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Blow-up Phenomena for a Porous Medium Equation with Time-dependent

Coefficients and Inner Absorption Term Under Nonlinear Boundary Flux

Suping Xiao and Zhong Bo Fang*

Abstract. This paper deals with blow-up phenomena for an initial boundary value

problem of a porous medium equation with time-dependent coefficients and inner

absorption term in a bounded star-shaped region under nonlinear boundary flux. Us-

ing the auxiliary function method and modified differential inequality technique, we

establish some conditions on time-dependent coefficient and nonlinear functions to

guarantee that the solution u(x, t) exists globally or blows up at some finite time t∗.

Moreover, the upper and lower bounds for t∗ are derived in the higher dimensional

space. Finally, some examples are presented to illustrate applications of our results.

1. Introduction

Our main interest lies in the following porous medium equation with time-dependent

coefficient and inner absorption term

(1.1) ut = ∆um − k(t)f(u), (x, t) ∈ Ω× (0, t∗),

subject to the nonlinear Neumann boundary and initial conditions

∂um

∂ν
= g(u), (x, t) ∈ ∂Ω× (0, t∗),(1.2)

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,(1.3)

where Ω ⊂ RN (N ≥ 2) is a bounded star-shaped region with smooth boundary ∂Ω and

ν is the unit outward normal vector on ∂Ω, m ≥ 1. The coefficient k(t) is a nonnegative

differentiable function, t∗ is a possible blow-up time when blow-up occurs, otherwise t∗ =

+∞. The nonlinear functions f(u) and g(u) are nonnegative continuous functions which

satisfy some appropriate conditions, and the initial data u0(x) is a nonnegative C1-function

which satisfies a compatibility condition. By the degenerate parabolic theory, one can

deduce that the local weak solution of (1.1)–(1.3) exists uniquely and is nonnegative,
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see [1, 6]. Moreover, for convenience, we may assume that the appropriate weak solution

is smooth, and no longer consider approximation problem.

Equation (1.1) describes the diffusion of concentration of some Newtonian fluids via

porous medium or the density of some biological species in many physical phenomena and

biological species theories. It has been known that the nonlocal source term presents a

more realistic model for population dynamics, see [2,13]. In the nonlinear diffusion theory,

there exist obvious differences among the situations of slow (m > 1), fast (0 < m < 1),

and linear (m = 1) diffusions. For example, there is a finite speed propagation in the

slow and linear diffusion situations, whereas an infinite speed propagation exists in the

fast diffusion situation. The nonlinear boundary flux (1.2) can be physically interpreted

as the nonlinear radial law, see [11].

In the past decades, there have been many works dealing with existence and nonex-

istence of global solutions, blow-up of solutions, bounds for blow-up time, blow-up rates,

blow-up sets, and asymptotic behavior of the solutions to nonlinear parabolic equations,

refer to [1, 3, 6, 12, 21]. Roughly, it has been seen that existence of global and nonglobal

solutions and behavior of the solutions to parabolic equations depend on nonlinearity,

dimension, initial data, and nonlinear boundary flux. In this paper, we are particularly

interested in the topic about the upper and lower bounds for the blow-up time of the blow-

up solution of parabolic equation. A variety of methods have been used to determine the

blow-up of solutions and to indicate an upper bound for the blow-up time (see [15] and

the references therein). However, lower bounds for blow-up time may be harder to be

determined. Recently, the study of the lower bound estimate for the blow-up time of

the blow-up solutions also makes some new progress. For the studies on initial bound-

ary problems of semilinear parabolic equation with constant-dependent coefficients under

nonlinear boundary flux, Payne and Schaefer [20] studied initial boundary value problems

of linear heat equation

ut = ∆u, (x, t) ∈ Ω× (0, t∗).

Under the suitable conditions on the nonlinearities, they determined a lower bound on the

blow-up time in R3 when blow-up occurs. In addition, a sufficient condition which implies

that blow-up does occur was determined and an upper bound for t∗ was derived. Payne

et al. [19] studied the semilinear parabolic equation with inner absorption term

ut = ∆u− f(u), (x, t) ∈ Ω× (0, t∗),

under the nonlinear Neumann boundary condition, where Ω is a bounded star-shaped

region in RN (N ≥ 2) with smooth boundary ∂Ω. By virtue of a differential inequal-

ity technique, they introduced some appropriate conditions on nonlinearities sufficient to

guarantee u(x, t) exists for all time t > 0 or blows up at some finite time t∗. Moreover,
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an upper bound for t∗ was derived. Under somewhat more restrictive conditions, a lower

bound for t∗ was derived in R3 when blow-up occurs. Recently, Baghaei et al. [4] in-

vestigated the following nonlinear divergence form of semilinear parabolic equation with

absorption term and nonlinear boundary source

ut =
N∑

i,j=1

(
aij(x)uxi

)
xj
− f(u), (x, t) ∈ Ω× (0, t∗),

and obtained a lower bound for the blow-up time in the high-dimensional space. Hu et

al. [14] studied the slow diffusion equation with inner absorption terms

ut = ∆um − f(u), (x, t) ∈ Ω× (0, T )

under the nonlinear Neumann boundary condition. Under the suitable conditions, they

established a lower bound of blow-up time in three-dimensional space. In [7], Enache

considered the quasilinear parabolic equation with source term

ut = (g(u),i),i + f(u), (x, t) ∈ Ω× (0, t∗),

where Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary ∂Ω, and nonlinear

terms f(u) and g(u) satisfy some appropriate conditions. Using a first-order differential

inequality technique, they introduced some sufficient conditions to guarantee that the

solution exists globally or blows up and estimated a lower bound for the blow-up time in

R3 under Robin boundary condition. To see some studies on porous medium equations

with nonlocal source under null Dirichlet and Neumann boundary conditions in three-

dimensional space and on p-Laplacian parabolic equations under nonlinear boundary flux,

refer to [8, 9, 17].

