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An Existence Result for Discrete Anisotropic Equations

Shapour Heidarkhani*, Ghasem A. Afrouzi and Shahin Moradi

Abstract. A critical point result is exploited in order to prove that a class of dis-

crete anisotropic boundary value problems possesses at least one solution under an

asymptotical behaviour of the potential of the nonlinear term at zero. Some recent

results are extended and improved. Some examples are presented to demonstrate the

applications of our main results.

1. Introduction

In this note we consider an anisotropic difference equation with Dirichlet type boundary

condition of the form

(1.1)

−∆(α(k)|∆u(k − 1)|p(k−1)−2∆u(k − 1)) = f(k, u(k)) k ∈ [1, T ],

u(0) = u(T + 1) = 0,

where T ≥ 2 is a fixed positive integer number, [1, T ] is the discrete interval {1, . . . , T} ⊂
N, u(k) ∈ R for all k ∈ [1, T ], ∆u(k − 1) = u(k) − u(k − 1) is the forward difference

operator, α : [1, T + 1] → (0,+∞), and p : [0, T ] → (1,+∞) are some fixed functions;

f : [1, T ]× R→ R is continuous function. Let

p− = min
k∈[0,T ]

p(k), p+ = max
k∈[0,T ]

p(k)

and

α− = min
k∈[1,T+1]

α(k), α+ = max
k∈[1,T+1]

α(k).

In recent years, a great deal of work has been done in the study of the existence of solutions

for discrete boundary value problems (BVPs), by which a number of physical, computer

science, mechanical engineering, control systems, artificial or biological neural networks,

phenomena are described. Recently, there is a trend to study difference equations by

using fixed point theory, lower and upper solutions method, variational methods and
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critical point theory, Morse theory and the mountain-pass theorem, and many interesting

results have been obtained, see for instance, [1, 3–8, 10, 11, 13–20, 22, 23, 25–27] and the

references therein. For example, Henderson and Thompson in [14] gave conditions on

the nonlinear term involving pairs of discrete lower and discrete upper solutions which

leaded to the existence of at least three solutions of discrete two-point boundary value

problems, and in a special case of the nonlinear term, they gave growth conditions on the

function and applied their general result to show the existence of three positive solutions.

Concerning the applications of critical point theory and variational methods, Tian et

al. in [26], investigated the existence of solutions of second-order discrete Sturm-Liouville

boundary value problem (BVPs) with a p-Laplacian. Mihăilescu et al. in [19], obtained

the existence of a continuous spectrum for a family of discrete boundary value problems.

Bonanno and Candito [3], investigated the multiplicity of solutions for nonlinear difference

equations involving the p-Laplacian. Galewski and G la̧b in [7], studied a parametric

version of the problem (1.1), in the case α ≡ 1. First, they applied the direct method of

the calculus of variations and the mountain pass theorem in order to reach the existence

of at least one nontrivial solution. Secondly, they derived some version of a discrete three

critical point theorem which they applied in order to get the existence of at least two

nontrivial solutions. Galewski and Wieteska in [10], studied the existence of solutions of a

system of anisotropic discrete boundary value problems using critical point theory, while

in [?], they derived the intervals of the numerical parameter for which the parametric

version of the problem (1.1) has at least 1, exactly 1, or at least 2 positive solutions. They

also derived some useful discrete inequalities. In [20], the existence of infinitely many

solutions for perturbed nonlinear difference equations with discrete Dirichlet boundary

conditions, was discussed. Stegliński in [25], obtained the existence of infinitely many

solutions for a parametric version the problem (1.1). In [8], a parametric version of the

problem (1.1) was studied and a new multiplicity results have been established combining,

first, the Bonanno local minimum theorem with the mountain pass theorem, next, a two

local minimum theorem of Bonanno again with the well known three critical point theorem

of Pucci and Serrin, see also [4], for a complete overview on these topics. In [13] the

existence of at least three distinct solutions for a perturbed anisotropic discrete Dirichlet

problem was studied.

Motivated by this large interest on the subject in the current literature, in the present

paper we are looking for the existence of at least one solution for the problem (1.1) and

its parametric version by employing Ricceri’s variational principle [24, Theorem 2.5]. Pre-

cisely, in Theorem 3.1 we obtain the existence of at least one solution for the problem (1.1)

requiring an algebraic condition on the nonlinear term f . We present Example 3.2 in which

the hypotheses of Theorem 3.1 are fulfilled. Also in Theorem 3.3 a parametric version of
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the result of Theorem 3.1 is successively discussed in which, for small values of the pa-

rameter and requiring an additional asymptotical behaviour of the potential at zero if

f(k, 0) = 0 for all k ∈ [1, T ], the existence of one non-trivial solution is established; see

Remark 3.7. Moreover, we deduce the existence of solutions for small positive values of

the parameter λ such that the corresponding solutions have smaller and smaller energies

as the parameter goes to zero; see Remark 3.8. Finally, some consequences of the main

results and examples are shown.

