ > 0, then

D̂∗N (ω)(v∗) ⊂

Ω5(ω)(v∗) if 〈v∗, x〉 = 0 and 〈v∗, a〉 = 0,

∅ otherwise,

where

Ω5(ω)(v∗) := {(x∗, r∗, b∗) ∈ Rn × R× R : 〈x∗, x〉+ r∗r + b∗b = 0}.

(ii) If ‖x‖ = r, aTx+ b = 0 and v = θx with θ > 0, then

D̂∗N (ω)(v∗) ⊂

Ω1
5(ω)(v∗) if 〈v∗, x〉 = 0 and 〈v∗, a〉 ≥ 0,

∅ otherwise,

where

Ω1
5(ω)(v∗) := {(x∗, r∗, b∗) ∈ Rn × R× R+ : 〈x∗, x〉+ r∗r + b∗b = 0}.

(iii) If ‖x‖ = r, aTx+ b = 0 and v = γa with γ > 0, then

D̂∗N (ω)(v∗) ⊂

Ω2
5(ω)(v∗) if 〈v∗, a〉 = 0 and 〈v∗, x〉 ≥ 0,

∅ otherwise,

where

Ω2
5(ω)(v∗) := {(x∗, r∗, b∗) ∈ Rn × R− × R : 〈x∗, x〉+ r∗r + b∗b = 0}.

Proof. Let (x∗, r∗, b∗) ∈ D̂∗N (ω)(v∗). This means that

(3.1) lim sup

(x̃,r̃,̃b,ṽ))
gphN→ ω

〈x∗, x̃− x〉+ r∗(r̃ − r) + b∗(̃b− b)− 〈v∗, ṽ − v〉
‖x̃− x‖+ |r̃ − r|+ |̃b− b|+ ‖ṽ − v‖

≤ 0.

Choose r̃ ↓ r, x̃ = r̃
rx and b̃ = r̃

r b. Since ‖x̃‖ = r̃ and aT x̃ + b̃ = 0, we choose ṽ = v.

From (3.1) it follows that

0 ≥ lim sup
r̃↓r

〈x∗, r̃rx− x〉+ r∗(r̃ − r) + b∗
(
r̃
r b− b

)
‖ r̃rx− x‖+ |r̃ − r|+ | r̃r b− b|

=
〈x∗, x〉+ r∗r + b∗b

‖x‖+ |r|+ |b|
,

which gives 〈x∗, x〉+ r∗r + b∗b ≤ 0.

Repeating the preceding arguments for the case where r̃ ↑ r, we get

〈x∗, x〉+ r∗r + b∗b ≥ 0.
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From the last two inequalities, we have

(3.2) 〈x∗, x〉+ r∗r + b∗b = 0.

Choose x̃ = x, b̃ = b, r̃ = r, and ṽ = v + tv for t ∈ R. From (3.1),

0 ≥ lim sup
t↑0

−〈v∗, tv〉
‖tv‖

=
〈v∗, v〉
‖v‖

and

0 ≥ lim sup
t↓0

−〈v∗, tv〉
‖tv‖

= −〈v
∗, v〉
‖v‖

.

Hence

(3.3) 〈v∗, v〉 = 0.

(i) Let x̃ = x, b̃ = b, r̃ = r, and ṽ = v + tx, t > 0. Then, (3.1) gives

(3.4) 〈v∗, x〉 ≥ 0.

Choose x̃ = x, b̃ = b, r̃ = r and ṽ = v + ta, t > 0. According to (3.1),

(3.5) 〈v∗, a〉 ≥ 0.

By (3.3), (3.4) and (3.5), we obtain that 〈v∗, x〉 = 0 and 〈v∗, a〉 = 0.

(ii) From (3.3) it follows 〈v∗, x〉 = 0.

Choose x̃ = x, b̃ = b, r̃ = r, and ṽ = v + ta with t ↓ 0. Then, (3.1) yields

0 ≥ lim sup
t↓0

−〈v∗, ta〉
‖ta‖

= −〈v
∗, a〉
‖a‖

.

This leads to 〈v∗, a〉 ≥ 0.

Choose x̃ = x, r̃ = r, b̃ ↑ b and ṽ = v = θx. From (3.1) it follows

0 ≥ lim sup
b̃↑b

b∗(̃b− b)
|̃b− b|

= −b∗.

Hence b∗ ≥ 0.

(iii) From (3.3), we have 〈v∗, a〉 = 0.

Choose x̃ = x, b̃ = b, r̃ = r, and ṽ = v + tx with t ↓ 0. From (3.1) one has

0 ≥ lim sup
t↓0

−〈v∗, tx〉
‖tx‖

= −〈v
∗, x〉
‖x‖

,

which implies 〈v∗, x〉 ≥ 0.

Choose x̃ = x, r̃ ↓ r, b̃ = b and ṽ = v = γa. Then, (3.1) gives

0 ≥ lim sup
r̃↓r

r∗(r̃ − r)
|r̃ − r|

= r∗.

The proof is complete.
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Denote pos{x, a} := {θx+ γa : θ ≥ 0, γ ≥ 0}.

Lemma 3.3. If ‖x‖ = r, aTx+ b = 0 and v = 0, then

D̂∗N (ω)(v∗) ⊂

Ω6(ω)(v∗) if 〈v∗, x〉 ≥ 0 and 〈v∗, a〉 ≥ 0,

∅ otherwise,

where

Ω6(ω)(v∗) := {(x∗, r∗, b∗) ∈ Rn × R× R :

〈x∗, x〉+ r∗r + b∗b = 0, x∗ ∈ pos{x, a}, b∗ ≥ 0, r∗ ≤ 0}.

Proof. Let (x∗, r∗, b∗) ∈ D̂∗N (ω)(v∗). Then, (3.1) holds.

Choose x̃ = x, b̃ = b, r̃ = r and ṽ = tx with t ↓ 0. According to (3.1),

0 ≥ lim sup
t↓0

−〈v∗, tx〉
‖tx‖

= −〈v
∗, x〉
‖x‖

.

This implies 〈v∗, x〉 ≥ 0.

We now choose x̃ = x, b̃ = b, r̃ = r and ṽ = ta with t ↓ 0. Then, (3.1) becomes

0 ≥ lim sup
t↓0

−〈v∗, ta〉
‖ta‖

= −〈v
∗, a〉
‖a‖

,

that is, 〈v∗, a〉 ≥ 0.

Choose r̃ ↓ r, x̃ = r̃
rx, b̃ = r̃

r b and ṽ = v = 0. Then, one has (3.2).

Next, choose x̃ = x, r̃ ↓ r, b̃ = b and ṽ = v = 0. From (3.1),

0 ≥ lim sup
r̃↓r

r∗(r̃ − r)
|r̃ − r|

= r∗.

Choose x̃ = x, r̃ = r, b̃ ↑ b and ṽ = 0. Then, (3.1) yields

0 ≥ lim sup
b̃↑b

b∗(̃b− b)
|̃b− b|

= −b∗,

which means b∗ ≥ 0.

Finally, choose r̃ = r, b̃ = b, x̃
∂F(r,b)−→ x and ṽ = v = 0. By (3.1),

(3.6) lim sup

x̃
∂F(r,b)−→ x

〈x∗, x̃− x〉
‖x̃− x‖

≤ 0.

Let any x̃k
∂F(r,b)−→ x such that

lim
k→∞

x̃k − x
‖x̃k − x‖

= u.

