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Existence and Multiplicity of Solutions for a Quasilinear Elliptic Inclusion

with a Nonsmooth Potential

Ziqing Yuan*, Lihong Huang and Dongshu Wang

Abstract. This paper is concerned with a nonlinear elliptic inclusion driven by a

multivalued subdifferential of nonsmooth potential and a nonlinear inhomogeneous

differential operator. We obtain two multiplicity theorems in the Orlicz-Sobolev space.

In the first multiplicity theorem, we produce three nontrivial smooth solutions. Two

of these solutions have constant sign (one is positive, the other is negative). In the

second multiplicity theorem, we derive an unbounded sequence of critical points for the

problem. Our approach is variational, based on the nonsmooth critical point theory.

We also show that C1-local minimizers are also local minimizers in the Orlicz-Sobolev

space for a large class of locally Lipschitz functions.

1. Introduction

In this paper, we deal with the following quasilinear elliptic problem with a nonsmooth

potential:

(1.1)

−div(a(|∇u|)∇u) ∈ ∂F (x, u) for a.a. x ∈ Ω,

u|∂Ω = 0,

where Ω ⊂ RN is a bounded domain with a C2-boundary ∂Ω, F : Ω × R → R is a

measurable potential function, which is only locally Lipschitz and in general nonsmooth

in the second variable. By ∂F (x, u) we denote the generalized Clarke subdifferential of

u 7→ F (x, u). In order to go further we introduce the functional space setting where prob-

lem (1.1) will be discussed. In this paper, we note that the operator in the divergence form

is not homogenous and thus, we introduce the Orlicz-Sobolev space setting for problems

of this type. As in [8, 14], the function a is such that g : R→ R defined by

g(t) =

a(|t|)t t 6= 0,

0 t = 0,
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which is an increasing homeomorphism from R into itself (such functions are called Young

or N -function). If we set

G(t) =

∫ t

0
g(s) ds, G̃(t) =

∫ t

0
g−1(s) ds,

then G and G̃ are complementary N -functions (see [2,33]), which define the Orlicz spaces

LG := LG(Ω) and LG̃ := LG̃(Ω), respectively.

In order to construct an Orlicz-Sobolev space setting for problem (1.1), we assume the

following conditions on g(t):

(g0) a(t) ∈ C1(0,+∞), a(t) > 0 and a is a monotonic function for t > 0;

(g1) 1 < g− = inft>0
tg(t)
G(t) ≤ g

+ = supt>0
tg(t)
G(t) < +∞;

(g2) 0 < a− = inft>0
tg′(t)
g(t) ≤ a

+ = supt>0
tg′(t)
g(t) < +∞.

Under the condition (g1) the function G(t) satisfies ∆2-condition, i.e.,

G(2t) ≤ kG(t), t > 0

for some constant k > 0. On the other hand, it follows from [16] that if G satisfies a global

∆2 condition then there exists a best positive constant λ1 such that

λ1

∫
Ω
G(|u|) dx ≤

∫
Ω
G(|∇u|) dx

for all u ∈W 1,G
0 (Ω). The Orlicz space LG is the vectorial space of the measurable functions

u : Ω→ R such that ∫
Ω
G(|u|) dx < +∞.

The space LG(Ω) is a Banach space with the Luxemburg norm

|u|G = inf

{
λ > 0 :

∫
Ω
G

(
|u(x)|
λ

)
dx ≤ 1

}
,

and we shall denote by W 1,G(Ω) the corresponding Orlicz-Sobolev space, which consists

of that whose distributional derivative Du also belongs to LG(Ω), with the norm

‖u‖W 1,G(Ω) = |u|G + |∇u|G,

and W 1,G
0 (Ω) the closure of C∞0 (Ω) in W 1,G(Ω). The equivalent norm on W 1,G

0 (Ω) can be

defined by

‖u‖ = inf

{
λ > 0 :

∫
Ω
G

(
|∇u(x)|

λ

)
dx ≤ 1

}
.
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The Orlicz-Sobolev conjugate function G∗ of G is given by

G−1
∗ (t) =

∫ t

0

G−1(s)

s(N+1)/N
ds

(see [2]), where we suppose that

(1.2) lim
t→0

∫ 1

t

G−1(s)

s(N+1)/N
ds < +∞ and lim

t→∞

∫ t

1

G−1(s)

s(N+1)/N
ds = +∞.

Let

g−∗ = lim inf
t→+∞

tG′∗(t)

G∗(t)
.

As in [10], by L’Hôpital’s rule we have g−∗ = Ng−/(N − g−). Throughout this paper, we

suppose that g+ and g−∗ satisfy the following condition

(1.3) g+ < g−∗ .

Remark 1.1. Below, we give two characteristic examples of functions which satisfy the

conditions (g0)–(g2), (1.2) and (1.3).

(i) Set G(t) = tp/p. Then, it is easy to check that G(t) satisfies hypotheses (g0)–(g2),

(1.2) and (1.3).

(ii) Let

g(t) = |t|p−2t log(1 + |t|)

where 1 < p < N . Then g(t) satisfies hypotheses (g0)–(g2), (1.2) and (1.3).

When F (x, u) is differentiable, problem (1.1) becomes

(1.4)

−div(a(|∇u|)∇u) = f(x, u) for x ∈ Ω,

u|∂Ω = 0,

where F (x, u) =
∫ u

0 f(x, t) dt, f : Ω× R→ R is a Carathéodory function. Donaldson [13]

and Gossez [22] firstly obtained the general existence results of problem (1.4) by the theory

of monotone operators in the Orlicz-Sobolev spaces. In [10,16,23], the authors showed the

existence results for problem (1.4) by means of monotone operator methods, variational

techniques, or fixed point and degree theory arguments. Tan and Fan in [34], using the

sub-super solution method and morse theory, proved the existence of multiple solutions

for problem (1.1). In [3], Bonanno et al. discussed problem (1.4) with Neumann boundary

condition by a critical points theorem. The reader may consult [2,14,32] and the references

therein for more information about the Orlicz space.

While, in this study, the nonlinearity f(x, u) can be discontinuous. The interest in

the study of nonlinear partial differential equations with discontinuous nonlinearities has
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increased since many free boundary problems arising in mathematical physics can be

stated in this form. Among these problems, we have the seepage problem, the obstacle

problem and Elenbaas equation, see [5–7].