The paper is organized as follows. In Section 2, we recall some basic definitions and

our main tool, while Section 3 is devoted to main results.

2. Preliminaries

In the present paper E denotes a finite dimensional real Banach space and Iλ : E → R is

a functional satisfying the following structure hypothesis:

Iλ(u) := Φ(u)− λΨ(u) for all u ∈ E,

where λ is a positive real parameter and Φ,Ψ: E → R are two functions of class C1 on E

with Φ coercive, i.e., lim‖u‖→+∞Φ(u) = +∞.

In this framework a finite dimensional variant of celebrated Ricceri’s variational prin-

ciple [24, Theorem 2.1] is the following, see also [4, Theorems 3.3 and 3.4], where a new

proof is given in the finite dimensional setting, whenever inf Φ = Φ(0) = Ψ(0) = 0.

Theorem 2.1. For every r > infE Φ, let ϕ be the function defined as

ϕ(r) := inf
u∈Φ−1(−∞,r)

supv∈Φ−1(−∞,r) Ψ(v)−Ψ(u)

r − Φ(u)
.

Then, for every r > infE Φ and every λ ∈ (0, 1/ϕ(r)), the restriction of the functional

Iλ to Φ−1(−∞, r) admits a global minimum, which is a critical point (precisely a local

minimum) of Iλ in E.

We refer the interested reader to the papers [9, 12, 21] in which Theorem 2.1 has

been successfully get the existence of at least one non-trivial solution for boundary value

problems.

Here ‖ · ‖ stays for the norm

‖u‖ :=

(
T+1∑
k=1

|∆u(k − 1)|2
)1/2

of the T -dimensional Banach space

E := {u : [0, T + 1]→ R : u(0) = u(T + 1) = 0}.
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Put

F (k, t) :=

∫ t

0
f(k, ξ) dξ for all (k, t) ∈ [1, T ]× R.

Lemma 2.2. (a) For p− ≥ 2 and ‖u‖ ≤ 1, there exists positive constant Cp− such that

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≤ Cp−‖u‖p
−

for u ∈ E.

(b) For p+ ≥ 2 and ‖u‖ ≥ 1, there exists positive constant Cp+ such that

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≤ Cp+‖u‖p
+

for u ∈ E.

Proof. By considering [10, Lemma 5(a)(b)(c)], we have

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≤
T+1∑
k=1

|∆u(k − 1)|p− =

T+1∑
k=1

|u(k)− u(k − 1)|p−

≤
T+1∑
k=1

2p
−−1

(
|u(k)|p− + |u(k − 1)|p−

)
= C1

T∑
k=1

|u(k)|p− ≤ C1(T + 1)C2‖u‖p
−
,

where C1 and C2 are two positive constants. Choosing Cp− = C1(T + 1)C2, (a) follows.

Now using the same lemma, we obtain

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≤
T+1∑
k=1

|∆u(k − 1)|p+ =
T+1∑
k=1

|u(k)− u(k − 1)|p+

≤ 2p
+−1

(
T+1∑
k=1

|u(k)|p+ + |u(k − 1)|p+
)

= C3

T∑
k=1

|u(k)|p+ ≤ C3(T + 1)C4‖u‖p
+
,

where C3 and C4 are two positive constants, and by choosing Cp+ = C3(T + 1)C4, (b)

follows.
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3. Main results

We formulate our main result as follows:

Theorem 3.1. Assume that

(3.1) sup
γ>0

γp
−∑T

k=1 max|t|≤γ F (k, t)
>
T p
−
p+

α−
.

Then, the problem (1.1) admits at least one solution (maybe trivial) in E.