Then, u ∈ T (x, ∂F(r, b)). By (3.6), we have 〈x∗, u〉 ≤ 0 for every u ∈ T (x, ∂F(r, b)). This

gives x∗ ∈ pos{x, a}. The proof is complete.
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By Lemmas 3.1–3.3, we get the following main theorem of this section:

Theorem 3.4. For every ω = (x, r, b, v) ∈ gphN , the assertions are valid:

(a) If ‖x‖ < r and aTx+ b < 0, then v = 0 and

D̂∗N (ω)(v∗) = {(0Rn , 0R, 0R)}.

(b) If ‖x‖ = r, aTx+ b < 0, and v = θx with θ > 0 then

D̂∗N (ω)(v∗) =

Ω1(ω)(v∗) if 〈v∗, x〉 = 0,

∅ if 〈v∗, x〉 6= 0.

(c) If ‖x‖ = r, aTx+ b < 0, and v = 0 then

D̂∗N (ω)(v∗) =

Ω2(ω)(v∗) if 〈v∗, x〉 ≥ 0,

∅ if 〈v∗, x〉 < 0.

(d) If ‖x‖ < r, aTx+ b = 0, and v = γa with γ > 0 then

D̂∗N (ω)(v∗) =

Ω3(ω)(v∗) if 〈v∗, a〉 = 0,

∅ if 〈v∗, a〉 6= 0.

(e) If ‖x‖ < r, aTx+ b = 0, and v = 0 then

D̂∗N (ω)(v∗) =

Ω4(ω)(v∗) if 〈v∗, a〉 ≥ 0,

∅ if 〈v∗, a〉 < 0.

(f) If ‖x‖ = r, aTx+ b = 0, and v = θx+ γa with θ > 0, γ > 0 then

D̂∗N (ω)(v∗) ⊂

Ω5(ω)(v∗) if 〈v∗, x〉 = 0 and 〈v∗, a〉 = 0,

∅ otherwise.

(g) If ‖x‖ = r, aTx+ b = 0, and v = θx with θ > 0, then

D̂∗N (ω)(v∗) ⊂

Ω1
5(ω)(v∗) if 〈v∗, x〉 = 0 and 〈v∗, a〉 ≥ 0,

∅ otherwise.

(h) If ‖x‖ = r, aTx+ b = 0, and v = γa with γ > 0, then

D̂∗N (ω)(v∗) ⊂

Ω2
5(ω)(v∗) if 〈v∗, x〉 = 0 and 〈v∗, x〉 ≥ 0,

∅ otherwise.

(i) If ‖x‖ = r, aTx+ b = 0, and v = 0 then

D̂∗N (ω)(v∗) ⊂

Ω6(ω)(v∗) if 〈v∗, x〉 ≥ 0 and 〈v∗, a〉 ≥ 0,

∅ otherwise.
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4. Mordukhovich coderivative of N (·)

To estimate the Mordukhovich coderivative of N (·), we consider some lemmas.

Lemma 4.1. For every ω = (x, r, b, v) ∈ gphN , the following assertions are valid:

(a) If ‖x‖ < r and aTx+ b < 0, then v = 0 and

D∗N (ω)(v∗) = {(0Rn , 0R, 0R)}.

(b) If ‖x‖ = r, aTx+ b < 0, and v = θx, with θ > 0 then

D∗N (ω)(v∗) =

Ω1(ω)(v∗) if 〈v∗, x〉 = 0,

∅ if 〈v∗, x〉 6= 0.

(c) If ‖x‖ = r, aTx+ b < 0, and v = 0 then

D∗N (ω)(v∗) =


{0Rn+2} if 〈v∗, x〉 < 0,

Ω2(ω)(v∗) if 〈v∗, x〉 > 0,

Ω′2(ω)(v∗) if 〈v∗, x〉 = 0,

where

Ω′2(ω)(v∗) :=

{
(x∗, r∗, b∗) ∈ Rn × R× R : b∗ = 0, x∗ = −r

∗

r
x

}
.

(d) If ‖x‖ < r, aTx+ b = 0, and v = γa with γ > 0 then

D∗N (ω)(v∗) =

Ω3(ω)(v∗) if 〈v∗, a〉 = 0,

∅ if 〈v∗, a〉 6= 0.

(e) If ‖x‖ < r, aTx+ b = 0, and v = 0 then

D∗N (ω)(v∗) =


{(0Rn+2)} if 〈v∗, a〉 < 0,

Ω4(ω)(v∗) if 〈v∗, a〉 > 0,

Ω3(ω)(v∗) if 〈v∗, a〉 = 0.

Proof. Repeating the arguments in the proof of Lemma 3.1 and using [21, Theorem 3.3],

we get the required conclusions.

Lemma 4.2. Assume that ‖x‖ = r, aTx + b = 0 and v 6= 0. The following assertions

hold:
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(i) If v = θx with θ > 0, then

D∗N (ω)(v∗) ⊂

Ω5(ω)(v∗) ∪ Ω1(ω)(v∗) if 〈v∗, x〉 = 0,

∅ if 〈v∗, x〉 6= 0.

(ii) If v = γa with γ > 0, then

D∗N (ω)(v∗) ⊂

Ω5(ω)(v∗) ∪ Ω3(ω)(v∗) if 〈v∗, a〉 = 0,

∅ if 〈v∗, a〉 6= 0.

(iii) If v = θx+ γa with θ > 0 and γ > 0, then

D∗N (ω)(v∗) ⊂

Ω5(ω)(v∗) if 〈v∗, v〉 = 0,

∅ if 〈v∗, v〉 6= 0.

Proof. For any (x∗, r∗, b∗) ∈ D∗N (ω)(v∗), there exist ωk = (xk, rk, bk, vk) satisfying

ωk
gphN−→ ω = (x, r, b, v) and (x∗k, r

∗
k, b
∗
k, v
∗
k)→ (x∗, r∗, b∗, v∗) such that

(4.1) (x∗k, r
∗
k, b
∗
k, v
∗
k) ∈ D̂∗N (ωk)(v∗k).

From v 6= 0 it follows vk 6= 0 for every k. We distinguish the following two cases:

Case 1: ‖xk‖ = rk for every k large enough. Then, we may assume that ‖xk‖ = rk for

every k. We next consider the following two subcases:

Subcase 1.1: aTxk + bk = 0 for every k large enough. Then, we can assume that

aTxk + bk = 0 for all k. By Lemma 3.2, we have (x∗k, r
∗
k, b
∗
k) ∈ Ω5(ωk)(v∗k), that is,

〈x∗k, xk〉+ r∗krk + b∗kbk = 0, 〈v∗k, xk〉 = 0 and 〈v∗k, a〉 = 0.

Letting k →∞, one has

〈x∗, x〉+ r∗r + b∗b = 0, 〈v∗, x〉 = 0 and 〈v∗, a〉 = 0.

This leads to (x∗, r∗, b∗) ∈ Ω5(ω)(v∗). Hence

D∗N (ω)(v∗) ⊂ Ω5(ω)(v∗).

Subcase 1.2: there exists {kl} ⊂ {k} such that aTxkl + bkl < 0 for all l. Then,

vkl = θklxkl with 0 < θkl → θ. By Lemma 3.1, we have (x∗kl , r
∗
kl
, b∗kl) ∈ Ω1(pkl)(v

∗
kl

), that

is,

b∗kl = 0, x∗kl = −
r∗kl
rkl
xkl + θklv

∗
kl

and 〈v∗kl , xkl〉 = 0.
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Letting l→∞, one gets

b∗ = 0, x∗ = −r
∗

r
x+ θv∗ and 〈v∗, x〉 = 0.