In order to enunciate the main results, we need the following hypotheses:

(H0) (i) There exists an odd increasing homeomorphism h from R to R, and nonnegative

constants c1, c2 such that

|ω(x, u)| ≤ c1 + c2h(|u|)

for all ω(x, u) ∈ ∂F (x, u).

(ii)

lim
t→+∞

H(t)

G∗(kt)
= 0, ∀ k > 0,

where H(t) =
∫ t

0 h(s) ds.

Similar to condition (g1), we also make the following condition on H.

(H1) 1 < h− = inft>0 th(t)/H(t) ≤ h+ = supt>0 th(t)/H(t) < +∞.

(H2)

lim
u→0

F (x, u)

|u|g−
= +∞ and lim

|u|→+∞

F (x, u)

G(u)
< λ1 for a.a. x ∈ Ω.

(H3) For every δ > 0, there exists aδ > 0, such that, if

ω∗(x, u) = min{ω(x, u) : ω(x, u) ∈ ∂F (x, u)},

then

ω∗ + aδg(u) ≥ 0 for a.a. x ∈ Ω, and all u ∈ [−δ, δ].

(H4) There exist θ > g+ and M > 0 such that

〈ω, u〉 ≥ θF (x, u) ≥ 0

for a.a. x ∈ Ω, all |u| ≥M , where ω(x, u) ∈ ∂F (x, u),

(H5) F (x, u) = F (x,−u) for a.a. x ∈ Ω, all u ∈ R.

Let I : W 1,G
0 (Ω)→ R be the energy functional for problem (1.1), defined by

I(u) =

∫
Ω
G(|∇u|) dx−

∫
Ω
F (x, u(x)) dx ∀u ∈W 1,G

0 (Ω).

The main results of this paper are:
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Theorem 1.2. If hypotheses (g0)–(g2) and (H0)–(H3) hold, then problem (1.1) has at

least three nontrivial solutions: u0 ∈ int(C+), v0 ∈ − int(C+) and y0 ∈ C1
0 (Ω) \ {0} and

u0, v0 are local minimizers of I.

Theorem 1.3. If g+ < h−, hypotheses (g0)–(g2), (H0), (H4) and (H5) hold, then prob-

lem (1.1) has a sequence of solutions {uk} such that I(uk)→∞ as k →∞.

Remark 1.4. There exist many functions F satisfying Theorems 1.2 and 1.3. For example,

the following potential function F satisfies Theorem 1.2 (for the sake of simplicity, we

drop the x-dependence). Set g(t) = |t|p−2t log(1 + |t|), η ∈ (1, g−), 0 < c2 < λ1.

F (u) =

 c1
η |u|

η if |u| ≤ 1,

c2

[
1
p |t|

p log(1 + |t|)− 1
p

∫ |t|
0

sp

1+s ds
]

if |u| ≥ 1,

where c1 = c2η
p

(
log 2− 1

p

∫ 1
0

sp

1+s ds
)
.

In this work we extend the studies in the following sense:

(1) Unlike [3, 23], the lack of differentiability of the nonlinearity cause several technical

difficulties. This means that the variational methods for C1 functions are not suitable

in our case. Therefore we will use a variational approach based on the nonsmooth

critical point theory due to Clark [9] and Chang [7].

(2) Compared with [21], we have to prove that C1
0 (Ω) local minimizers are also local

W 1,G
0 (Ω)-minimizers under certain conditions. While it is not easy to perform since

the Orlicz-Sobolev space is more complicated than the Lebesgue-Sobolev space.

(3) Unlike [20,25,27], problem (1.1) possesses more complicated nonlinearities, e.g.,

(i) plasticity: G(t) = tα(log(1 + t))β, α ≥ 1, β > 0;

(ii) nonlinear elasticity: G(t) = (1 + t2)γ − 1, γ > 1/2;

(iii) generalized Newtonian fluids: G(t) =
∫ t

0 s
1−α(sinh−1 s)β ds, 0 ≤ α ≤ 1, β > 0.

Our paper is organized as follows. In Section 2, some necessary preliminary knowledge

is presented. In Section 3, we assert that local minimizers in the space C1
0 (Ω) are also

local minimizers in the Orlicz-Sobolev space for a large class of locally Lipschitz functions.

In Section 4, employing suitable truncation techniques, we prove the existence of at least

three nontrivial solutions for problem (1.1). In Section 5, using the nonsmooth fountain

theorem, we obtain an unbounded sequence of critical points for problem (1.1).
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2. Preliminaries

We first give some basic notations.

• ⇀ means weak convergence and → strong convergence.

• c and ci (i = 1, 2, . . .) denote the estimated constants (the exact value may be

different from line to line).

• (X, ‖ · ‖) denotes a (real) Banach space and (X∗, ‖ · ‖∗) its topological dual.

Next, we give some necessary definitions.

Definition 2.1. A function I : X → R is locally Lipschitz if for every u ∈ X there exist

a neighborhood U of u and L > 0 such that for every ν, η ∈ U

|I(ν)− I(η)| ≤ L‖ν − η‖.

Definition 2.2. Let I : X → R be a locally Lipschitz function. The generalized directional

derivative of I in u along the direction ν is defined by

I0(u; ν) = lim sup
η→u,τ→0+

I(η + τν)− I(η)

τ
,

where u, ν ∈ X.

It is easy to see that the function ν 7→ I0(u; ν) is sublinear, continuous and so is the

support function of a nonempty, convex and w∗-compact set ∂I(u) ⊂ X∗, defined by

∂I(u) = {u∗ ∈ X∗ : 〈u∗, ν〉X ≤ I0(u; ν) for all v ∈ X}.

If I ∈ C1(X), then

∂I(u) = {I ′(u)}.

Clearly, these definitions extend the Gâteaux directional derivative and gradient.

Definition 2.3. We say that I satisfies the nonsmooth (PS)c if any sequence {un} ⊂ X

such that

I(un)→ c and mI(un) := inf
u∗n∈∂I(un)

‖u∗n‖X∗ → 0 as n→ +∞

has a strongly convergent subsequence.