Proof. Our goal is to apply Theorem 2.1 to the problem (1.1). We consider the functionals

Φ, Ψ for every u ∈ E, defined by

(3.2) Φ(u) =

T+1∑
k=1

α(k)

p(k − 1)
|∆u(k − 1)|p(k−1)

and

(3.3) Ψ(u) =
T∑
k=1

F (k, u(k)),

and we denote I(u) = Φ(u) − Ψ(u) for every u ∈ E. We observe that the functionals

Φ and Ψ satisfy the required conditions in Theorem 2.1. It is well known that Ψ is a

differentiable functional whose differential at the point u ∈ E is

Ψ′(u)(v) =
T∑
k=1

f(k, u(k))v(k)

for every v ∈ E, as well as is sequentially weakly upper semicontinuous. Also Φ is coercive

(see [23, Lemma 2.1] and [25, Lemma 2.2]). Moreover, Φ is continuously differentiable

whose differential at the point u ∈ E is

Φ′(u)(v) =

T+1∑
k=1

α(k)|∆u(k − 1)|p(k−1)−2∆u(k − 1)∆v(k − 1)

for every v ∈ E. Furthermore, Φ is sequentially weakly lower semicontinuous. Therefore,

we observe that the regularity assumptions on Φ and Ψ, as requested in Theorem 2.1 are

verified. Taking into account that

T+1∑
k=1

∆u(k − 1)∆v(k − 1) = −
T∑
k=1

∆(∆u(k − 1))v(k) for all u, v ∈ E,
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we verify that a vector u ∈ E is a solution of the problem (1.1) if and only if u is a critical

point of the function I. We now look on the existence of a critical point of the functional

I in E. From the condition (3.1), there exists γ > 0 such that

(3.4)
γp
−∑T

k=1 max|t|≤γ F (k, t)
>
T p
−
p+

α−
.

Choose

r =
α−

T p−p+
γp
−
.

Moreover, for every u ∈ E, from the estimate Φ(u) < r implies that

T+1∑
k=1

α(k)

p(k − 1)
|∆u(k − 1)|p(k−1) < r

for all k ∈ [1, T ]. Then

|∆u(k − 1)| <
(
p(k − 1)r

α(k)

)1/[p(k−1)]

≤
(
p+r

α−

)1/p−

for all k ∈ [1, T ]. From this and since u ∈ E we deduce by easy induction

|u(k)| ≤ |∆u(k − 1)|+ |u(k − 1)| <
(
p+r

α−

)1/p−

+ |u(k − 1)|

≤ k
(
p+r

α−

)1/p−

≤ T
(
p+r

α−

)1/p−

= γ

for all k ∈ [1, T ]. From the definition of r, it follows that

Φ−1(−∞, r) = {u ∈ E : Φ(u) < r} ⊆ {u ∈ E : |u| ≤ γ}.

Therefore, we have that

Ψ(u) =
T∑
k=1

F (k, u(k)) ≤
T∑
k=1

max
|t|≤γ

F (k, t)

for every u ∈ E such that Φ(u) < r. Then

sup
Φ(u)<r

Ψ(u) ≤
T∑
k=1

max
|t|≤γ

F (k, t).

By a simple computation and from the definition of ϕ(r), since 0 ∈ Φ−1(−∞, r) and

Φ(0) = Ψ(0) = 0, one has

ϕ(r) = inf
u∈Φ−1(−∞,r)

(
supv∈Φ−1(−∞,r) Ψ(v)

)
−Ψ(u)

r − Φ(u)
≤

supv∈Φ−1(−∞,r) Ψ(v)

r

≤ T p
−
p+

α−

∑T
k=1 max|t|≤γ F (k, t)

γp
− .
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At this point, observe that

(3.5) ϕ(r) ≤ T p
−
p+

α−

∑T
k=1 max|t|≤γ F (k, t)

γp
− .

Consequently, by (3.4) and (3.5) one has ϕ(r) < 1. Hence, since 1 ∈ (0, 1/ϕ(r)), ap-

plying Theorem 2.1 the functional I admits at least one critical point (local minima)

ũ ∈ Φ−1(−∞, r). The proof is complete.

In the following, we present an example in which the hypotheses of Theorem 3.1 are

satisfied.

Example 3.2. Consider the problem

(3.6)

−∆(α(k)|∆u(k − 1)|p(k−1)−2∆u(k − 1)) = f(u) k ∈ [1, 3],

u(0) = u(4) = 0,

where α(k) = 2 + cos(π(k− 1)) for k = 1, 2, 3, 4, p(k) = 5 + ln(k+ 1) for k = 0, 1, 2, 3 and

f(t) =
1

106
(5t4 + 3et)

for every t ∈ R. By the expression of f we have

F (t) =
1

106
(t5 + 3et − 3)

for every t ∈ R. By direct calculations, we obtain p− = 5, p+ = 5 + ln(4) and α− = 1.