This means (x∗, r∗, b∗) ∈ Ω1(ω)(v∗). Thus

D∗N (ω)(v∗) ⊂ Ω1(ω)(v∗).

Case 2: there exists {ks} ⊂ {k} such that ‖xks‖ < rks . Since vks 6= 0, aTxks + bks = 0

for every s. Then, vks = γksa with 0 < γks → γ. By Lemma 3.1, we have (x∗ks , r
∗
ks
, b∗ks) ∈

Ω3(pks)(v
∗
ks

), that is,

r∗ks = 0, x∗ks = b∗ksa and 〈v∗ks , xks〉 = 0.

Passing the latter to limits as s→∞, we have

r∗ = 0, x∗ = b∗a and 〈v∗, a〉 = 0.

Hence (x∗, r∗, b∗) ∈ Ω3(ω)(v∗), and

D∗N (ω)(v∗) ⊂ Ω3(ω)(v∗).

By the above arguments, we now prove (i), (ii) and (iii).

(i) If v = θx with θ > 0, then Case 2 does not occur. Hence

D∗N (ω)(v∗) ⊂

Ω5(ω)(v∗) ∪ Ω1(ω)(v∗) if 〈v∗, x〉 = 0,

∅ if 〈v∗, x〉 6= 0.

(ii) If v = γa with γ > 0, then Subcase 1.2 does not occur. Thus

D∗N (ω)(v∗) ⊂

Ω5(ω)(v∗) ∪ Ω3(ω)(v∗) if 〈v∗, a〉 = 0,

∅ if 〈v∗, a〉 6= 0.

(iii) If v = θx + γa with θ > 0 and γ > 0, then both Cases 1.2 and 2 do not occur.

Therefore

D∗N (ω)(v∗) ⊂

Ω5(ω)(v∗) if 〈v∗, v〉 = 0,

∅ if 〈v∗, v〉 6= 0.

The proof is complete.
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Lemma 4.3. If ‖x‖ = r, aTx+ b = 0 and v = 0, then

D∗N (ω)(v∗) =



{(0Rn , 0R, 0R)} if 〈v∗, x〉 < 0 and 〈v∗, a〉 < 0,

Ω4(ω)(v∗) if 〈v∗, x〉 < 0 and 〈v∗, a〉 > 0,

Ω2(ω)(v∗) if 〈v∗, x〉 > 0 and 〈v∗, a〉 < 0,

Ω′2(ω)(v∗) if 〈v∗, x〉 = 0 and 〈v∗, a〉 < 0,

Ω3(ω)(v∗) if 〈v∗, x〉 < 0 and 〈v∗, a〉 = 0

and

D∗N (ω)(v∗) ⊂



Ω7(ω)(v∗) if 〈v∗, x〉 > 0 and 〈v∗, a〉 > 0,

Ω8(ω)(v∗) if 〈v∗, x〉 = 0 and 〈v∗, a〉 > 0,

Ω9(ω)(v∗) if 〈v∗, x〉 > 0 and 〈v∗, a〉 = 0,

Ω10(ω)(v∗) if 〈v∗, x〉 = 0 and 〈v∗, a〉 = 0,

where

Ω7(ω) = Ω2(ω)(v∗) ∪ Ω4(ω)(v∗) ∪ Ω6(ω)(v∗),

Ω8(ω) = Ω′2(ω)(v∗) ∪ Ω4(ω)(v∗) ∪ Ω1
5(ω)(v∗) ∪ Ω6(ω)(v∗),

Ω9(ω) = Ω2(ω)(v∗) ∪ Ω3(ω)(v∗) ∪ Ω2
5(ω)(v∗) ∪ Ω6(ω)(v∗),

Ω10(ω) = Ω′2(ω)(v∗) ∪ Ω3(ω)(v∗) ∪ Ω5(ω)(v∗) ∪ Ω6(ω)(v∗).

Proof. We consider the following nine cases:

Case 1: 〈v∗, x〉 < 0 and 〈v∗, a〉 < 0. Let any (x∗, r∗, b∗) ∈ D∗N (ω)(v∗). Then, (4.1)

holds. Since 〈v∗, x〉 < 0 and 〈v∗, a〉 < 0, we may assume that 〈v∗k, xk〉 < 0 and 〈v∗k, a〉 < 0

for every k. Fix any k.

If ‖xk‖ = rk and vk 6= 0, then D̂∗N (ωk)(v∗k) = ∅, by Lemmas 3.1 and 3.2. If ‖xk‖ = rk

and vk = 0 then, by Lemmas 3.1 and 3.3, D̂∗N (ωk)(v∗k) = ∅. From Lemmas 3.1 and

3.2, D̂∗N (ωk)(v∗k) = ∅ if aTxk + bk = 0 and vk 6= 0. If aTxk + bk = 0 and vk = 0 then,

by Lemmas 3.1 and 3.3, D̂∗N (ωk)(v∗k) = ∅. Hence D̂∗N (ωk)(v∗k) 6= ∅ if ‖xk‖ < rk and

aTxk + bk < 0. From Lemma 3.1 it follows D̂∗N (ωk)(v∗k) = {(0Rn , 0R, 0R)}. This gives

x∗k = 0, r∗k = 0 and b∗k = 0. Letting k → ∞, one has x∗ = 0, r∗ = 0 and b∗ = 0. Hence

D∗N (ω)(v∗) ⊂ {(0Rn , 0R, 0R)}.
Conversely, let rk = r, bk = (1 − k−1)b − (k2)−1, xk = (1 − k−1)x and vk = 0. Then,

‖xk‖ < rk, aTxk + bk = −(k2)−1 < 0 and vk = 0. Let x∗k = 0, r∗k = 0, b∗k = 0. Then, we

have (4.1) by Lemma 3.1. Hence {(0Rn , 0R, 0R)} ⊂ D∗N (ω)(v∗). The first conclusion is

proved.

Case 2: 〈v∗, x〉 < 0 and 〈v∗, a〉 > 0. For any (x∗, r∗, b∗) ∈ D∗N (ω)(v∗), we have (4.1).

Since 〈v∗, x〉 < 0 and 〈v∗, a〉 > 0, we may assume that 〈v∗, xk〉 < 0 and 〈v∗k, a〉 > 0 for every
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k. Fix any k. From Lemmas 3.1 and 3.2, if ‖xk‖ = rk and vk 6= 0 then D̂∗N (ωk)(v∗k) = ∅.
If ‖xk‖ = rk and vk = 0 then, by Lemmas 3.1 and 3.3, D̂∗N (ωk)(v∗k) = ∅.

Therefore, in order to get that D̂∗N (ωk)(v∗k) 6= ∅, we must have ‖xk‖ < rk. Consider

the following two subcases:

Subcase 2.1: aTxk +bk = 0. By Lemma 3.1, if vk 6= 0 then D̂∗N (ωk)(v∗k) = ∅. If vk = 0

then we have (x∗k, r
∗
k, b
∗
k) ∈ Ω4(ωk)(v∗k), that is,

r∗k = 0, x∗k = b∗ka, b∗k ≥ 0 and 〈v∗k, a〉 ≥ 0.

Passing to the limits as k →∞, we have

r∗ = 0, x∗ = b∗a, b∗ ≥ 0 and 〈v∗, a〉 ≥ 0,

which mean (x∗, r∗, b∗) ∈ Ω4(ω)(v∗).