For the studies on initial boundary problems of parabolic equation with time-dependent

coefficients under nonlinear boundary flux, Fang and Wang [10] investigated the divergence

form of a parabolic equation with time-dependent coefficient and inner absorption term

ut =

N∑
i,j=1

(
aij(x)uxi

)
xj
− k(t)f(u), (x, t) ∈ Ω× (0, t∗),

under nonlinear boundary flux, where Ω ⊂ RN (N ≥ 2) is a bounded star-shaped region

with smooth boundary ∂Ω. They established some conditions on nonlinear terms f(u),

g(u) and initial data which guarantee blow-up or global existence of the solutions and

derived an upper bound of the blow-up time. They also obtained a lower bound of blow-

up time under more restrictive conditions. Recently, Liu and Fang [16] promoted this

conclusion to quasilinear case. For the studies on quasilinear problems under homogeneous

Dirichlet boundary condition, refer to [18].
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In view of the works mentioned above, one can find that research on the blow-up

phenomena of the solutions to porous medium equations with absorption terms having

time-dependent coefficients under nonlinear boundary flux has not been started yet. A

difficulty lies in finding an influence of k(t) and a competitive relationship between dif-

fusion, inner absorption and boundary source in determining blow-up of the solutions.

Particularly, in contrast to other quasilinear problems, dealing with quasilinear diffusion

terms ∆um in a porous media model (1.1) has some difficulties. By virtue of the modified

differential inequality technique, we establish some conditions on time-dependent coeffi-

cient and nonlinear functions to guarantee that the solution u(x, t) exists globally or blows

up at some finite time t∗, and we also derive the lower and upper bounds for t∗ in the

higher dimensional space.

The rest of our paper is organized as follows. In Sections 2 and 3, we establish some

conditions on k(t), f(u), and g(u) to guarantee that the solution u(x, t) exists globally or

blows up in finite time t∗, and then obtain an upper bound for t∗. A lower bound of t∗

is derived in Section 4. Finally, some examples are presented to illustrate applications of

our results.

2. The global existence

In this section, we establish some conditions on k(t) and the nonlinear functions f and g

to guarantee the existence of global solution. In order to prove our result, we first recall

a lemma in [10] and state it as follows:

Lemma 2.1. [10] Suppose that Ω is a bounded star-shaped region in RN and N ≥ 2.

Then for any nonnegative C1-function u and constant n > 0, we have the inequality∫
∂Ω
un dS ≤ N

ρ0

∫
Ω
un dx+

nd

ρ0

∫
Ω
un−1|∇u| dx,

where

ρ0 = min
x∈∂Ω

(x · ν), d = max
x∈Ω
|x|.

Theorem 2.2. Suppose that the nonnegative functions f(u) and g(u) satisfy

f(ξ) ≥ k1ξ
p, ξ ≥ 0,(2.1)

g(ξ) ≤ k2ξ
q, ξ ≥ 0,(2.2)

where k1 > 0, k2 ≥ 0, q > m, p+m > 2q and

(2.3) k(t) > 0,
k′(t)

k(t)
≤ −r1, t > 0

for a positive constant r1. Then the (nonnegative) solution u(x, t) of problem (1.1)–(1.3)

does not blow up; that is, u(x, t) exists for all t > 0.
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Remark 2.3. From the conditions q > m and p + m > 2q in Theorem 2.2, one can easily

obtain that p > q.

Proof. Set

φ(t) := k(t)

∫
Ω
u2 dx.

We first show that φ is not an increasing function. To this end, we compute the derivative

φ′(t) = k′(t)

∫
Ω
u2 dx+ 2k(t)

∫
Ω
uut dx

= k′(t)

∫
Ω
u2 dx+ 2k(t)

∫
Ω
u∆um dx− 2k2(t)

∫
Ω
uf(u) dx.

Making use of (2.1)–(2.3) and the divergence theorem, we have the inequality

(2.4) φ′(t) ≤ −r1φ+2k(t)k2

∫
∂Ω
uq+1 dS−2mk(t)

∫
Ω
um−1|∇u|2 dx−2k2(t)k1

∫
Ω
up+1 dx.

By Lemma 2.1, one can have the inequality

(2.5)

∫
∂Ω
uq+1 dS ≤ N

ρ0

∫
Ω
uq+1 dx+

(q + 1)d

ρ0

∫
Ω
uq|∇u| dx,

and if Ω is with respect to x0, x0 6= 0, by using the technique of translation in Lemma 2.1,

and setting

ρ0 = min
x∈∂Ω

((x− x0) · ν) , d = max
x∈Ω
|x− x0|,

we can get (2.5) easily. It follows from Schwarz’s and Young’s inequalities that∫
Ω
uq|∇u| dx ≤

(∫
Ω
um−1|∇u|2 dx

)1/2(∫
Ω
u2q−m+1 dx

)1/2

≤ 1

2ε1

∫
Ω
um−1|∇u|2 dx+

ε1

2

∫
Ω
u2q−m+1 dx,

(2.6)

where ε1 is a positive constant to be determined later. Substituting (2.5) and (2.6) into

(2.4), we get the inequality

φ′(t) ≤ −r1φ+
2Nk2

ρ0
k(t)

∫
Ω
uq+1 dx+

k2d(q + 1)ε1

ρ0
k(t)

∫
Ω
u2q−m+1 dx

+

(
k2d(q + 1)

ρ0ε1
− 2m

)
k(t)

∫
Ω
um−1|∇u|2 dx− 2k1k

2(t)

∫
Ω
up+1 dx.