Since

sup
γ>0

γ5∑3
k=1 max|t|≤γ F (t)

> 35(5 + ln(4)) =
T p
−
p+

α−
,

we observe that all assumptions of Theorem 3.1 are fulfilled. Hence, Theorem 3.1 implies

that the problem (3.6), admits at least one solution in {u : [0, 4]→ R : u(0) = u(4) = 0}.

We note that Theorem 3.1 can be exploited establishing the existence of at least one

solution for the following parametric version of the problem (1.1),

(3.7)

−∆(α(k)|∆u(k − 1)|p(k−1)−2∆u(k − 1)) = λf(k, u(k)) k ∈ [1, T ],

u(0) = u(T + 1) = 0,

where λ is a positive parameter. More precisely, we have the following existence result.

Theorem 3.3. For every λ small enough, i.e.,

λ ∈

(
0,

α−

T p−p+
sup
γ>0

γp
−∑T

k=1 max|t|≤γ F (k, t)

)
,

the problem (3.7) admits at least one solution uλ ∈ E (maybe trivial).
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Proof. Fix λ as in the conclusion. Choose Φ and Ψ as given in the proof of Theorem 3.1,

and put Iλ(u) = Φ(u)− λΨ(u) for every u ∈ E. Let us pick

0 < λ <
α−

T p−p+
sup
γ>0

γp
−∑T

k=1 max|t|≤γ F (k, t)
.

Hence, there exists γ > 0 such that

λ
T p
−
p+

α−
<

γp
−∑T

k=1 max|t|≤γ F (k, t)
.

Choose r = α−

T p−p+
γp
−

. By the same notations as in the proof of Theorem 3.1, one has

ϕ(r) ≤
supv∈Φ−1(−∞,r) Ψ(v)

r
≤ T p

−
p+

α−

∑T
k=1 max|t|≤γ F (k, t)

γp
− <

1

λ
.

In other words, λ ∈ (0, 1/ϕ(r)). Thanks to Theorem 2.1, there exists uλ ∈ Φ−1(−∞, r)
such that I ′λ(uλ) = 0 and since the critical points of the functional Iλ are the solutions of

the problem (3.7) we have the conclusion.

Now, we give some remarks of our results.

Remark 3.4. Let p+ ≥ 2. In Theorem 3.3 we looked for the critical points of the functional

Iλ naturally associated with the problem (3.7). We note that, in general, Iλ can be

unbounded from below in E.

Indeed, let us take f(ξ) = |ξ|γ−p+ξp+−1 for ξ ∈ R with γ > p+. Then, from

Lemma 2.2(b), we have

Iλ(u) = Φ(u)− λ
T∑
k=1

F (u(k)) ≤
α+Cp+

p−
‖u‖p+ − λ2−γ

γ

T+1∑
k=1

|∆u(k − 1)|γ

≤
α+Cp+

p−
‖u‖p+ − λC

γ
0

γ
‖u‖γ → −∞,

where C0 = 2−γ(T + 1)(2−γ)/2 (see [10, Lemma 5(c)]), as ‖u‖ → +∞. Hence, we can

not use direct minimization to find critical points of the functional Iλ. However in this

example direct maximization provides additional solution as the argument of a maximum

as the functional is anti-coercive.

Remark 3.5. For fixed γ > 0 let γp
−∑T

k=1 max|t|≤γ F (k,t)
> T p

−
p+

α− . Then the result of Theo-

rem 3.3 holds with ‖uλ‖∞ ≤ γ is the ensured solution in E.

Remark 3.6. If in Theorem 3.1 the function f(k, ξ) ≥ 0 for every k ∈ [1, T ] and ξ ∈ R, the

condition (3.1) takes the following more simple form

(3.8) sup
γ>0

γp
−∑T

k=1 F (k, γ)
>
T p
−
p+

α−
.
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Moreover, if the following assumption holds

lim sup
γ→+∞

γp
−∑T

k=1 F (k, γ)
>
T p
−
p+

α−
,

then the condition (3.8) is automatically verified.

Remark 3.7. Let p− ≥ 2. By the similar arguments as given in the proof of [2, Theorem 3.5]

if in Theorem 3.3, f(k, 0) 6= 0 for all k ∈ [1, T ], then the ensured solution is obviously

non-trivial. On the other hand, the non-triviality of the solution can be achieved also in

the case f(k, 0) = 0 for all k ∈ [1, T ] requiring the extra condition at zero, that is there

are discrete intervals [1, T1] ⊆ [1, T ] and [1, T2] ⊂ [1, T1] where T1, T2 ≥ 2, such that

lim sup
ξ→0+

infk∈[1,T2] F (k, ξ)

|ξ|p−
= +∞

and

lim inf
ξ→0+

infk∈[1,T1] F (k, ξ)

|ξ|p−
> −∞.