Subcase 2.2: aTxk + bk < 0. Then D̂∗N (ωk)(v∗k) = {0Rn+2} from Lemma 3.1. This

implies x∗k = 0, r∗k = 0 and b∗k = 0. Letting k → ∞, one has x∗ = 0, r∗ = 0 and b∗ = 0.

Hence D∗N (ω)(v∗) ⊂ {(0Rn , 0R, 0R)}.
By Subcases 2.1 and 2.2, we have D∗N (ω)(v∗) ⊂ Ω4(ω)(v∗).

Conversely, for any (x∗, r∗, b∗) ∈ Ω4(ω)(v∗), we obtain that r∗ = 0, b∗ ≥ 0 and 〈v∗, a〉 ≥
0. Choose rk = r, bk = (1− k−1)b, xk = (1− k−1)x. Then, ‖xk‖ < rk, aTxk + bk = 0 and

vk = 0. We choose r∗k = 0, b∗k = b∗, x∗k = b∗ka and v∗k = v∗. By Lemma 3.1, we have (4.1).

Hence (x∗, r∗, b∗) ∈ D∗N (ω)(v∗). Then, we get the assertion (ii).

Case 3: 〈v∗, x〉 > 0 and 〈v∗, a〉 < 0. Let (x∗, r∗, b∗) ∈ D∗N (ω)(v∗). Then, (4.1) holds.

Since 〈v∗, x〉 > 0 and 〈v∗, a〉 < 0, we may assume that 〈v∗, xk〉 > 0 and 〈v∗k, a〉 < 0 for

every k. Fix any k. If aTxk + bk = 0 and vk 6= 0 then D̂∗N (ωk)(v∗k) = ∅ by Lemmas 3.1

and 3.2. If aTxk + bk = 0 and vk = 0 then, by Lemmas 3.1 and 3.3, D̂∗N (ωk)(v∗k) = ∅.
Consequently, to get D̂∗N (ωk)(v∗k) 6= ∅, we must have aTxk + bk < 0. We now consider

the following two subcases:

Subcase 3.1: ‖xk‖ = rk. From Lemma 3.1, D̂∗N (ωk)(v∗k) = ∅ if vk 6= 0. If vk = 0 then,

by Lemma 3.1, we have (x∗k, r
∗
k, b
∗
k) ∈ Ω2(ωk)(v∗k), that is,

b∗k = 0, x∗k = −
r∗k
rk
xk, r∗k ≤ 0 and 〈v∗k, xk〉 ≥ 0.

Letting k → ∞, we obtain b∗ = 0, x∗ = − r∗

r x, r∗ ≤ 0 and 〈v∗, x〉 = 0, which imply

(x∗, r∗, b∗) ∈ Ω2(ω)(v∗).

Subcase 3.2: aTxk + bk < 0. We have D̂∗N (ωk)(v∗k) = {0Rn+2} by Lemma 3.1, i.e.,

x∗k = 0, r∗k = 0 and b∗k = 0. Passing the latter to limits as k →∞, one has x∗ = 0, r∗ = 0

and b∗ = 0. By Subcases 3.1 and 3.2, we have D∗N (ω)(v∗) ⊂ Ω2(ω)(v∗).

Conversely, let any (x∗, r∗, b∗) ∈ Ω2(ω)(v∗), i.e., b∗ = 0, x∗ = − r∗

r x, r∗ ≤ 0 and

〈v∗, x〉 = 0. Choose rk = (1 − k−1)r, bk = (1 − k−1)b − (k2)−1, xk = (1 − k−1)x. Then,
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‖xk‖ = rk, aTxk + bk < 0 and vk = 0. Let r∗k = r∗, b∗k = b∗, x∗k = − r∗k
rk
xk and v∗k = v∗.

From Lemma 3.1, we get (4.1). This gives (x∗, r∗, b∗) ∈ D∗N (ω)(v∗). The assertion (iii)

is shown.

Case 4: 〈v∗, x〉 = 0 and 〈v∗, a〉 < 0. For any (x∗, r∗, b∗) ∈ D∗N (ω)(v∗), we get (4.1).

Since 〈v∗, a〉 < 0, we can assume that 〈v∗k, a〉 < 0 for every k. Fix any k. By Lemmas 3.1

and 3.2, if aTxk + bk = 0 and vk 6= 0 then D̂∗N (ωk)(v∗k) = ∅. If aTxk + bk = 0 and vk = 0

then, by Lemmas 3.1 and 3.3, D̂∗N (ωk)(v∗k) = ∅. Consequently, to get D̂∗N (ωk)(v∗k) 6= ∅,
we must have aTxk + bk < 0. Consider the following three subcases:

Subcase 4.1: ‖xk‖ = rk and vk = 0. To obtain D̂∗N (ωk)(v∗k) 6= ∅, by Lemma 3.1, we

must have 〈v∗k, xk〉 ≥ 0. Then,

b∗k = 0, x∗k = −
r∗k
rk
xk, r∗k ≤ 0 and 〈v∗k, xk〉 ≥ 0.

Passing the latter to limits as k →∞, we obtain

b∗ = 0, x∗ = −r
∗

r
x, r∗ ≤ 0 and 〈v∗, x〉 ≥ 0.

Hence (x∗, r∗, b∗) ∈ Ω2(ω)(v∗) ⊂ Ω′2(ω)(v∗).

Subcase 4.2: ‖xk‖ = rk and vk 6= 0. This implies vk = θkxk with θk = (‖xk‖−1‖vk‖) ↓
0. To obtain that D̂∗N (ωk)(v∗k) 6= ∅, by Lemma 3.1, we must have 〈v∗k, xk〉 = 0. Then,

b∗k = 0, x∗k = −
r∗k
rk
xk + θkv

∗
k and 〈v∗k, xk〉 = 0.

Letting k → ∞, we get b∗ = 0, x∗ = − r∗

r x and 〈v∗, x〉 = 0. This leads to (x∗, r∗, b∗) ∈
Ω′2(ω)(v∗).

Subcase 4.3: ‖xk‖ < rk. By Lemma 3.1, D̂∗N (ωk)(v∗k) = {(0Rn+2)}, i.e., x∗k = 0, r∗k = 0

and b∗k = 0. Letting k →∞ yields x∗ = 0, r∗ = 0 and b∗ = 0. Thus (x∗, r∗, b∗) ∈ Ω′2(ω)(v∗).

Conversely, we let any (x∗, r∗, b∗) ∈ Ω′2(ω)(v∗), that is, b∗ = 0, x∗ = − r∗

r x and

〈v∗, x〉 = 0. Choose rk = r, xk = x, bk = b−k−1. Then, ‖xk‖ = rk, aTxk + bk = −k−1 < 0

and vk = θkxk with θk ↓ 0. Let r∗k = r∗, b∗k = b∗, x∗k = − r∗k
rk
xk + θkv

∗
k and v∗k = v∗. Then,

we obtain (4.1) by Lemma 3.1, which follows (x∗, r∗, b∗) ∈ D∗N (ω)(v∗). This gives the

assertion (iv).

Case 5: 〈v∗, x〉 < 0 and 〈v∗, a〉 = 0. Let (x∗, r∗, b∗) ∈ D∗N (ω)(v∗). Then, (4.1) holds.