Selecting
k2d(q + 1)

ρ0ε1
− 2m = 0,
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then we have ε1 = k2d(q + 1)/(2mρ0) and obtain the inequality

φ′(t) ≤ −r1φ+
2Nk2

ρ0
k(t)

∫
Ω
uq+1 dx+

k2d(q + 1)ε1

ρ0
k(t)

∫
Ω
u2q−m+1 dx

− 2k1k
2(t)

∫
Ω
up+1 dx.

(2.7)

We now focus our attention on k(t)
∫

Ω u
2q−m+1 dx. From Hölder’s inequality, we can have

the inequality

k(t)

∫
Ω
u2q−m+1 dx ≤

(
k(t)

∫
Ω
up+1 dx

)1−α1
(
k(t)

∫
Ω
uq+1 dx

)α1

,

where α1 = (p+m− 2q)/(p− q) ∈ (0, 1). Furthermore, we can obtain the inequalities

k(t)

∫
Ω
u2q−m+1 dx ≤

[
ε2k(t)

∫
Ω
up+1 dx

]1−α1
[
ε

(α1−1)/α1

2 k(t)

∫
Ω
uq+1 dx

]α1

≤ (1− α1)ε2k(t)

∫
Ω
up+1 dx+ α1ε

(α1−1)/α1

2 k(t)

∫
Ω
uq+1 dx

(2.8)

for arbitrary ε2 > 0 by the arithmetic and geometric inequality

asb1−s ≤ as+ b(1− s) for a, b > 0, 0 < s < 1.

Substituting (2.8) into (2.7) yields the inequalities

φ′(t) ≤ −r1φ+
2k2N

ρ0
k(t)

∫
Ω
uq+1 dx− 2k1k

2(t)

∫
Ω
up+1 dx

+
k2(q + 1)dε1

ρ0

[
(1− α1)ε2k(t)

∫
Ω
up+1 dx+ α1ε

(α1−1)/α1

2 k(t)

∫
Ω
uq+1 dx

]
≤M1k(t)

∫
Ω
uq+1 dx−M2k(t)

∫
Ω
up+1 dx,

(2.9)

where

M1 =
2k2N

ρ0
+
k2(q + 1)dε1

ρ0
α1ε

(α1−1)/α1

2 > 0,

M2 = 2k1k(t)− k2(q + 1)dε1

ρ0
(1− α1)ε2,

and ε2 > 0 is a sufficiently small constant so that M2 > 0. Applying Hölder’s inequality

to the second term on the right-hand side of (2.9), we get

(2.10)

∫
Ω
uq+1 dx ≤

(∫
Ω
up+1 dx

)(q+1)/(p+1)

|Ω|(p−q)/(p+1),
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where |Ω| =
∫

Ω dx is the N -volume of Ω. Inserting (2.10) into (2.9), we have

φ′(t) ≤M1k(t)|Ω|(p−q)/(p+1)

(∫
Ω
up+1 dx

)(q+1)/(p+1)

−M2k(t)

∫
Ω
up+1 dx

= M1|Ω|(p−q)/(p+1)k(t)

(∫
Ω
up+1 dx

)(q+1)/(p+1)

×

[
1− |Ω|(q−p)/(p+1)M2

M1

(∫
Ω
up+1 dx

)(p−q)/(p+1)
]
.

(2.11)

By using Hölder’s inequality, we can have the inequality

φ(t) = k(t)

∫
Ω
u2 dx ≤ k(t)

(∫
Ω
up+1 dx

)2/(p+1)

|Ω|(p−1)/(p+1),

i.e.,

(2.12)

∫
Ω
up+1 dx ≥

[
|Ω|(1−p)/(p+1)k−1(t)φ(t)

](p+1)/2
.

It follows from (2.11) and (2.12) that

φ′(t) ≤M1|Ω|(p−q)/(p+1)k(t)

(∫
Ω
up+1 dx

)(q+1)/(p+1)

×
[
1− |Ω|(q−p)/2M2

M1
k(q−p)/2(t)φ(p−q)/2

](2.13)

with (p − q)/2 > 0. Since k′(t)/k(t) ≤ −r1 and the positive coefficient k(t) is a nonin-

creasing function, one can conclude from (2.13) that φ(t) is bounded for all t > 0 under

the conditions in Theorem 2.2. In fact, if u(x, t) blows up at finite time t∗, then φ(t) is

unbounded near t∗, which forces φ′(t) ≤ 0 in some interval [t0, t
∗), and hence, we have

φ(t) ≤ φ(t0) in [t0, t
∗), which implies that φ(t) is bounded in [t0, t

∗). This is a contradic-

tion. Therefore, u(x, t) exists for all t > 0, which completes the proof.

Remark 2.4. The proof is suitable for the process of m > 0.

For the special case q = 1, 0 < m < 1, one can obtain the same result under slightly

different conditions.

Theorem 2.5. Suppose that the nonlinear functions f(u) and g(u) satisfy (2.1) and (2.2)

in Theorem 2.2 with constants k1 > 0, k2 ≥ 0, q = 1, p+m > 2 and

k(t) > 0,
k′(t)

k(t)
≤ r2, t > 0,

where r2 is a nonnegative constant. Then the (nonnegative) solution u(x, t) of prob-

lem (1.1)–(1.3) does not blow up; that is, u(x, t) exists for all t > 0.
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Proof. Set

φ1(t) := (k(t))µ
∫

Ω
uσ dx,

where µ > 0, σ > 3−m. By using similar arguments as used in the proof of Theorem 2.2,

we can have the inequality

φ′1(t) = µ
k′(t)

k(t)
φ1 + σ(k(t))µ

∫
Ω
uσ−1ut dx

= µ
k′(t)

k(t)
φ1 + σ(k(t))µ

∫
Ω
uσ−1 [∆um − k(t)f(u)] dx

≤ µr2φ1 + σk2(k(t))µ
∫
∂Ω
uσ dS − k1σ(k(t))µ+1

∫
Ω
uσ+p−1 dx

−mσ(σ − 1)(k(t))µ
∫

Ω
um+σ−3|∇u|2 dx.