Indeed, let 0 < λ < λ∗ where

λ∗ =
α−

T p−p+
sup
γ>0

γp
−∑T

k=1 max|t|≤γ F (k, t)
.

Then, there exists γ > 0 such that

λ
T p
−
p+

α−
<

γp
−∑T

k=1 max|t|≤γ F (k, t)
.

Let Φ and Ψ be as given in (3.2) and (3.3), respectively. Due to Theorem 2.1, for every

λ ∈ (0, λ) there exists a critical point of Iλ = Φ − λΨ such that uλ ∈ Φ−1(−∞, rλ)

where rλ = α−

T p−p+
γp
−

. In particular, uλ is a global minimum of the restriction of Iλ to

Φ−1(−∞, rλ). We will prove that uλ cannot be trivial. By the same arguments as given

in [8, Remark 3.4], we observe that

lim sup
‖u‖→0+

Ψ(u)

Φ(u)
= +∞.

Hence, there exists a sequence {wn} ⊂ E strongly converging to zero such that, for n large

enough, wn ∈ Φ−1(−∞, r) and

Iλ(wn) = Φ(wn)− λΨ(wn) < 0.

Since uλ is a global minimum of the restriction of Iλ to Φ−1(−∞, r), we conclude that

(3.9) Iλ(uλ) < 0,

so that uλ is not trivial.
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Remark 3.8. From (3.9) we easily observe that the map

(3.10) (0, λ∗) 3 λ 7→ Iλ(uλ)

is negative. Also, one has

lim
λ→0+

‖uλ‖ = 0.

Indeed, bearing in mind that Φ is coercive and for every λ ∈ (0, λ∗) the solution uλ ∈
Φ−1(−∞, r), one has that there exists a positive constant L such that ‖uλ‖ ≤ L for every

λ ∈ (0, λ∗). Then, there exists a positive constant N such that

(3.11)

∣∣∣∣∣
T∑
k=1

f(k, uλ(k))uλ(k)

∣∣∣∣∣ ≤ N‖uλ‖ ≤ NL
for every λ ∈ (0, λ∗). Since uλ is a critical point of Iλ, we have I ′λ(uλ)(v) = 0 for every

v ∈ E and every λ ∈ (0, λ∗). In particular I ′λ(uλ)(uλ) = 0, that is,

Φ′(uλ)(uλ) = λ
T∑
k=1

f(k, uλ(k))uλ(k)

for every λ ∈ (0, λ∗). Then, it follows

0 ≤ α−
T+1∑
k=1

|∆uλ(k − 1)|p(k−1) ≤ Φ′(uλ)(uλ) = λ

T∑
k=1

f(k, uλ(k))uλ(k)

for any λ ∈ (0, λ∗). Letting λ→ 0+, by (3.11), we get

lim
λ→0+

‖uλ‖ = 0.

Then, we have obviously the desired conclusion. Finally, we have to show that the map

λ 7→ Iλ(uλ)

is strictly decreasing in (0, λ∗). We see that for any u ∈ E, one has

(3.12) Iλ(u) = λ

(
Φ(u)

λ
−Ψ(u)

)
.

Now, let us fix 0 < λ1 < λ2 < λ∗ and let uλi be the global minimum of the functional Iλi
restricted to Φ(−∞, r) for i = 1, 2. Also, set

mλi =

(
Φ(uλi)

λi
−Ψ(uλi)

)
= inf

v∈Φ−1(−∞,r)

(
Φ(v)

λi
−Ψ(v)

)
for every i = 1, 2. Clearly, (3.10) together with (3.12) and the positivity of λ imply that

(3.13) mλi < 0 for i = 1, 2.
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Moreover

(3.14) mλ2 ≤ mλ1 ,

due to the fact that 0 < λ1 < λ2. Then, by (3.12)–(3.14) and again by the fact that

0 < λ1 < λ2, we get

Iλ2(uλ2) = λ2mλ2 ≤ λ2mλ1 < λ1mλ1 = Iλ1(uλ1),

so that the map λ 7→ Iλ(uλ) is strictly decreasing in λ ∈ (0, λ∗). The arbitrariness of

λ < λ∗ shows that λ 7→ Iλ(uλ) is strictly decreasing in (0, λ∗).