Since 〈v∗, x〉 < 0, we may assume that 〈v∗k, xk〉 < 0 for every k. Fix any k. If ‖xk‖ = rk

and vk 6= 0 then, by Lemmas 3.1 and 3.2, D̂∗N (ωk)(v∗k) = ∅. If ‖xk‖ = rk and vk = 0

then, by Lemmas 3.1 and 3.3, D̂∗N (ωk)(v∗k) = ∅. To get D̂∗N (ωk)(v∗k) 6= ∅, we must have

‖xk‖ < rk. Consider the following three subcases:

Subcase 5.1: aTxk + bk = 0 and vk = 0. To get D̂∗N (ωk)(v∗k) 6= ∅, by Lemma 3.1, we

must have 〈v∗k, a〉 ≥ 0. This gives

r∗k = 0, x∗k = b∗ka, b∗k ≥ 0 and 〈v∗k, a〉 ≥ 0.
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Passing to limits as k →∞ yields

r∗ = 0, x∗ = b∗a, b∗ ≥ 0 and 〈v∗, a〉 ≥ 0,

which means (x∗, r∗, b∗) ∈ Ω4(ω)(v∗) ⊂ Ω3(ω)(v∗).

Subcase 5.2: aTxk +bk = 0 and vk 6= 0. This implies vk = θka with θk = (‖a‖−1‖vk‖) ↓
0. To get that D̂∗N (ωk)(v∗k) 6= ∅, by Lemma 3.1, we must have 〈v∗k, a〉 = 0. Then,

r∗k = 0, x∗k = b∗ka and 〈v∗k, a〉 = 0.

Letting k →∞,

r∗ = 0, x∗ = b∗a and 〈v∗, a〉 ≥ 0.

Hence (x∗, r∗, b∗) ∈ Ω3(ω)(v∗).

Subcase 5.3: aTxk + bk < 0. By Lemma 3.1, it follows that D̂∗N (ωk)(v∗k) = {(0Rn , 0R,

0R)}, that is, x∗k = 0, r∗k = 0 and b∗k = 0. Letting k → ∞, one has x∗ = 0, r∗ = 0 and

b∗ = 0, which gives (x∗, r∗, b∗) ∈ Ω3(ω)(v∗).

Conversely, for any (x∗, r∗, b∗) ∈ Ω3(ω)(v∗), we obtain that r∗ = 0, x∗ = b∗a and

〈v∗, a〉 ≥ 0. Choose rk = r, xk = (1 − k−1)x, bk = (1 − k−1)b. Then, ‖xk‖ < rk,

aTxk + bk = 0 and vk = γka with γk ↓ 0. Let r∗k = r∗, b∗k = b∗, x∗k = b∗ka and v∗k = v∗.

Then, we have (4.1) by Lemma 3.1. Hence (x∗, r∗, b∗) ∈ D∗N (ω)(v∗). The assertion (v)

follows.

Case 6: 〈v∗, x〉 > 0 and 〈v∗, a〉 > 0. For (x∗, r∗, b∗) ∈ D∗N (ω)(v∗), (4.1) follows.

Since 〈v∗, x〉 > 0 and 〈v∗, a〉 > 0, we may assume that 〈v∗k, xk〉 > 0 and 〈v∗k, a〉 > 0 for

every k. Fix any k. If vk 6= 0 then, by Lemmas 3.1 and 3.2, D̂∗N (ωk)(v∗k) = ∅. To get

D̂∗N (ωk)(v∗k) 6= ∅, we must have vk = 0. Hence (x∗k, r
∗
k, b
∗
k) ∈ Ω2(ωk)(v∗k) ∪ Ω4(ωk)(v∗k) ∪

Ω6(ωk)(v∗k) by Lemmas 3.1 and 3.3. This follows

(x∗, r∗, b∗) ∈ Ω2(ω)(v∗) ∪ Ω4(ω)(v∗) ∪ Ω6(ω)(v∗),

which leads to the assertion (vi).

Case 7: 〈v∗, x〉 = 0 and 〈v∗, a〉 > 0. For (x∗, r∗, b∗) ∈ D∗N (ω)(v∗), (4.1) holds. Since

〈v∗, a〉 > 0, we may assume that 〈v∗k, a〉 > 0 for every k. Fix any k. By Lemmas 3.1–3.3,

we have (x∗k, r
∗
k, b
∗
k) ∈ Ω1(ωk)(v∗k) ∪ Ω2(ωk)(v∗k) ∪ Ω4(ωk)(v∗k) ∪ Ω1

5(ωk)(v∗k) ∪ Ω6(ωk)(v∗k).

This gives

(x∗, r∗, b∗) ∈ Ω′2(ω)(v∗) ∪ Ω4(ω)(v∗) ∪ Ω1
5(ω)(v∗) ∪ Ω6(ω)(v∗).

The assertion (vii) is proved.

Case 8: 〈v∗, x〉 > 0 and 〈v∗, a〉 = 0. For (x∗, r∗, b∗) ∈ D∗N (ω)(v∗), one gets (4.1).

Since 〈v∗, x〉 > 0, we may assume that 〈v∗k, xk〉 > 0 for every k ≥ 1. Fix any k. From Lem-

mas 3.1–3.3 it follows that (x∗k, r
∗
k, b
∗
k) ∈ Ω2(ωk)(v∗k)∪Ω3(ωk)(v∗k)∪Ω2

5(ωk)(v∗k)∪Ω6(ωk)(v∗k).
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Letting k →∞, one has

(x∗, r∗, b∗) ∈ Ω2(ω)(v∗) ∪ Ω3(ω)(v∗) ∪ Ω2
5(ω)(v∗) ∪ Ω6(ω)(v∗).

The assertion (viii) is proved.

Case 9: 〈v∗, x〉 = 0 and 〈v∗, a〉 = 0. For (x∗, r∗, b∗) ∈ D∗N (ω)(v∗), (4.1) holds. Fix

any k. By Lemmas 3.1–3.3, we have

(x∗k, r
∗
k, b
∗
k) ∈

(
Ω1(ωk) ∪ Ω2(ωk) ∪ Ω3(ωk) ∪ Ω4(ωk) ∪ Ω5(ωk) ∪ Ω6(ωk)

)
(v∗k).

Passing the latter to limits as k →∞ yields

(x∗, r∗, b∗) ∈ Ω′2(ω)(v∗) ∪ Ω3(ω)(v∗) ∪ Ω5(ω)(v∗) ∪ Ω6(ω)(v∗).

The conclusion of the assertion (ix) is shown. The proof is then complete.

By the above arguments, we get the main result in this section as follows.

Theorem 4.4. For every ω = (x, r, b, v) ∈ gphN , the assertions are valid:

(a) If ‖x‖ < r and aTx+ b < 0, then v = 0 and

D∗N (ω)(v∗) = {(0Rn , 0R, 0R)}.

(b) If ‖x‖ = r, aTx+ b < 0, and v = θx with θ > 0 then

D∗N (ω)(v∗) =

Ω1(ω)(v∗) if 〈v∗, x〉 = 0,

∅ if 〈v∗, x〉 6= 0.

(c) If ‖x‖ = r, aTx+ b < 0, and v = 0 then

D∗N (ω)(v∗) =


{0Rn+2} if 〈v∗, x〉 < 0,

Ω2(ω)(v∗) if 〈v∗, x〉 > 0,

Ω′2(ω)(v∗) if 〈v∗, x〉 = 0.

(d) If ‖x‖ < r, aTx+ b = 0, and v = γa with γ > 0 then

D∗N (ω)(v∗) =

Ω3(ω)(v∗) if 〈v∗, a〉 = 0,

∅ if 〈v∗, a〉 6= 0.