(2.14)

By Lemma 2.1, one can have the inequality

(2.15)

∫
∂Ω
uσ dS ≤ N

ρ0

∫
Ω
uσ dx+

σd

ρ0

∫
Ω
uσ−1|∇u| dx,

and if Ω is with respect to x0, x0 6= 0, by using the technique of translation in Lemma 2.1,

and setting

ρ0 = min
x∈∂Ω

((x− x0) · ν) , d = max
x∈Ω
|x− x0|,

we can get (2.15) easily. Let us consider the second term on the right-hand side of (2.15).

By Hölder’s inequality and Young’s inequality, we can obtain the inequalities∫
Ω
uσ−1|∇u| dx ≤

(∫
Ω
uσ+m−3|∇u|2 dx

)1/2(∫
Ω
uσ−m+1 dx

)1/2

≤ 1

2ε3

∫
Ω
uσ+m−3|∇u|2 dx+

ε3

2

∫
Ω
uσ−m+1 dx,

(2.16)

where ε3 is a positive constant to be determined later. Combining (2.14), (2.15) with

(2.16) and taking ε3 = k2σd/[2mρ0(σ − 1)], we get the inequality

φ′1(t) ≤
(
µr2 +

σNk2

ρ0

)
φ1 +

k2σ
2dε3

2ρ0
(k(t))µ

∫
Ω
uσ−m+1 dx

− k1σ(k(t))µ+1

∫
Ω
uσ+p−1 dx.

(2.17)

We now focus our attention on (k(t))µ
∫

Ω u
σ−m+1 dx. From Hölder’s inequality, we can

have the inequality

(k(t))µ
∫

Ω
uσ−m+1 dx ≤

[
(k(t))µ

∫
Ω
uσ dx

]α2
[
(k(t))µ

∫
Ω
uσ+p−1 dx

]1−α2

,
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where α2 = (m+ p− 2)/(p− 1) ∈ (0, 1). We can use Young’s inequalities and get

(2.18) (k(t))µ
∫

Ω
uσ−m+1 dx ≤ α2ε4φ1 + (1− α2)ε

α2/(α2−1)
4 (k(t))µ

∫
Ω
uσ+p−1 dx

for arbitrary ε4 > 0. Substituting (2.18) into (2.17), we have

φ′1(t) ≤
(
µr2 +

σNk2

ρ0

)
φ1 − k1σ(k(t))µ+1

∫
Ω
uσ+p−1 dx

+
k2σ

2dε3

2ρ0

[
α2ε4φ1 + (1− α2)ε

α2/(α2−1)
4 (k(t))µ

∫
Ω
uσ+p−1 dx

]
= C1φ1 − C2(k(t))µ

∫
Ω
uσ+p−1 dx,

(2.19)

where

C1 = µr2 +
σNk2

ρ0
+
k2dσ

2α2ε3ε4

2ρ0
> 0,

C2 = k1σk(t)− k2σ
2dε3

2ρ0
(1− α2)ε

α2/(α2−1)
4 ,

and ε4 > 0 is a sufficiently small constant so that C2 > 0. Applying Hölder’s inequality

to the second term on the right-hand side of (2.19), we get

(2.20) (k(t))µ
∫

Ω
uσ+p−1 dx ≥ φ(σ+p−1)/σ

1 (|Ω|(k(t))µ)(1−p)/σ ,

where |Ω| =
∫

Ω dx is the N -volume of Ω. Inserting (2.20) into (2.19), we have

φ′1(t) ≤ C1φ1

[
1− C2

C1
|Ω|(1−p)/σ(k(t))µ(1−p)/σφ

(p−1)/σ
1

]
.

By an analogous analysis as in the proof of Theorem 2.2, one can easily conclude that the

solution u(x, t) exists for all t > 0, which completes the proof.

3. Upper bound of blow-up time t∗

In this section, Ω needs not to be star-sharped. We assume some conditions to assure that

the solution u(x, t) of (1.1)–(1.3) blows up at finite time t∗ and derive an upper bound for

T . The result can be summarized as follows:

Theorem 3.1. Suppose that Ω is a bounded region in RN (N ≥ 2) with smooth boundary

∂Ω and u(x, t) is a nonnegative solution of problem (1.1)–(1.3), and assume that the

nonnegative integrable functions f(u) and g(u) satisfy the conditions

ξf(ξ) ≤ 2(1 + α)F (ξ), ξ ≥ 0,(3.1)

ξg(ξ) ≥ 2(1 + β)G(ξ), ξ ≥ 0,(3.2)
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where

F (ξ) :=

∫ ξ

0
f(η) dη, G(ξ) :=

∫ ξ

0
g(η) dη,(3.3)

0 ≤ α ≤ β.(3.4)

Let

ψ(t) := 2

∫
∂Ω
G(u) dS − 4m

(m+ 1)2

∫
Ω

∣∣∣∇u(m+1)/2
∣∣∣2 dx− 2k(t)

∫
Ω
F (u) dx,

ψ(0) > 0,

(3.5)

and

(3.6) k(t) > 0,
k′(t)

k(t)
≤ −r3, t > 0

for a positive constant r3.

Then the solution u(x, t) of problem (1.1)–(1.3) blows up at some finite time t∗ ≤ T

with

T =
χ(0)

2β(1 + β)ψ(0)
, β > 0,

where χ(t) :=
∫

Ω u
2 dx and χ(0) > 0. If β = 0, then u(x, t) blows up at infinite time.

Remark 3.2. If we take the local term f(ξ) ≤ k1ξ
p with p ≤ 2α+ 1 and g(ξ) ≥ k2ξ

q with

q ≥ 2β + 1, then the functions f and g satisfy the conditions (3.1) and (3.2).