Definition 2.4. We say that u ∈ W 1,G
0 (Ω) is a weak solution of problem (1.1), if for all

v ∈W 1,G
0 (Ω), there exists a mapping Ω 3 x 7→ ω(x, u) with ω(x, u) ∈ ∂F (x, u) such that∫

Ω
a(|∇u|)∇u · ∇v dx =

∫
Ω
ω(x, u)v dx.

Obviously, the critical points of I are weak solutions of problem (1.1).
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Lemma 2.5. [2] Under the condition (g1), the spaces LG(Ω), W 1,G
0 (Ω) and W 1,G(Ω) are

separable and reflexive Banach spaces.

Lemma 2.6. [2] Under the condition (H0)(ii), the embedding

W 1,G(Ω) ↪→ LH(Ω)

is compact.

Lemma 2.7. [14] Let ρ(u) =
∫

ΩG(u) dx, we have

(i) if |u|G < 1, then |u|g
+

G ≤ ρ(u) ≤ |u|g
−

G ;

(ii) if |u|G > 1, then |u|g
−

G ≤ ρ(u) ≤ |u|g
+

G ;

(iii) if 0 < t < 1, then tg
+
G(u) ≤ G(tu) ≤ tg−G(u);

(iv) if t > 1, then tg
−
G(u) ≤ G(tu) ≤ tg+G(u).

Let A : W 1,G
0 (Ω)→ (W 1,G

0 (Ω))∗ be the nonlinear operator defined by

〈A(u), v〉
W 1,G

0 (Ω)
=

∫
Ω
a(|∇u|)∇u∇v dx ∀u, v ∈W 1,G

0 (Ω).

The following lemma can be found in [15].

Lemma 2.8. The mapping A : W 1,G
0 (Ω) → (W 1,G

0 (Ω))∗ is a bounded homeomorphism,

and is of type (S+), namely, un ⇀ u and lim supn→∞〈A(un), un − u〉 ≤ 0 imply that

un → u in W 1,G
0 (Ω).

Next, we introduce the following Banach space:

C1
0 (Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}.

This is an ordered Banach space with positive cone

C+ = {u ∈ C1
0 (Ω) : u(x) ≥ 0 for all x ∈ Ω}.

This cone has a nonempty interior, given by

int(C+) =

{
u ∈ C+ : u(x) > 0 for all x ∈ Ω,

∂u

∂n
(x) < 0 for all x ∈ ∂Ω

}
,

where n(·) denotes the outward unit normal on ∂Ω. The next theorem is a nonsmooth

version of the classical mountain pass theorem.
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Theorem 2.9. [18] If X is a Banach space, I : X → R is a locally Lipschitz functional

which satisfies the nonsmooth PS-condition, u0, u1 ∈ X, ‖u1 − u0‖ > r > 0,

max{I(u0), I(u1)} ≤ inf
‖u−u0‖=r

I(u) = η0

and

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1];X) : γ(0) = u0, γ(1) = u1}, then c ≥ η0 and c is a critical value

of I.

For a given locally Lipschitz functional I : X → R, we introduce the following sets:

KI = {u ∈ X : 0 ∈ ∂I(u)},

Kc
I = {u ∈ X : I(u) = c, 0 ∈ ∂I(u)},

Ic = {u ∈ X : I(u) < c}.

The following theorem is a nonsmooth version of the so called second deformation theorem.

Theorem 2.10. [11] Let X be a Banach space, I : X → R be a locally Lipschitz functional

satisfying the nonsmooth PS-condition, a, b ∈ R be numbers with a < b. Assume also that

KI ∩ ϕ−1([a, b]) = ∅ and Ka
I is a finite set containing only local minimizers of I. Then,

there exists a continuous deformation h : [0, 1]× Ib → Ib such that

(i) h(t, · )|Ka
I

= id |Ka
I

for all t ∈ [0, 1];

(ii) h(1, Ib) ⊆ Ia ∪Ka
I ;

(iii) I(h(t, u)) ≤ I(u) for all t ∈ [0, 1], u ∈ Ib.

3. W 1,G
0 (Ω) versus C1

0(Ω) local minimizers

The next result relates to local W 1,G
0 (Ω) and C1

0 (Ω)-minimizers for a large class of smooth

or nonsmooth functionals. The result was first proved for

G(y) =
1

2
‖y‖2

and smooth (i.e., C1) functionals by Brézis and Nirenberg [4]. It was extended to the case

G(y) =
1

p
‖y‖p

with 1 < p < +∞, and smooth functionals by Guo-Zhang [24], and Azorero et al. [17].

The nonsmooth versions to these cases can be found in [21, 27]. Here we further extend

all these results.
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Let F0 : Ω × R → R be a measurable function, such that for a.a. x ∈ Ω, the function

ζ 7→ F0(x, ζ) is locally Lipschitz and satisfies the condition (H0). We define ϕ : W 1,G
0 (Ω)→

R by

ϕ(u) =

∫
Ω
G(|∇u|) dx−

∫
Ω
F0(x, u) dx, ∀u ∈W 1,G

0 (Ω).

From Clarke [9], we obtain that ϕ is Lipschitz on bounded sets, hence in particular locally

Lipschitz.

Lemma 3.1. [34] There exist constants d1, d2, depending on a−, a+, such that

|a(|η|)η − a(|ξ|)ξ| ≤ d1|η − ξ|a(|η|+ |ξ|).

If a(t) is decreasing for t > 0, we have

|a(|η|)η − a(|ξ|)ξ| ≤ d2g(|η − ξ|)

for all η, ξ ∈ RN .

Next, we give our main result, which shows the relationship between C1
0 (Ω) and

W 1,G
0 (Ω).

Theorem 3.2. If hypotheses (g0)–(g3) hold, and u0 ∈W 1,G
0 (Ω) is a local C1

0 (Ω)-minimizer

of ϕ, i.e., there exists ρ0 > 0, such that

ϕ(u0) ≤ ϕ(u0 + h) ∀h ∈ C1
0 (Ω), ‖h‖C1

0 (Ω) ≤ ρ0,

then u0 ∈ C1,α
0 (Ω) for some α ∈ (0, 1) and it is also a local W 1,G

0 (Ω)-minimizer of ϕ, i.e.,

there exists ρ1 > 0, such that

ϕ(u0) ≤ ϕ(u0 + h) ∀h ∈W 1,G
0 (Ω), ‖h‖ ≤ ρ1.