(e) If ‖x‖ < r, aTx+ b = 0, and v = 0 then

D∗N (ω)(v∗) =


{0Rn+2} if 〈v∗, a〉 < 0,

Ω4(ω)(v∗) if 〈v∗, a〉 > 0,

Ω3(ω)(v∗) if 〈v∗, a〉 = 0.
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(f) If ‖x‖ = r, aTx+ b = 0, and overlinev = θx+ γa with θ > 0, γ > 0 then

D∗N (ω)(v∗) ⊂

Ω5(ω)(v∗) if 〈v∗, v〉 = 0,

∅ if 〈v∗, v〉 6= 0.

(g) If ‖x‖ = r, aTx+ b = 0, and v = θx with θ > 0 then

D∗N (ω)(v∗) ⊂

Ω5(ω)(v∗) ∪ Ω1(ω)(v∗) if 〈v∗, x〉 = 0,

∅ if 〈v∗, x〉 6= 0.

(h) If ‖x‖ = r, aTx+ b = 0, and v = γa with γ > 0 then

D∗N (ω)(v∗) ⊂

Ω5(ω)(v∗) ∪ Ω3(ω)(v∗) if 〈v∗, a〉 = 0,

∅ if 〈v∗, a〉 6= 0.

(i) If ‖x‖ = r, aTx+ b = 0 and v = 0 then

D∗N (ω)(v∗) =



{(0Rn , 0R, 0R)} if 〈v∗, x〉 < 0 and 〈v∗, a〉 < 0,

Ω4(ω)(v∗) if 〈v∗, x〉 < 0 and 〈v∗, a〉 > 0,

Ω2(ω)(v∗) if 〈v∗, x〉 > 0 and 〈v∗, a〉 < 0,

Ω′2(ω)(v∗) if 〈v∗, x〉 = 0 and 〈v∗, a〉 < 0,

Ω3(ω)(v∗) if 〈v∗, x〉 < 0 and 〈v∗, a〉 = 0

and

D∗N (ω)(v∗) ⊂



Ω7(ω)(v∗) if 〈v∗, x〉 > 0 and 〈v∗, a〉 > 0,

Ω8(ω)(v∗) if 〈v∗, x〉 = 0 and 〈v∗, a〉 > 0,

Ω9(ω)(v∗) if 〈v∗, x〉 > 0 and 〈v∗, a〉 = 0,

Ω10(ω)(v∗) if 〈v∗, x〉 = 0 and 〈v∗, a〉 = 0.

5. Lipschitzian stability

In this section, we use obtained results and the Mordukhovich criterion (see [16, Theo-

rem 4.10]) for the local Lipschitz-like property of multifunctions to investigate Lipschitzian

stability of (ET (w)) with respect to the linear perturbations. We always assume that

(ET (w)) satisfies LICQ.

The stationary solution set of (ET (w)) is rewritten by S(Q, q, r, b). Recall that (see,

for instance, [7, Proposition 1.3.4]), under LICQ, x is a stationary solution of (ET (w)) if

and only if

〈Qx+ q, y − x〉 ≥ 0, ∀ y ∈ F(r, b),
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i.e., x is a global optimal solution of the generalized equation

(5.1) 0 ∈ Qx+ q +N(x;F(r, b)).

We can rewrite (5.1) as follows

y ∈ H(x, z) +M(x, z),

where y := −q, z := (Q, r, b), H(x, z) := Qx and M(x, z) := N (x, r, b).

Denote by Rn×n
s the linear subspace of symmetric n × n matrices in Rn×n and put

Z := Rn×n
s ×R×R. Then, S(·) can be interpreted as the multifunction S̃ : Z ×Rn ⇒ Rn

defined by

S̃(z, y) = {x ∈ Rn : y ∈ H(x, z) +M(x, z)}.

Then, we have

S̃(z, y) = S(Q, q, r, b).

The following lemma is used to prove the main theorem.

Lemma 5.1. The set gphN is closed in P := Rn × (0,+∞)× R× Rn.

Proof. Suppose that ωk = (xk, rk, bk, vk)
gphN−→ ω = (x, r, b, v) ∈ P. We now prove ω ∈

gphN , that is, v ∈ N(x;F(r, b)). Indeed, we consider the following four cases:

Case 1: ‖x‖ < r and aTx+ b < 0. For every k large enough, ‖xk‖ < rk, aTxk + bk < 0

and vk = 0. It follows v = 0. Therefore v ∈ N(x;F(r, b)) = {0}.
Case 2: ‖x‖ = r and aTx + b < 0. Then, N(x;F(r, b)) = {θx, θ ≥ 0}. For every k

large enough, we have aTxk +bk < 0. Fix such a index k. Consider the following subcases:

Subcase 2.1: ‖xk‖ < rk. Then, vk = 0, and v = 0 ∈ N(x;F(r, b)).

Subcase 2.2: ‖xk‖ = rk. Then, vk = θkxk with

0 < θk = ‖xk‖−1 · ‖vk‖ → θ := ‖x‖−1 · ‖v‖.

This yields v = θx ∈ N(x;F(r, b)).

Case 3: ‖x‖ < r and aTx + b = 0. Then, N(x;F(r, b)) = {γa, γ ≥ 0}. For every k

large enough, we have ‖xk‖ < rk. Fix such a index k. Consider the following subcases:

Subcase 3.1: aTxk + bk < 0. Then vk = 0 and v = 0 ∈ N(x;F(r, b)).

Subcase 3.2: aTxk + bk = 0. In this case, we obtain that vk = γka, where 0 < γk =

‖a‖−1 · ‖vk‖ → γ with γ := ‖a‖−1 · ‖v‖. It follows that v = γa ∈ N(x;F(r, b)).

Case 4: ‖x‖ = r and aTx + b = 0. Then, N(x;F(r, b)) = pos{x, a}. Fix any k.

Consider the following four subcases:

Subcase 4.1: ‖xk‖ < rk, aTxk + bk < 0. Then, vk = 0. This gives that v = 0 ∈
N(x;F(r, b)).
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Subcase 4.2: ‖xk‖ = rk, aTxk+bk < 0. Then, vk = θkxk with 0 < θk = ‖xk‖−1 ·‖vk‖ →
θ := ‖x‖−1 · ‖v‖ and v = θx ∈ N(x;F(r, b)).

Subcase 4.3: ‖xk‖ < rk, aTxk + bk = 0. Then, vk = γka with 0 < γk = ‖a‖−1 · ‖vk‖ →
γ := ‖a‖−1 · ‖v‖. Thus v = γa ∈ N(x;F(r, b)).

Subcase 4.4: ‖xk‖ = rk, aTxk +bk = 0. Then, vk = θkxk +γka with θk ≥ 0 and γk ≥ 0.

If ‖γk‖ < +∞ then we can assume that γk → γ ≥ 0. One has

θk =
‖vk − γka‖
‖xk‖

→ θ :=
‖v − γa‖
‖x‖

≥ 0.

Thus v = θx+ γa ∈ N(x;F(r, b)).

If ‖γk‖ → +∞ then

(5.2)
vk
γk

=
θk
γk
xk + a.

If {θk/γk} is bounded then we can assume that θk/γk → µ. From (5.2) it follows 0 = µx+a,

contrary to the fact that (ET (w)) satisfies (LICQ). Otherwise, if ‖θk/γk‖ → +∞ then

(5.2) gives

vk
γk

:
θk
γk

= xk +

(
θk
γk

)−1

a.