Proof. In order to prove that the solution blows up in finite time under the assumption

of Theorem 3.1. When β > 0, we first assume the solution u(x, t) is global to get a

contradiction. In this way, the auxiliary function χ(t) is bounded for all t > 0. We

compute the derivative

χ′(t) = 2

∫
Ω
uut dx = 2

∫
Ω
u [∆um − k(t)f(u)] dx

= 2

∫
Ω
u∆um dx− 2k(t)

∫
Ω
uf(u) dx.

By using hypotheses (3.1)–(3.5) given in Theorem 3.1, one can see that

χ′(t) = 2

∫
∂Ω

u
∂um

∂ν
dS − 2

∫
Ω

∇u∇um dx− 2k(t)

∫
Ω

uf(u) dx

≥ 4(1 + β)

∫
∂Ω

G(u) dS − 2(1 + β)

∫
Ω

4m

(m+ 1)2

∣∣∣∇u(m+1)/2
∣∣∣2 dx

− 4(1 + α)k(t)

∫
Ω

F (u) dx

≥ 2(1 + β)

[
2

∫
∂Ω

G(u) dS − 4m

(m+ 1)2

∫
Ω

∣∣∣∇u(m+1)/2
∣∣∣2 dx− 2k(t)

∫
Ω

F (u) dx

]
= 2(1 + β)ψ(t).

(3.7)
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Computing the derivative of ψ(t), it can be seen that

ψ′(t) = 2

∫
∂Ω

g(u)ut dS −
4m

(m+ 1)2

∫
Ω

(∣∣∣∇u(m+1)/2
∣∣∣2)

t

dx

− 2k(t)

∫
Ω

f(u)ut dx− 2k′(t)

∫
Ω

F (u) dx

= 2

∫
∂Ω

g(u)ut dS − 2

∫
Ω

∇um∇ut dx− 2k(t)

∫
Ω

f(u)ut dx− 2k′(t)

∫
Ω

F (u) dx

= 2

∫
Ω

ut [∆um − k(t)f(u)] dx− 2k′(t)

∫
Ω

F (u) dx

≥ 2

∫
Ω

u2
t dx+ 2r3k(t)

∫
Ω

F (u) dx ≥ 2

∫
Ω

u2
t dx ≥ 0,

(3.8)

which implies ψ(t) > 0 for all t ∈ (0, t∗), since ψ(0) > 0.

Making use of the Schwarz’s inequality and (3.8), we can have the inequalities

(3.9) (χ′(t))2 = 4

(∫
Ω
uut dx

)2

≤ 4

∫
Ω
u2 dx

∫
Ω
u2
t dx ≤ 2χ(t)ψ′(t).

By (3.7) and (3.9), we can deduce

χ(t)ψ′(t) ≥ 1

2
(χ′(t))2 ≥ (1 + β)χ′(t)ψ(t),

i.e.,

(3.10)
(
ψχ−(1+β)

)′
≥ 0.

By ψ(0) > 0, ψ(t) > 0, χ(0) > 0 and (3.7), we get

χ(t) > 0, t ≥ 0.

Integrating (3.10) over [0, t], one can see that

(3.11) ψ(t)χ−(1+β)(t) ≥ ψ(0)χ−(1+β)(0) =: M > 0.

It follows from (3.7) and (3.11) that

(3.12) χ′(t) ≥ 2(1 + β)ψ(t) ≥ 2M(1 + β)χ1+β(t).

Now, integrating (3.12) we have the following inequality

(3.13) χ−β(t) ≤ χ−β(0)− 2β(1 + β)Mt.

Obviously, (3.13) cannot hold for all time t, which is a contradiction. Hence the solution

u(x, t) blows up in finite time. Therefore, (3.13) leads to

t∗ ≤ T =
χ(0)

2β(1 + β)ψ(0)
, ∀β > 0.
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If β = 0, we have the inequalities

(ψχ−1)′ ≥ 0, χ′(t) ≥ 2Mχ(t), χ(t) ≥ e2Mtχ(0),

which is valid for all t > 0, implying that the solution u(x, t) blows up at infinite time.

This completes the proof.

Remark 3.3. If the condition (3.6) in Theorem 3.1 is replaced by the following condition:

(3.14) k(t) < 0, 0 <
k′(t)

k(t)
≤ r4, t > 0, r4 > 0,

then we can easily obtain similar results as the ones in Theorem 3.1. In fact, (3.14) implies

k′(t) < 0 and (3.8) becomes

ψ′(t) ≥ 2

∫
Ω
u2
t dx− 2k′(t)

∫
Ω
F (u) dx ≥ 2

∫
Ω
u2
t dx ≥ 0.

4. Lower bounds for t∗

In this section, the domain Ω ⊂ RN (N ≥ 3) needs to be a convex bounded domain

with smooth boundary. Moreover, we make some appropriate assumptions on nonlinear

functions f(u), g(u) and k(t) to seek a lower bound for blow-up time t∗. We state our

result below.

Theorem 4.1. Suppose that u(x, t) is the nonnegative solution of problem (1.1)–(1.3),

u(x, t) blows up at t∗, and assume that the nonnegative functions f(u) and g(u) satisfy

(2.1) and (2.2), where k1 > 0, k2 > 0, p > m and

(4.1) k(t) ≥ r5, t > 0, r5 > 0.

Define a function

ϕ(t) :=

∫
Ω
uθ dx,

where θ is a parameter such that

θ > max

{
4(2q −m− 1)(N − 2)− (m− 1)N

2
,m

}
If 2q > m+ p, q > p, then the blow-up time t∗ is bounded below, i.e.,

t∗ ≥ T0 =

∫ ∞
ϕ(0)

dϕ

A1 +A2ϕ3(N−2)/(3N−8)
.