Proof. Choosing h ∈ C1
0 (Ω), for τ > 0 small enough we have

ϕ(u0) ≤ ϕ(u0 + τh),

hence

(3.1) 0 ≤ ϕ0(u0;h).

Since h ∈ C1
0 (Ω) is arbitrary, ϕ0(u0; · ) is continuous and C1

0 (Ω) is dense in W 1,G
0 (Ω) from

(3.1), we have

0 ≤ ϕ0(u0;h) ∀h ∈W 1,G
0 (Ω).

So

0 ∈ ∂ϕ(u0)
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and thus

(3.2) A(u0) = ω0,

where ω0 ∈ ∂F (x, u0) for a.a. x ∈ Ω. It follows from (3.2) that−div(a(|∇u0|)∇u0) = ω0 ∈ ∂F (x, u0) in Ω,

u0|∂Ω = 0.

From (g0)–(g2) we can easily obtain that

a(|t|)t2 ≥ g−G(|t|)− c and a(|t|)t ≤ g+g(|t|) + c.

From the above inequalities, invoking Theorem 3.1 and Corollary 3.1 in [34], we infer that

u0 ∈ L∞(Ω) and u0 ∈ C1,α
0 (Ω) for some α ∈ (0, 1).

Now we prove that u0 is also a local W 1,G
0 (Ω)-minimizer of ϕ. Define

J(u) =

∫
Ω
G(|∇u−∇u0|) dx, ∀u ∈W 1,G

0 (Ω).

For ε ∈ (0, 1), set Dε = {u ∈ W 1,G
0 (Ω) : J(u) ≤ ε}. Then Dε is a bounded, closed and

convex subset of W 1,G
0 (Ω) and it is a neighborhood of u0 in W 1,G

0 (Ω). On the hypothesis

of F0, the function ϕ : W 1,G
0 (Ω) → R is weakly lower semicontinuous and consequently

infDε ϕ is achieved at some uε ∈ Dε. Invoking the nonsmooth Lagrange multiplier rule of

Clarke [9], we can find λε ≤ 0, such that

0 ∈ ∂ϕ(uε)− λεJ ′(uε).

This means that

(3.3) − div(a(|∇uε|)∇uε) + λε div(a(|∇uε −∇u0|)(∇uε −∇u0)) = ωε ∈ ∂F (x, uε).

Proceeding by contradiction, suppose that u0 is not a local minimizer of ϕ in the W 1,G
0 (Ω)

topology, then for each ε ∈ (0, 1), there exists uε 6= u0 such that ϕ(uε) < ϕ(u0). Note that

uε → u0 in W 1,G
0 (Ω) as ε → 0. Below we need to prove that uε → 0 in C1

0 (Ω) as ε → 0,

which contradicts the fact that u0 is a local minimizer of ϕ in the C1
0 topology. Dividing

both sides of (3.3) by 1− λε, it follows that

−div

{
1

1− λε
[a(|∇uε|)∇uε − λεa(|∇uε −∇u0|)(∇uε −∇u0)]

}
=

1

1− λε
ωε ∈ ∂F (x, uε).

Define Aε : Ω× RN → RN and Bε : Ω× R→ R by

Aε(x, ζ) =
1

1− λε
[a(|ζ|)ζ − λε(a(|ζ −∇u0|)(ζ −∇u0))] ,

Bε(x, t) =
1

1− λε
ω(x, t).
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Then uε is a solution of the following problem:−div(Aε(x,∇u)) = Bε(x, u) in Ω,

u|∂Ω = 0.

We can check that Aε and Bε satisfy the following conditions

Aε(x, ζ)ζ ≥ c0G(|ζ|)− c,(3.4)

Aε(x, ζ) ≤ c1g(|ζ|) + c,(3.5)

Bε(x, u) ≤ bh(|u|) + c,(3.6)

where c0, c1, b and c are positive constants independent of ε ∈ (0, 1). The verifications of

(3.5) and (3.6) are simple, here we mainly give the proof of (3.4). From the definition of

Aε(x, ζ) and (g1), we derive

Aε(x, ζ)ζ =
1

1− λε
[(a(|ζ|)ζ − λεa(|ζ|)ζ)− λε(a(|ζ −∇u0|)(ζ −∇u0)− a(|ζ|)ζ)]ζ

≥ 1

1− λε
[(1− λε)G(|ζ|)− λεK],

where K = [a(|ζ −∇u0|)(ζ −∇u0|)− a(|ζ|)ζ]ζ. By virtue of Lemma 3.1, we have

|K| = |a(|ζ −∇u0|)(ζ −∇u0)− a(|ζ|)ζ||ζ|

≤ c|∇u0|a(|ζ −∇u0|+ |ζ|)|ζ|

≤ cg(|ζ|) + c

≤ 1

2
G(|ζ|) + c,

and when a(t) is decreasing,

|K| = |a(|ζ −∇u0|)(ζ −∇u0)− a(|ζ|)ζ||ζ|

≤ c|∇u0|a(|ζ −∇u0|+ |ζ|)|ζ|

≤ ca(|∇u0|)|∇u0||ζ|

≤ 1

2
G(|ζ|) + c,

where c is a generic positive constant independent of ε. Hence, we derive

Aε(x, ζ)ζ ≥ 1

1− λε
[(1− λε)G(|ζ|)− λεK]

≥ 1

1− λε

[
(1− λε)G(|ζ|)− λε

(
1

2
G(|ζ|) + c

)]
=

1

1− λε

[(
1− 3

2
λε

)
G(|ζ|)− cλε

]
≥ 1

2
G(|ζ|)− c,

(3.7)
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where c is a positive constant independent of ε. It follows from (3.7) that (3.4) is proved.

From Theorem 3.1 in [34] we obtain that uε ∈ L∞ and |uε|L∞ is bounded uniformly for

ε ∈ (0, 1).

Next, by employing the results in [28, 29], we will prove that ‖u‖
C1,α

0 (Ω)
≤ c for some

α ∈ (0, 1) from two cases, respectively.

Case (i): Suppose that λε ∈ [−1, 0].