Letting k → ∞ yields 0 = x. This contradicts the fact that ‖x‖ = r > 0. The lemma is

proved.

The following theorem estimates the Mordukhovich coderivative of S̃(·).

Theorem 5.2. Consider the problem (ET (w)) and (z, y, x) ∈ gph S̃. For each x∗ ∈ Rn,

if (y∗, z∗) ∈ D∗S̃(z, y, x)(x∗) then

Qy∗ = 2x∗, Q∗ij = −y∗i xj , (x∗, r∗, b∗) ∈ D∗N (x, r, b, v)(−y∗),

where z = (Q, r, b), v = y −H(x, z) = −q − Qx, z∗ = (Q∗, r∗, b∗) and Q∗ij is the (i, j)th

element of Q∗.

Proof. By Lemma 5.1, we have N is locally closed around (x, r, b) ∈ gphN ; hence M is

locally closed around (x, z) ∈ gphM .

With similar analysis the proof of [15, Lemmas 4.1–4.3], we obtain that

D∗M(x, z, v)(v∗) = {(x∗, 0Rn×n
s

, r∗, b∗) : (x∗, r∗, b∗) ∈ D∗N (ω)(v∗)}

and

∇H(x, z)∗(v∗) = {Qv∗} × (v∗i xj)× {0R},

where (v∗i xj) is the n× n matrix whose (i, j)th element is v∗i xj .
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From [14, Theorem 4.3] it follows that

D∗S̃(z, y, x)(x∗) ⊂ ΩH,y(x∗),

where

ΩH,y(x∗) =
⋃

v∗∈Rn

{
(z∗, y∗) ∈ Z∗ × Rn :

(−x∗, z∗, y∗) ∈ ∇H(x, z)∗(v∗)× {−v∗}+D∗M(x, z, v)(v∗)× {0Rn}
}
.

For each x∗ ∈ Rn, if (y∗, z∗) ∈ D∗S̃(z, y, x)(x∗) then (y∗, z∗) ∈ ΩH,y(x∗), that is,

−y∗ = v∗, −x∗ = Qv∗ + x∗, Q∗ij = v∗i xj , (x∗, r∗, b∗) ∈ D∗N (x, r, b, v)(v∗).

The latter system is equivalent to

Qy∗ = 2x∗, Q∗ij = −y∗i xj , (x∗, r∗, b∗) ∈ D∗N (x, r, b, v)(−y∗).

This establishes the desired formula.

The Mordukhovich criterion (see [16, Theorem 4.10]) for the local Lipschitz-like prop-

erty of multifunctions shows that S̃(·) is locally Lipschitz-like around (z, y, x) ∈ gph S̃ if

and only if

(5.3) D∗S̃(z, y, x)(0) = {0}.

Since D∗S̃(z, y, x)(0) = {0} is equivalent to D∗S(z, y, x)(0) = {0}, we conclude that S̃(·)
is locally Lipschitz-like around (z, y, x) ∈ gph S̃ if and only if S is locally Lipschitz-like

around (Q, q, r, b, x) ∈ gphS.

From Theorem 5.2 it follows that (5.3) holds if the following system

Qy∗ = 0, Q∗ij = −y∗i xj , (0, r∗, b∗) ∈ D∗N (ω)(−y∗),

has a unique solution (Q∗, r∗, b∗, y∗) = 0, which is equivalent to that

(5.4) Qy∗ = 0, (0, r∗, b∗) ∈ D∗N (ω)(−y∗),

has a unique solution (r∗, b∗, y∗) = 0. If detQ 6= 0 then (5.4) reduces to that

(5.5) (0, r∗, b∗) ∈ D∗N (ω)(0),

has a unique solution (r∗, b∗) = 0.

The following theorem shows some sufficient conditions for the local Lipschitz-like

property of S(·).



506 Van Nghi Tran

Theorem 5.3. The multifunction (Q̃, q̃, r̃, b̃) 7→ S(Q̃, q̃, r̃, b̃) is locally Lipschitz-like around

(Q, q, r, b, x) ∈ gphS if at least one of the following conditions is satisfied:

(i) ‖x‖ < r, aTx+ b < 0 and detQ 6= 0;

(ii) ‖x‖ = r, aTx+ b < 0 and Qx+ q = θx, θ > 0;

(iii) ‖x‖ = r, aTx + b < 0, Qx + q = 0, rank(Q;x) = n and 〈x, u〉 = 0 for every

u ∈ Null(Q), where Null(Q) := {x ∈ Rn : Qx = 0};

(iv) ‖x‖ < r, aTx+ b = 0, Qx+ q = γa, γ > 0, and rank(Q; a) = n;

(v) ‖x‖ < r, aTx + b = 0, Qx + q = 0, rank(Q; a) = n and 〈a, u〉 = 0 for every

u ∈ Null(Q);

(vi) ‖x‖ = r, aTx+ b = 0, b is unperturbed and detQ 6= 0.

Proof. (i) Since ‖x‖ < r and aTx + b < 0, we have D∗N (ω)(−y∗) = {(0Rn , 0R, 0R)}.
Hence (5.4) has a unique solution (r∗, b∗, y∗) = 0 and S(·) is locally Lipschitz-like around

(Q, q, r, b, x).

(ii) By the assumption that ‖x‖ = r, aTx + b < 0 and Qx + q = θx, θ > 0, one gets

D∗N (p)(v∗) = Ω1(ω)(−y∗) if 〈−y∗, x〉 = 0. Then, (5.4) yields

Qy∗ = 0, 0 = −r
∗

r
x− θy∗, b∗ = 0, 〈y∗, x〉 = 0.

Combining − r∗

r x − θy
∗ = 0 with 〈y∗, x〉 = 0 we have (y∗, r∗) = 0. Hence (5.4) has only

one solution (r∗, b∗, y∗) = 0. This leads to the desired conclusion.

(iii) By the assumption that ‖x‖ = r, aTx+ b < 0, and Qx+ q = 0, we obtain

D∗N (ω)(−y∗) =


{(0Rn , 0R, 0R)} if 〈−y∗, x〉 < 0,

Ω2(ω)(−y∗) if 〈−y∗, x〉 > 0,

Ω′2(ω)(−y∗) if 〈−y∗, x〉 = 0.

Then, (5.4) follows that

(5.6) Qy∗ = 0, 0 = −r
∗

r
x, b∗ = 0, r∗ ≤ 0, 〈y∗, x〉 > 0

and

(5.7) Qy∗ = 0, 0 = −r
∗

r
x, b∗ = 0, 〈y∗, x〉 = 0.

Since 〈x, u〉 = 0 for every u ∈ Null(Q), (5.6) gives that Qy∗ = 0 and hence 〈y∗, x〉 =

0. It follows that (5.6) has no solution. Combining Qy∗ = 0 and 〈y∗, x〉 = 0 with
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the assumption rank(Q;x) = n, it implies y∗ = 0. Hence (5.7) has unique solution

(r∗, b∗, y∗) = 0. Consequently, in this case, (5.4) has only one trivial solution and the

conclusion follows.

(iv) Since ‖x‖ < r, aTx + b = 0 and Qx + q = γa, γ > 0, we have D∗N (p)(v∗) =

Ω3(ω)(−y∗) if 〈−y∗, a〉 = 0. Then, (5.4) gives

Qy∗ = 0, 0 = b∗a, r∗ = 0, 〈y∗, a〉 = 0.