If 2q = m+ p, then the blow-up time t∗ is bounded below, i.e.,

t∗ ≥ T1 =

∫ ∞
ϕ(0)

dϕ

B1 +B2ϕ+B3ϕ3(N−2)/(3N−8)
,

where ϕ(0) =
∫

Ω u
θ
0 dx, and A1, A2, B1, B2 and B3 are positive constants to be determined

later.
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Remark 4.2. From the conditions p > m ≥ 1 and 2q ≥ m + p in Theorem 4.1, one can

easily obtain that 2q > m+ 1 and q > m.

Proof. Let v = um, so

(v1/m)t = ∆v − k(t)f(v1/m), (x, t) ∈ Ω× (0, t∗),(4.2)

∂v

∂ν
= g(v1/m), (x, t) ∈ ∂Ω× (0, t∗),(4.3)

v1/m(x, 0) = u
1/m
0 (x) ≥ 0, x ∈ Ω,

and ϕ(t) =
∫

Ω(v1/m)θ dx. Computing the derivative of ϕ(t) and using (4.2), (4.3), (2.1),

(2.2) and (4.1), we get

ϕ′(t) = θ

∫
Ω

(v1/m)θ−1(v1/m)t dx = θ

∫
Ω

(v1/m)θ−1
[
∆v − k(t)f(v1/m)

]
dx

≤ θk2

∫
∂Ω
v(θ+q−1)/m dS − θθ − 1

m

∫
Ω
v(θ−1)/m−1|∇v|2 dx

− θk1r5

∫
Ω
v(θ−1)/mvp/m dx

= θk2

∫
∂Ω
v(θ+q−1)/m dS − 4mθ(θ − 1)

(m+ θ − 1)2

∫
Ω

∣∣∣∇v(m+θ−1)/(2m)
∣∣∣2 dx

− θk1r5

∫
Ω
v(θ+p−1)/m dx.

(4.4)

By Lemma 2.1, we have

(4.5)

∫
∂Ω
v(θ+q−1)/m dS ≤ N

ρ0

∫
Ω
v(θ+q−1)/m dx+

(θ + q − 1)d

mρ0

∫
Ω
v(θ+q−1)/m−1|∇v| dx,

and if Ω is with respect to x0, x0 6= 0, by using the technique of translation in Lemma 2.1

and setting

ρ0 = min
x∈∂Ω

((x− x0) · ν) , d = max
x∈Ω
|x− x0|,

we can get (4.5) easily. Applying Hölder’s and Young’s inequalities to the second term on

the right-hand side of (4.5), we get

(θ + q − 1)d

mρ0

∫
Ω
v(θ+q−1)/m−1|∇v| dx

≤
[

(θ + q − 1)2d2

m2ρ2
0

∫
Ω
v(θ+2q−m−1)/m dx

]1/2 [∫
Ω
v(θ−m−1)/m|∇v|2 dx

]1/2

≤ 2m2ε5

(θ +m− 1)2

∫
Ω

∣∣∣∇v(m+θ−1)/(2m)
∣∣∣2 dx+

(θ + q − 1)2d2

2ε5m2ρ2
0

∫
Ω
v(θ+2q−m−1)/m dx,

(4.6)

where ε5 is a positive constant to be determined later. For the first term on the right-hand

side of (4.5), we make two situation to discuss.
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(1) If 2q > p+m, making use of Hölder’s and Young’s inequalities, we have∫
Ω
v(θ+q−1)/m dx ≤

(∫
Ω
v(θ+2q−m−1)/m dx

)1−α3
(∫

Ω
v(θ+p−1)/m dx

)α3

≤ α3ε6

∫
Ω
v(θ+p−1)/m dx

+ (1− α3)ε
α3/(α3−1)
6

∫
Ω
v(θ+2q−m−1)/m dx,

(4.7)

where α3 = (q −m)/(2q −m− p) ∈ (0, 1), and ε6 is a positive constant to be determined

later. From (4.4)–(4.7), we get the inequality

ϕ′(t) ≤
(
Nθk2

ρ0
α3ε6 − θk1r5

)∫
Ω
v(θ+p−1)/m dx

+ θk2

[
N(1− α3)

ρ0
ε
α3/(α3−1)
6 +

(θ + q − 1)2d2

2ε5m2ρ2
0

] ∫
Ω
v(θ+2q−m−1)/m dx

+
2m2ε5θk2 − 4mθ(θ − 1)

(m+ θ − 1)2

∫
Ω

∣∣∣∇v(m+θ−1)/(2m)
∣∣∣2 dx.

(4.8)

By Young’s inequality, we get

(4.9)

∫
Ω
v(θ+2q−m−1)/m dx ≤ α4

∫
Ω
v

(4θ+m−1)N−6θ
4m(N−2) dx+ (1− α4)|Ω|,

where α4 = 4(θ+2q−m−1)(N−2)
(4θ+m−1)N−6θ ∈ (0, 1). Applying Schwarz’s inequality to the first term on

the right-hand side of (4.9), we have∫
Ω
v

(4θ+m−1)N−6θ
4m(N−2) dx ≤

(∫
Ω
vθ/m dx

)1/2(∫
Ω
v

(2θ+m−1)N−2θ
2m(N−2) dx

)1/2

≤
(∫

Ω
vθ/m dx

)3/4(∫
Ω
v
θ+m−1

2m
2N
N−2 dx

)1/4

.