Here we give a direct application of Theorem 3.3, Remarks 3.7 and 3.8.

Example 3.9. Consider the following problem

(3.15)


−∆(α(k)|∆u(k − 1)|p(k−1)−2∆u(k − 1))

= λ
(
ε(k)|u(k)|r−2u(k) + τ(k)|u(k)|s−2u(k)

)
k ∈ [1, T ],

∆u(0) = ∆u(T + 1) = 0

where r ∈ (1, p), s ∈ (p,+∞) and ε, τ : [1, T ] → R are two continuous positive functions.

Due to Theorem 3.3 taking Remarks 3.7 and 3.8 into account, the problem (3.15) possesses

at least one non-trivial solution uλ ∈ E such that

lim
λ→0+

‖uλ‖ = 0

and the real function

λ→
T+1∑
k=1

α(k)

p(k − 1)
|∆u(k − 1)|p(k−1) − λ

T∑
k=1

F (k, u(k))

is negative and strictly decreasing in(
0,

α−

T p−p+
sup
γ>0

γp
−∑T

k=1 max|t|≤γ F (k, t)

)
.

Remark 3.10. If f is non-negative then the solution ensured in Theorem 3.3 is non-

negative. This follows directly from [11].

Remark 3.11. We observe that Theorem 3.3 is a bifurcation result in the sense that the

pair (0, 0) belongs to the closure of the set

{(uλ, λ) ∈ E × (0,+∞) : uλ is a non-trivial solution of (3.7)}

in E × R. Indeed, by Theorem 3.3 we have that

‖uλ‖ → 0 as λ→ 0.
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Hence, there exist two sequences {uj} in E and {λj} in R+ (here uj = uλj ) such that

λj → 0+ and ‖uj‖ → 0,

as j → +∞. Moreover, we emphasis that due to the fact that the map

(0, λ∗) 3 λ 7→ Iλ(uλ)

is strictly decreasing, for every λ1, λ2 ∈ (0, λ∗), with λ1 6= λ2, the solutions uλ1 and uλ2
ensured by Theorem 3.3 are different.

Now, we deduce the following straightforward consequence of Theorem 3.3. Precisely,

we consider the following autonomous problem

(3.16)

−∆(α(k)|∆u(k − 1)|p(k−1)−2∆u(k − 1)) = λf(u(k)) k ∈ [1, T ],

u(0) = u(T + 1) = 0,

where f : R→ R is a non-negative continuous function. Put

F (ξ) =

∫ ξ

0
f(t) dt for all ξ ∈ R.

Theorem 3.12. Assume that

lim
ξ→0+

F (ξ)

ξp−
= +∞.

Then, for each

λ ∈ Λ =

(
0,

α−

T p−+1p+
sup
γ>0

γp
−

F (γ)

)
,

the problem (3.16) admits at least one non-trivial solution uλ ∈ E such that

lim
λ→0+

‖uλ‖ = 0

and the real function

λ→
T+1∑
k=1

α(k)

p(k − 1)
|∆uλ(k − 1)|p(k−1) − λ

T∑
k=1

F (uλ(k))

is negative and strictly decreasing in Λ.

Now, we present the following example to illustrate Theorem 3.12.

Example 3.13. Let T = 4. We consider the problem∆(α(k)|∆u(k − 1)|p(k−1)−2∆u(k − 1)) = λf(u) k ∈ [1, 4],

u(0) = u(5) = 0,
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where α(k) = 1 + sin2(πk/2) for all k = 1, 2, 3, 4, 5, p(k) = 10k+1 for k = 0, 1, 2, 3, 4,

f(t) =
1

105
(10t9 + 4e4t)

for every t ∈ R. By simple computations, we have

F (t) =
1

105
(t10 + e4t − 1)

for every t ∈ R. Taking into account that p− = 10, p+ = 105 and α− = 1, we observe that

all the assumptions of Theorem 3.12 are satisfied, and it implies that the problem (3.6) for

each λ ∈ (0, 1/411), admits at least one non-trivial solution uλ in {u : [0, 5]→ R : ∆u(0) =

∆u(5) = 0} such that

lim
λ→0+

‖uλ‖ = 0

and the real function

λ→
5∑

k=1

α(k)

p(k − 1)
|∆uλ(k − 1)|p(k−1) − λ

105

4∑
k=1

(
u10
λ (k) + e4uλ(k) − 1

)
is negative and strictly decreasing in (0, 1/411).
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