From assumption rank(Q; a) = n, we get y∗ = 0. Hence (5.4) has a unique solution

(r∗, b∗, y∗) = 0 and S(·) is locally Lipschitz-like around (Q, q, r, b, x).

(v) Since ‖x‖ < r, aTx+ b = 0, and Qx+ q = 0, we obtain

D∗N (ω)(v∗) =


{(0Rn , 0R, 0R)} if 〈v∗, a〉 < 0,

Ω4(ω)(v∗) if 〈v∗, a〉 > 0,

Ω3(ω)(v∗) if 〈v∗, a〉 = 0.

Then, (5.4) yields

(5.8) Qy∗ = 0, 0 = b∗a, r∗ = 0, b∗ ≥ 0, 〈y∗, a〉 > 0

and

(5.9) Qy∗ = 0, 0 = b∗a, r∗ = 0, 〈y∗, a〉 = 0.

By the assumption that 〈x, u〉 = 0 for every u ∈ Null(Q), (5.8) follows Qy∗ = 0. Hence

〈y∗, a〉 = 0. This gives that (5.6) has no solution. Since rank(Q; a) = n, (5.9) has a unique

solution (r∗, b∗, y∗) = 0. Hence in this case, (5.4) has only one solution (r∗, b∗, y∗) = 0 and

the desired conclusion follows.

(vi) From the assumption that ‖x‖ = r and aTx+ b = 0 it follows that D∗N (ω)(v∗) is

computed and estimated as in parts (vi)–(ix) of Theorem 4.4.

Since detQ 6= 0, we now show that (5.5) has unique solution (r∗, b∗) = 0. Indeed,

from the assumption that b is unperturbed it implies b∗ = 0. Substituting b∗ = 0 and

v∗ = −y∗ = 0 into the formulas in parts (f)–(i) of Theorem 4.4 yields r∗ = 0.

Consequently, in this case, (5.5) has only one trivial solution, and S(·) is locally

Lipschitz-like around (Q, q, r, b, x). The theorem is proved.

6. Optimality conditions using the coderivative

In the recent years, the coderivative has been used as a helpful tool to characterize the

optimality conditions of the mathematical programming problems. According to [17,
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Proposition 5.1] (applied to (ET (w))), if x is a local (or global) solution of the problem

(ET (w)) then

−Qx− q ∈ N((r, b, x) : F(r, b)).

The following result gives a necessary condition for the local (or global) solution of the

extended trust region subproblem by using the coderivative tool.

Theorem 6.1. Assume that (x,w) is a local (or global) solution of the following problem

(6.1) min
x,w

f(x,Q, q) subject to x ∈ F(r, b),

where w = (Q, q, r, b) and one of the following conditions is satisfied:

(i) (Inverse Aubin (Lipschitz-like) property): F−1 has the Aubin property at x for (r, b).

(ii) (Metric regularity): There exist a neighborhood V of (r, b), a neighborhood U of x

and a non-negative real number κ such that

d((r, b),F−1(x)) ≤ κd(x,F(r, b)) when (r, b) ∈ V , x ∈ U.

(iii) (Linear openness): There exist a neighborhood V of (r, b), a neighborhood U of x

and a non-negative real number κ such that

F((r, b) + κεB) ⊃ [F(r, b) + εB] ∩ U for all w ∈ V , ε > 0.

(iv) (Coderivative nonsingularity): 0 ∈ D∗N (r, b, x, 0)(v) = 0 only for v = 0.

Then, there exists v∗ ∈ Rn such that

−Qx− q ∈ D∗N (r, b, x, 0)(v∗).

Proof. By [23, Theorem 9.43], we get the assumptions (i), (ii), (iii) and (iv) are equivalent.

The problem (6.1) can be rewritten as follows:

(6.2) min
w,x

F (w, x) :=
1

2
xTQx+ qTx subject to (w, x) ∈ gphS,

with S being the global solution set of the following problem

min
x
ψ(w, x) subject to x ∈ F(w) := F(r, b)

where ψ(w, · ) is constant on F(w).

Consider the problem (6.2) with (w, x) being a local (or global) solution of (6.2) and

use the assumption (iv). Applying Theorem 4.1 in [5] for the problem (6.2), we obtain

that there exists v∗ ∈ Rn such that

−Qx− q ∈ D∗N (r, b, x, 0)(v∗).

The proof is complete.
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Remark 6.2. It is well-known that the normal cone to a convex set is the subdifferential of

its indicator function. According to [16,17], coderivatives of the normal cone mapping co-

incide with the second-order subdifferentials of the indicator function. Hence, Theorem 6.1

can be seen as an application of second-order subdifferentials to the characterization of

optimality conditions for nonlinear programming.

7. Conclusions

In this paper, the Fréchet and Mordukhovich coderivatives of the normal cone mapping

related to the parametric eTRS have been computed and estimated in Theorems 3.4 and

4.4. We have used the obtained results and the Mordukhovich criterion for the locally

Lipschitz-like property of multifunctions to estimate the Mordukhovich coderivative of

S̃(·) and to provide some sufficient conditions for the locally Lipschitz-like property of

the KKT point set map of parametric eTRS with respect to the linear perturbations. We

have proposed a necessary condition for the local (or global) solution of the extended trust

region subproblem by using the coderivative tool.
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[14] G. M. Lee and N. D. Yen, Fréchet and normal coderivatives of implicit multifunctions,

Appl. Anal. 90 (2011), no. 6, 1011–1027.

[15] , Coderivatives of a Karush-Kuhn-Tucker point set map and applications, Non-

linear Anal. 95 (2014), 191–201.

[16] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic

Theory, Springer-Verlag, Berlin, 2006.

[17] , Variational Analysis and Generalized Differentiation II: Applications,

Springer-Verlag, Berlin, 2006.



Coderivatives Related to Parametric Extended Trust Region Subproblem and Their Applications 511

[18] T. V. Nghi and N. N. Tam, Continuity and directional differentiability of the value

function in parametric quadratically constrained nonconvex quadratic programs, Acta

Math. Vietnam. 42 (2017), no. 2, 311–336.

[19] N. T. Qui, Linearly perturbed polyhedral normal cone mappings and applications,

Nonlinear Anal. 74 (2011), no. 5, 1676–1689.

[20] , New results on linearly perturbed polyhedral normal cone mappings, J. Math.

Anal. Appl. 381 (2011), no. 1, 352–364.

[21] , Generalized differentiation of a class of normal cone operators, J. Optim.

Theory Appl. 161 (2014), no. 2, 398–429.

[22] N. T. Qui and N. D. Yen, A class of linear generalized equations, SIAM J. Optim. 24

(2014), no. 1, 210–231.

[23] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Grundlehren der Mathe-

matischen Wissenschaften 317, Springer-Verlag, Berlin, 1998.

[24] M. Salahi and S. Fallahi, Trust region subproblem with an additional linear inequality

constraint, Optim. Lett. 10 (2016), no. 4, 821–832.

[25] N. N. Tam and T. V. Nghi, On the solution existence and stability of quadratically

constrained nonconvex quadratic programs, Optim. Lett., 19 pp.

Van Nghi Tran

Hanoi Pedagogical University 2, Hanoi, Vietnam

E-mail address: nghitv87@gmail.com


	Introduction
	Preliminaries
	Fréchet coderivative of N()
	Mordukhovich coderivative of N()
	Lipschitzian stability
	Optimality conditions using the coderivative
	Conclusions