(4.10)

To estimate the bound of
∫

Ω v
θ+m−1

2m
2N
N−2 dx, we use the following Sobolev inequality (N ≥

3) given in [5]: ∥∥∥uθ∥∥∥
L2N/(N−2)(Ω)

≤ Cs
∥∥∥uθ∥∥∥

W 1,2(Ω)
,

where Cs is a constant depending on Ω and N , i.e.,∥∥∥v(m+θ−1)/(2m)
∥∥∥N/[2(N−2)]

L2N/(N−2)(Ω)

≤ (Cs)
N/[2(N−2)]

∥∥∥v(m+θ−1)/(2m)
∥∥∥N/[2(N−2)]

W 1,2(Ω)

≤ C
(∥∥∥∇v(m+θ−1)/(2m)

∥∥∥N/[2(N−2)]

L2(Ω)
+
∥∥∥v(m+θ−1)/(2m)

∥∥∥N/[2(N−2)]

L2(Ω)

)
,

(4.11)
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where

C =

21/2(Cs)
3/2 if N = 3,

(Cs)
N/[2(N−2)] if N > 3.

Inserting (4.11) into (4.10), we can obtain the inequality∫
Ω
v

(4θ+m−1)N−6θ
4m(N−2) dx

≤ C
(∫

Ω
vθ/m dx

)3/4(∫
Ω
v(θ+m−1)/m dx

)N/[4(N−2)]

+ C

(∫
Ω
vθ/m dx

)3/4(∫
Ω

∣∣∣∇v(θ+m−1)/(2m)
∣∣∣2 dx)N/[4(N−2)]

.

(4.12)

Now, we use Young’s inequality on the right-hand side of (4.12) and get the inequalities

C

(∫
Ω

vθ/m dx

)3/4(∫
Ω

∣∣∣∇v(m+θ−1)/(2m)
∣∣∣2 dx)N/[4(N−2)]

≤ (3N − 8)C4(N−2)/(3N−8)

4(N − 2)ε
N/(3N−8)
8

(∫
Ω

vθ/m dx

)3(N−2)/(3N−8)

+
Nε8

4(N − 2)

∫
Ω

∣∣∣∇v(m+θ−1)/(2m)
∣∣∣2 dx,

C

(∫
Ω

vθ/m dx

)3/4(∫
Ω

v(θ+m−1)/m dx

)N/[4(N−2)]

≤ (3N − 8)C4(N−2)/(3N−8)

4(N − 2)ε
N/(3N−8)
9

(∫
Ω

vθ/m dx

)3(N−2)/(3N−8)

+
Nε9

4(N − 2)

∫
Ω

v(θ+m−1)/m dx,

i.e., ∫
Ω

v
(4θ+m−1)N−6θ

4m(N−2) dx

≤

(
(3N − 8)C4(N−2)/(3N−8)

4(N − 2)ε
N/(3N−8)
8

+
(3N − 8)C4(N−2)/(3N−8)

4(N − 2)ε
N/(3N−8)
9

)(∫
Ω

vθ/m dx

)3(N−2)/(3N−8)

+
Nε8

4(N − 2)

∫
Ω

∣∣∣∇v(m+θ−1)/(2m)
∣∣∣2 dx+

Nε9

4(N − 2)

∫
Ω

v(m+θ−1)/m dx,

(4.13)

where ε8, ε9 > 0 is a positive constant to be determined later. Applying Hölder’s inequality

to the second term on the right-hand side of (4.13), we can obtain the inequality

(4.14)

∫
Ω
v(m+θ−1)/m dx ≤ m+ θ − 1

θ + p− 1
ε10

∫
Ω
v(θ+p−1)/m dx+

p−m
θ + p− 1

ε
(m+θ−1)/(m−p)
10 |Ω|.

From (4.8), (4.9), (4.13), (4.14), we get the inequality

ϕ′(t) ≤ A1 +A2ϕ
3(N−2)/(3N−8) + (A3 +A4 − θk1r5)

∫
Ω
v(θ+p−1)/m dx

+ (A5 +A6)

∫
Ω

∣∣∣∇v(θ+m−1)/(2m)
∣∣∣2 dx,
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where

A1 = A7(1− α4)|Ω|+A7α4
Nε9(p−m)

4(N − 2)(θ + p− 1)
ε

(m+θ−1)/(m−p)
10 |Ω|,

A2 = A7α4

[
(3N − 8)C4(N−2)/(3N−8)

4(N − 2)ε
N/(3N−8)
8

+
(3N − 8)C4(N−2)/(3N−8)

4(N − 2)ε
N/(3N−8)
9

]
,

A3 =
Nθα3k2ε6

ρ0
,

A4 = A7α4
Nε9(m+ θ − 1)

4(N − 2)(θ + p− 1)
ε10,

A5 = A7α4
Nε8

4(N − 2)
,

A6 =
2m2ε5θk2 − 4mθ(θ − 1)

(θ +m− 1)2
,

A7 = θk2

[
N(1− α3)

ρ0
ε
α3/(α3−1)
6 +

(θ + q − 1)2d2

2ε5m2ρ2
0

]
.

Choosing appropriate ε5, ε6, ε8, ε9, ε10 > 0, so that

A3 +A4 − θk1r5 = 0, A5 +A6 = 0,

we can have the inequality

(4.15) ϕ′(t) ≤ A1 +A2ϕ
3(N−2)/(3N−8).

Integrating (4.15) from 0 to t∗, we get

t∗ ≥ T0 =

∫ +∞

ϕ(0)

dϕ

A1 +A2ϕ3(N−2)/(3N−8)
.

(2) If 2q = p+m, making use of Hölder’s and Young’s inequalities, we can derive∫
Ω
v(θ+q−1)/m dx ≤

(∫
Ω
v(θ+2q−m−1)/m dx

)1−α5
(∫

Ω
vθ/m dx

)α5

≤ α5ε7

∫
Ω
vθ/m dx+ (1− α5)ε

α5/(α5−1)
7

∫
Ω
v(θ+2q−m−1)/m dx,

(4.16)

where α5 = (q−m)/(2q−m−1) ∈ (0, 1), and ε7 > 0 is a positive constant to be determined

later. Similarly, substituting (4.5), (4.6), (4.16) into (4.4), we get

ϕ′(t) ≤ Nθk2α5ε7

ρ0

∫
Ω
vθ/m dx− θk1r5

∫
Ω
v(θ+p−1)/m dx

+ θk2

[
N(1− α5)

ρ0
ε
α5/(α5−1)
7 +

(θ + q − 1)2d2

2ε5m2ρ2
0

] ∫
Ω
v(θ+2q−m−1)/m dx

+
2m2ε5θk2 − 4mθ(θ − 1)

(m+ θ − 1)2

∫
Ω

∣∣∣∇v(m+θ−1)/(2m)
∣∣∣2 dx.