Recall that u0 satisfies the equation

(3.8) − div[a(|∇u0|)∇u0] = ω0 ∈ ∂F (x, u0).

Subtracting (3.8) from (3.3), we have

−div(a(|∇uε|)∇uε − λεa(|∇uε −∇u0|)(∇uε −∇u0)− λεa(|∇u0|)∇u0) = ωε − λεω0,

where ωε ∈ ∂F (x, uε) and ω0 ∈ ∂F (x, u0) for a.a. x ∈ Ω. Define Ãε : Ω × RN → RN and

B̃ε : Ω× R→ R by

Ãε = a(|ζ|)ζ − λεa(|ζ −∇u0|)(ζ −∇u0)− λεa(|∇u0|)∇u0,

B̃ε = ωε − λεω0.

It is easy to see that uε is a solution of the following problem:−div(Ãε(x,∇u)) = B̃ε(x, u) in Ω,

u|∂Ω = 0.

We need to prove that for all x, y ∈ Ω, ζ ∈ RN \{0}, ξ ∈ RN , t ∈ R the following conditions

hold:

Ãε(x, 0) = 0,(3.9)

N∑
i,j=1

∂(Ãε)j
∂ζi

(x, ζ)ξiξj ≥
g(|ζ|)
|ζ|
|ξ|2,(3.10)

N∑
i,j=1

∂(Ãε)j
∂ζi

(x, ζ)|ζ| ≤ c(1 + g(|ζ|)),(3.11)

|Ãε(x, ζ)− Ãε(y, ζ)| ≤ c(1 + g(|ζ|))(|x− y|θ) for some θ ∈ (0, 1),(3.12)

|B̃ε(x, t)| ≤ c+ ch(|t|).(3.13)

(3.9) and (3.13) are obvious. Inequalities (3.10) and (3.11) follow from Lemma 3.1 and

the following derivative

Dζ(a(|ζ|)ζ) = a′(|ζ|)ζ ⊗ ζ
|ζ|

+ a(|ζ|) id

= a(|ζ|)
(

id +
a′(|ζ|)|ζ|
a(|ζ|)

ζ ⊗ ζ
|ζ|2

)
.
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Inequality (3.12) follows from Lemma 3.1 and the fact that ∇u0(x) is Hölder continuous.

According to the regularity results in [28,29], from (3.9)–(3.13), one has

(3.14) uε ∈ C1,α
0 (Ω) and ‖uε‖C1,α

0 (Ω)
≤ c,

where the positive constant c is independent of λε ∈ [−1, 0].

Case (ii): Suppose that λε < −1.

Let vε = uε − u0. By virtue of (3.3) and (3.8) we know that vε satisfies the equation

− div

[
a(|∇vε|)∇vε +

1

|λε|
a(|∇vε +∇u0|)(∇vε +∇u0)− 1

|λε|
a(|∇u0|)∇u0

]
=

1

|λε|
[ω(x, vε + u0)− ω(x, u0)],

where ω(x, vε + u0) ∈ ∂F (x, vε + u0) and ω(x, u0) ∈ ∂F (x, u0) for a.a. x ∈ Ω. Set

Âε(x, ζ) = a(|ζ|)ζ +
1

|λε|
a(|ζ +∇u0|)(ζ +∇u0)− 1

|λε|
a(|∇u0|)∇u0,

B̂ε(x, t) =
1

|λε|
[ω(x, t+ u0)− ω(x, u0)],

where ω(x, t+ u0) ∈ ∂F (x, t+ u0) and ω(x, u0) ∈ ∂F (x, u0) for a.a. x ∈ Ω.

In a similar way, we can prove that Âε and B̂ε satisfy the corresponding condi-

tions (3.9)–(3.13). So from the regularity results in [28,29], we obtain

(3.15) vε ∈ C1,α
0 (Ω) and ‖vε‖C1,α

0 (Ω)
≤ c.

Let ε ↓ 0. Due to the fact that for every α ∈ (0, 1) the embedding C1,α
0 (Ω) ↪→ C1

0 (Ω) is

compact, from (3.14) and (3.15), we can find a subsequence uεn of uε such that uεn → ũ

in C1
0 (Ω). From the construction we have uεn → u0 in W 1,G

0 (Ω), which means ũ = u0. So,

for n sufficiently large, say n ≥ n0, we obtain

‖uεn − u0‖C1,α
0 (Ω)

≤ r1,

which implies

(3.16) ϕ(u0) ≤ ϕ(uεn).

However, the choice of the sequence {uεn} means

ϕ(uεn) < ϕ(u0), ∀n ≥ n0,

which is a contradiction to (3.16). Hence the proof is completed.
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4. First multiplicity theorem

In this section we prove Theorem 1.2, which produces three nontrivial smooth solutions,

two of which have constant sign (one positive, the other negative).

In order to obtain solutions with constant sign we will use truncations. Let us introduce

the notations r± = max{±r, 0} and the truncation functions τ± : R→ R defined by

τ±(u) =

u if ±u ≥ 0,

0 if ±u < 0.

Proof of Theorem 1.2. Let F±(x, u) = F (x, τ±(u)) for a.a. x ∈ Ω and all u ∈ R. Evidently

both F± : Ω × R → R are measurable. Moreover, for a.a. x ∈ Ω, we have that F± are

locally Lipschitz and from the nonsmooth chain rule (see Clarke [9])

(4.1) ∂F±(x, u) =


∂F (x, u) if ±u > 0,

{tω : t ∈ [0, 1], ω ∈ ∂F (x, 0)} if u = 0,

0 if ±u < 0.

Let I± : W 1,G
0 (Ω)→ R be the locally Lipschitz functions defined by

I±(u) =

∫
Ω
G(|∇u|) dx−

∫
Ω
F±(x, u) dx ∀u ∈W 1,G

0 (Ω).

By virtue of hypothesis (H2), there exist ε ∈ (0, 1) and M0 > 0 large enough such that

F (x, u) ≤ λ1(1− ε)G(|u|) for all |u| ≥M.

From hypothesis (H0), when |u| < M , we have

|G(x, u)| ≤ c6.

Then, when ‖u‖ > 1, we have

I(u) =

∫
Ω
G(|∇u|) dx−

∫
Ω
F (x, u) dx

≥
∫

Ω
G(|∇u|) dx− λ1(1− ε)

∫
Ω
G(|u|) dx− c6

≥ ε‖u‖g− − c6.

It follows from the above inequality that I is coercive. Also, using the compactness of

the embedding of W 1,G
0 (Ω) into LH(Ω), we can easily obtain that I is sequentially weakly

lower semicontinuous. Hence, from the Weierstrass theorem, we have u0 ∈W 1,G
0 (Ω), such

that

(4.2) I+(u0) = inf
u∈W 1,G

0 (Ω)
I+(u) = m+.
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For u ∈ int(C+), we have

lim
|t|→0

I(tu)

|t|g−
= −∞.

In fact, for any {tn} ⊂ R with tn → 0, set vn = tnu. Then

vn → 0 in W 1,G
0 (Ω), vn → 0 a.a. x ∈ Ω.

Due to hypothesis (H2) and Fatou Lemma, we derive

(4.3) lim inf
n→∞

∫
Ω

F (x, vn)

|vn|g−
|u|g− dx ≥

∫
Ω

lim
n→∞

F (x, vn)

|vn|g−
|u|g− dx = +∞.

So

I(tnu)

|tn|g−
=

∫
ΩG(|∇tnu|) dx−

∫
Ω F (x, tnu) dx

|tn|g−

≤
|tn|g

− ∫
ΩG(|∇u|) dx−

∫
Ω F (x, tnu) dx

|tn|g−

≤
∫

Ω
G(|∇u|) dx−

∫
Ω

F (x, vn)

|vn|g−
|u|g− dx

→ −∞

(4.4)

as n → ∞. From (4.3), we know that for any u ∈ int(C+), there exists t0 ∈ (0, 1) such

that

I(tu) < 0 for t ∈ (0, t0).

So

I+(u0) = m+ < 0 = I+(0),

i.e.,

u0 6= 0.

It follows from (4.2) that

0 ∈ ∂I+(u0).

So

(4.5) A(u0) = ω0,

where ω0 ∈ ∂F+(x, u0(x)) for a.a. x ∈ Ω. We act on (4.5) with the test function −u−0 ∈
W 1,G

0 (Ω). Then, it follows from (4.1) that∫
Ω−

a(|∇u0|)|∇u0|2 dx =

∫
Ω−

ω0u0 dx = 0,
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where Ω− = {x ∈ Ω : u0(x) < 0} and ω0 ∈ ∂F (x, u0). This means that

u−0 = 0, i.e., u0 ≥ 0, u0 6= 0.

From (4.5), we obtain −div(a(|∇u0|)∇u0) = ω0 in Ω,

u0|∂Ω = 0.

Noting that

∇u0(x) = 0 on {u0 = 0}

(Stampacchia theorem (see [19, p. 195])), we deduce that

ω0(x, u0) ∈ ∂F (x, u0(x)) for a.a. x ∈ Ω.

So, u0 is a nontrivial positive solution of problem (1.1). As before, from the nonlinear

regularity theory, we have u0 ∈ C+ \ {0}. Let δ = ‖u0‖∞ and aδ > 0 be as postulated by

hypothesis (H3). Then

−div(a(|∇u0|)∇u0) + aδg(u0) = ω0 + aδg(u0) ≥ 0

for a.a. x ∈ Ω. So

div(a(|∇u0|)∇u0) ≤ aδg(u0)

for a.a. x ∈ Ω and it follows from hypotheses (g0)–(g2) that u0 ∈ int(C+) (see Montenegro

[31, Theorem 6]). If

W+ = {u ∈W 1,G
0 (Ω) : u(x) ≥ 0 for a.a. x ∈ Ω},

then clearly

I|W+ = I+|W+ .

Hence, u0 is a local C1
0 (Ω)-minimizer of I. According to Theorem 3.2, we deduce that u0

is a local W 1,G
0 (Ω)-minimizer of I.

Similarly, working with the functional I−, we can have another constant sign smooth

solution v0 ∈ − int(C+) of problem (1.1), which is a local minimizer of the functional I.

Next, we will prove the existence of the third nontrivial solution for problem (1.1).

Without any loss of generality, we may suppose that I(v0) ≤ I(u0).

Note that u0 is a global minimizer of I+, and we distinguish two cases. Suppose that

there exists another nontrivial critical point y0 ∈W 1,G
0 (Ω) \ {0, u0} of I+. Then, as in the

above proof, we can obtain that y0 ∈ int(C+) and it solves problem (1.1). Hence we have

derived a third nontrivial solution (which in fact is positive).
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So, we may assume that u0 is the only nontrivial critical point of I+, and similarly that

v0 is the only nontrivial critical point of I−. Reasoning as in the proof of Proposition 29

in [30], we can find r ∈ (0, 1) small, such that

(4.6) I(v0) ≤ I(u0) < inf{I(u) : ‖u− u0‖ = r} = ηr, ‖u0 − v0‖ > r.

In a similar way, from hypotheses (H0) and (H2), we can prove that I is coercive, and so

it satisfies the nonsmooth (PS)c. From (4.6) and the nonsmooth mountain pass theorem,

we can find y0 ∈W 1,G
0 (Ω), such that

(4.7) I(v0) ≤ I(u0) < ηr ≤ I(y0)

and

(4.8) 0 ∈ ∂I(y0).

(4.7) means that y0 /∈ {v0, u0} and it follows from (4.8) that

A(y0) = ω(x, y0),

where ω(x, y0) ∈ ∂F (x, y0) for a.a. x ∈ Ω. Thus y0 is a solution of problem (1.1) and

y0 ∈ C1
0 (Ω) from the nonlinear regularity theory. It only remains to prove that y0 6= 0.

By virtue of Theorem 2.9, we have

(4.9) c = I(y0) = inf
γ∈Γ

max
0≤t≤1

I(γ(t)),

where

Γ = {γ ∈ C([0, 1];W 1,G
0 (Ω)) : γ(0) = v0, γ(1) = u0}.

According to (4.9), if we can find γ∗ ∈ Γ, such that

I(γ∗(t)) < 0 ∀ t ∈ [0, 1],

then

c = I(y0) < 0 = I(0)

and so y0 6= 0. So our aim is to find such a path γ∗ ∈ Γ.