(4.17)
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By (4.9), (4.13), (4.14), (4.17), we obtain

ϕ′(t) ≤ B1 +B2ϕ+B3ϕ
3(N−2)/(3N−8) + (B4 − θk1r5)

∫
Ω
v(θ+p−1)/m dx

+ (B5 +B6)

∫
Ω

∣∣∣∇v(θ+m−1)/(2m)
∣∣∣2 dx,

where

B1 = B7(1− α4)|Ω|+B7α4
Nε9(p−m)

4(N − 2)(θ + p− 1)
ε

(m+θ−1)/(m−p)
10 |Ω|,

B2 =
Nθα5k2ε7

ρ0
,

B3 = B7α4

[
(3N − 8)C4(N−2)/(3N−8)

4(N − 2)ε
N/(3N−8)
8

+
(3N − 8)C4(N−2)/(3N−8)

4(N − 2)ε
N/(3N−8)
9

]
,

B4 = B7α4
Nε9(m+ θ − 1)

4(N − 2)(θ + p− 1)
ε10,

B5 = B7α4
Nε8

4(N − 2)
,

B6 =
2m2ε5θk2 − 4mθ(θ − 1)

(θ +m− 1)2
,

B7 = θk2

[
N(1− α5)

ρ0
ε
α5/(α5−1)
7 +

(θ + q − 1)2d2

2ε5m2ρ2
0

]
.

Choosing appropriate ε5, ε7, ε8, ε9, ε10 > 0, so that

B4 − θk1r5 = 0, B5 +B6 = 0,

we can have the inequality

(4.18) ϕ′(t) ≤ B1 +B2ϕ+B3ϕ
3(N−2)/(3N−8).

Integrating (4.18) from 0 to t∗, we get

t∗ ≥ T1 =

∫ +∞

ϕ(0)

dϕ

B1 +B2ϕ+B3ϕ3(N−2)/(3N−8)
.

This completes the proof.

5. Applications

In this section, we present two examples to demonstrate applications of Theorems 3.1 and

4.1.
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Example 5.1. Let u(x, t) be a solution of the following problem:

ut = ∆u3 − 7

4
e2−tu1/6, (x, t) ∈ Ω× (0, t∗),

∂u3

∂ν
= 6u5/2, (x, t) ∈ ∂Ω× (0, t∗),

u(x, 0) = u0(x) = (|x|+ 1)2 > 0, x ∈ Ω,

where Ω =
{
x = (x1, x2, x3) | |x|2 =

∑3
i=1 x

2
i < 1

}
. Then we have

k(t) = e2−t, f(u) =
7

4
u1/6, g(u) = 6u5/2.

Now, we set m = 3, p = 1/6, q = 5/2, α = 0 and β = 1/4. Then it is easy to verify that

(3.1)–(3.4) hold. By (3.5), one can see that

ψ(0) = 2

∫
∂Ω

∫ u0

0
6s5/2 dsdS − 3

∫
Ω
u2

0|∇u0|2 dx− 2k(0)

∫
Ω

∫ u0

0

7

4
s1/6 dsdx

= 31.4 > 0.

It follows from Theorem 3.1 that u(x, t) must blow up in finite time t∗, and we have

t∗ ≤ T =
χ(0)

2β(1 + β)ψ(0)
= 2.14,

where χ(0) =
∫

Ω u
2
0 dx = 42.

Example 5.2. Let u(x, t) be a solution of the following problem:

ut = ∆u2 − 3(t+ 4)f(u), (x, t) ∈ Ω× (0, t∗),

∂u2

∂ν
= g(u), (x, t) ∈ ∂Ω× (0, t∗),

u(x, 0) = u0(x) = |x|4 + 9.99× 10−2 > 0, x ∈ Ω,

where Ω =
{
x = (x1, x2, x3) | |x|2 =

∑3
i=1 x

2
i < (1/10)2

}
.

If 2q > m+ p, q > p, we choosing

p =
5

2
, q = 3, f(u) = 2u5/2, g(u) = 0.8u3, r5 = 10,

ε5 = ε6 = ε7 = ε10 = 1, θ = 5, ϕ(0) =

∫
Ω
u5

0 dx = 4.18× 10−8.

It can be easily seen that (4.1) hold and

ε8 = 0.076, ε9 = 0.46, A1 = 0.015, A2 = 871.

Therefore, by the first result of Theorem 4.1, we obtain

t∗ ≥ T0 =

∫ +∞

ϕ(0)

dϕ

0.015 + 871ϕ3
= 2.
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If 2q = m+ p, we choosing

p = 3, q =
5

2
, f(u) = 2u3, g(u) = 8× 10−3/2u5/2, r5 = 1,

ε5 = ε6 = ε7 = ε10 = 1, θ = 3, ϕ(0) =

∫
Ω
u5

0 dx = 4.18× 10−6.

It can be easily seen that (4.1) hold and

ε8 = 0.21, ε9 = 0.6, B1 = 0.01, B2 = 5.69, B3 = 34.38.

Therefore, by the second result of Theorem 4.1, we obtain

t∗ ≥ T1 =

∫ +∞

ϕ(0)

dϕ

0.01 + 5.69ϕ+ 34.38ϕ3
= 0.96.
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