With this aim in mind, set

Γc = {γ ∈ C([0, 1];C1
0 (Ω)) : γ(0) = v0, γ(1) = u0}.

Due to the density of the embedding of C1
0 (Ω) into W 1,G

0 (Ω), we have that Γc is dense in

Γ. We can find γ̃ ∈ Γc such that 0 /∈ γ̃([0, 1]). Noting that

γ̃([0, 1]) ⊆ C1
0 (Ω) and 0 /∈ γ̃([0, 1]),
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we can find λ ∈ (0, 1) small enough, for all u ∈ γ̃([0, 1]), as doing in (4.4), such that

(4.10)
I(λu)

λp−
→ −∞ as λ→ 0+.

From (4.10), there exists λ0 ∈ (0, 1) such that

(4.11) I(λu) < 0

for all λ ∈ (0, λ0) and all u ∈ γ̃([0, 1]). Setting γ̂ = λγ̃, from (4.11), we see that

(4.12) I|γ̂ < 0

and γ̂ is a continuous path in W 1,G
0 (Ω) which connects λv0 and λu0.

In the following, we will find a continuous path in W 1,G
0 (Ω) which connects λu0 and

u0 and along which I is strictly negative. For this purpose, note that

m+ = inf
u∈W 1,G

0 (Ω)
I+(u) < 0 = I+(0).

Also, we may suppose that K
m+

I+
= {u0} or otherwise we already obtain a second positive

solution. By virtue of Theorem 2.10, we can find a continuous deformation h : [0, 1]×I0
+ →

I0
+, such that

(4.13) h(1, I0
+) ⊆ Im+

+ ∪Km+

I+
= I

m+
+ ∪ {u0} = {u0}

(since I
m+
+ = ∅) and

(4.14) I+(h(t, u)) ≤ I+(u) ∀ t ∈ [0, 1], u ∈ I0
+.

Consider the continuous path γ+ : [0, 1]→W 1,G
0 (Ω), defined by

γ+(t) = h(t, λu0)+ ∀ t ∈ [0, 1].

Then

γ+(0) = h(0, λu0)+ = (λu0)+ = λu0,

and

γ+(1) = h(1, λu0)+ = u0

(see (4.13)). So γ+ is a continuous path in W 1,G
0 (Ω), which connects λu0 and u0. Further-

more, by (4.14) and I|W+ = I+|W+ , we obtain

I(γ+(t)) = I(h(t, λu0)+) = I+(h(t, λu0)+)

≤ I+(λu0) = I(λu0) < 0 ∀ t ∈ [0, 1]
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(see (4.12)). Hence

I|γ+ < 0.

In a similar way, we can produce a continuous path γ− in W 1,G
0 (Ω) which connects λv0

and v0 and

I|γ− < 0.

Concatenating γ−, γ̂ and γ+, we have γ∗ ∈ Γ, such that

I|γ∗ < 0,

hence, y0 6= 0. So y0 ∈ C1
0 (Ω)\{0} is the third nontrivial smooth solution of problem (1.1).

5. Second multiplicity theorem

In this section, we will prove Theorem 1.3. Let X = W 1,G
0 (Ω). Since X is a reflexive and

separable Banach space, there exist {ej} ⊂ X and {e∗j} ⊂ X∗ such that

X = span{ej : j = 1, 2, . . .}, X∗ = span{e∗j : j = 1, 2, . . .},

and

〈ej , e∗i 〉 =

1 if i = j,

0 if i 6= j.

For convenience, we write Xj = span{ej}, Yk =
⊕k

j=1Xj and Zk =
⊕∞

j=kXj .

Definition 5.1. Assume that the compact group G acts diagonally on V k

g(v1, . . . , vk) = (gv1, . . . , gvk),

where V is a finite dimensional space. The action of G is admissible if every continuous

equivariant map ∂U → V k−1, where U is an open bounded invariant neighborhood of 0

in V k, k ≥ 2, has a zero.

The antipodal action G = Z2 on V = R is admissible.

(A1) The compact group G acts isometrically on the Banach space X =
⊕

m∈NXm, the

space Xm are invariant and there exists a finite dimensional space V such that, for

every m ∈ N, Xm ' V and the action of G on V is admissible.

The following lemma is very important when we use the nonsmooth fountain theorem

to prove infinite solutions for problem (1.1).
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Lemma 5.2. If hypothesis (H0) is satisfied, then we have

βk = sup
u∈Zk,‖u‖=1

|u|H → 0, k →∞.

Proof. It is obvious that 0 < βk+1 ≤ βk. So there exists β ≥ 0 such that βk → β as

k → ∞. We need to prove β = 0. From the definition of βk, for every k ≥ 0 there exists

uk ∈ Zk such that ‖uk‖ = 1, 0 ≤ β − |uk|H < 1/k. Then, there exists a subsequence of

{uk}, which still denote by uk, such that

uk ⇀ u in X, and 〈e∗j , u〉 = lim
k→∞
〈e∗j , uk〉 = 0, j = 1, 2, . . . ,

which means that u = 0 and uk ⇀ 0 in X. Since the Sobolev embedding X ↪→ LH(Ω) is

compact then uk → 0 in LH(Ω). Thus we obtain β = 0.

The next theorem is the nonsmooth fountain theorem, which was proved by Dai in [12].

Lemma 5.3. Under assumption (A1), let I : X → R be an invariant locally Lipschitz

functional. If for every k ∈ N, there exist ρk > rk > 0 such that

(A2) ak = maxu∈Yk,‖u‖=ρk I(u) ≤ 0;

(A3) bk = infu∈Zk,‖u‖=rk I(u)→∞, k →∞;

(A4) I satisfies the nonsmooth (PS)c condition for every c > 0,

then I has an unbounded sequence of critical values.

Proof of Theorem 1.3. Noting that I is a locally Lipschitz function on X, and considering

(H5) we can employ the nonsmooth version of the fountain theorem with the antipodal

action of Z2 to prove Theorem 1.3.

Claim. I satisfies the nonsmooth (PS)c.

Suppose that {un} ⊂ X is a sequence, such that

(5.1) I(un)→ c and mI(un)→ 0 as n→∞.

We first prove that the sequence {un} is bounded in X. Let u∗n ∈ ∂I(un) such that

mI(un) = ‖u∗n‖X∗ . Then from (5.1) we have

(5.2) − 〈u∗n, un〉 = −〈A(un), un〉+

∫
Ω
ω(x, un)un dx ≤ εn‖un‖

with εn ↓ 0 and

(5.3)

∫
Ω
θG(|∇un|) dx−

∫
Ω
θF (x, un) dx ≤ θc.



Existence and Multiplicity of Solutions for a Quasilinear Elliptic Inclusion with a Nonsmooth Potential 655

Adding (5.2) and (5.3), we obtain

(5.4)

∫
Ω

(θG(|∇un|)− g(|∇un|)∇un) dx−
∫

Ω
(θF (x, un)− ω(x, un))un dx ≤ θc+ εn‖un‖,

where θ > g+, ω(x, un) ∈ ∂F (x, un) for a.a. x ∈ Ω. We proceed by contradiction and thus

suppose that there exists a subsequence such that ‖un‖ > n. In this case (see [1]) we have

that

(5.5)

∫
Ω
G(|∇un|) dx ≥ ‖un‖

for all n ∈ N. So, from (5.4) and (5.5), we obtain that∫
Ω

(θG(|∇un|)− g(|∇un|)|∇un|) dx−
∫

Ω
(θF (x, un)− ω(x, un))un dx

≤ θc+ εn

∫
Ω
G(|∇un|) dx.

(5.6)

By virtue of hypotheses (g1) and (H4), choosing ρ > 0 small enough so that g+ + ρ < θ,

when |u| ≥M , we have

(5.7) 0 < ug(u) ≤ (g+ + ρ)G(u),

and

(5.8) 0 ≤ θF (x, u) ≤ 〈ω, u〉,

for a.a. x ∈ Ω. Set

Ω1,n = {x ∈ Ω : |∇un(x)| < M}, Ω2,n = {x ∈ Ω : |∇un(x)| ≥M},

Ω3,n = {x ∈ Ω : |un(x)| < M}, Ω4,n = {x ∈ Ω : |un(x)| ≥M}.

Then, it follows from hypothesis (H0) and (5.6) that there exists a positive constant c̃

independent of n, such that∫
Ω2,n

(θG(|∇un|)− g(|∇un|)∇un) dx−
∫

Ω4,n

(θF (x, un)− ω(x, un))un dx

≤ c̃+ εn

∫
Ω
G(|∇un|) dx,

(5.9)

where ω(x, un) ∈ ∂F (x, un) for a.a. x ∈ Ω. From (5.7) and (5.8), one has

(5.10)

∫
Ω2,n

(θG(|∇un|)− g(|∇un|)∇un) dx ≥ (θ − g+ − ρ)

∫
Ω2,n

G(|∇un|) dx

and

(5.11)

∫
Ω4,n

(θF (x, un)− ω(x, un))un dx ≤ 0.
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Combining (5.9), (5.10) and (5.11), we deduce that∫
Ω2,n

G(|∇un|) dx ≤ c+ εn

∫
Ω
G(|∇un|) dx.

From the fact Ω = Ω1,n ∪ Ω2,n, we have∫
Ω
G(|∇un|) dx ≤ c+ εn

∫
Ω
G(|∇un|) dx.

Taking n large enough, say n ≥ n0, εn < 1/2, we can obtain∫
Ω
G(|∇un|) dx ≤ c for n ≥ n0,

and hence, it follows from (5.5) that

‖un‖ ≤ c

for all n ∈ N, a contradiction to ‖un‖ > n.

Since {un} is bounded, we may assume that un ⇀ u in X, and un → u in LH(G)

(since the embedding of X into LH(G) is compact). Then from (5.1) and (5.2) we have∣∣∣∣〈A(un), un − u〉+

∫
Ω
ω(x, un)(un − u) dx

∣∣∣∣ ≤ ‖u∗n‖X∗‖un − u‖.
Note that ω(x, un) is bounded in (LH(Ω))∗ (see (H0)) which means that∣∣∣∣∫

Ω
ω(x, un)(un − u) dx

∣∣∣∣ ≤ ‖ω(x, un)‖(LH(G))∗‖un − u‖LH(G) → 0.

Since ‖u∗n‖X∗ → 0 and {un} is bounded in X, we have

lim
n→∞

〈A(un), un − u〉 = 0.

Invoking Lemma 2.8, we infer that un → u, which proves our Claim.

According to hypothesis (H4), we can obtain that there exist R > 0 and c > 0 such

that (see [26])

(5.12) F (x, u) ≥ c|u|θ for |u| ≥ R, x ∈ Ω, u ∈ X.

By virtue of (5.12), when ‖u‖ > 1 we have

I(u) ≤
∫

Ω
G(|∇u|) dx− c

∫
Ω
|u|θ dx+ c

≤ ‖u‖g+ − c
∫

Ω
|u|θ dx+ c.
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Since on the finite dimensional space Yk all norms are equivalent, and θ > g+, relation

(A2) is satisfied for every ‖u‖ = ρk > 1 large enough. By virtue of hypothesis (H0), on

Z2, we have

I(u) ≥
∫

Ω
G(|∇u|) dx− c

∫
Ω
H(|u|) dx− c

≥

‖u‖g
+ − cβh−k ‖u‖h

− − c if ‖u(x)‖ < 1,

‖u‖g− − cβh+k ‖u‖h
+ − c if ‖u(x)‖ ≥ 1.

If ‖u‖ < 1, choosing rk = [g+/(ch−βh
−
k )]1/(h

−−g+), form Lemma 5.2, we have

(5.13) I(u) ≥
(

1− g+

h−

)(
g+

ch−βh
−
k

)g+/(h−−g+)

− c→∞

as k → ∞. If ‖u‖ ≥ 1, choosing rk = [g−/(ch+βh
+

k )]1/(h
+−g−), form Lemma 5.2, we also

have

(5.14) I(u) ≥
(

1− g−

h+

)(
g−

ch+βh
+

k

)g−/(h+−g−)

− c→∞

as k →∞. So, from (5.13) and (5.14), relation (A3) is proved.

According to the nonsmooth fountain theorem (Lemma 5.3), we obtain that prob-

lem (1.1) has an unbounded sequence of critical points. The proof is completed.
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