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In nonparametric methods, if the number of observations is relatively small as compared
to the sum of number of inputs and outputs, many units are evaluated as efficient. Several
methods for prioritizing these efficient units are reported in literature. Andersen et al. and
Mehrabian et al. proposed two methods for ranking efficient units, but both methods
break down in some cases. This paper describes a new DEA ranking approach that uses
L2-norm.

1. Introduction

Data envelopment analysis (DEA) originally from Farell’s [7] seminal work and popular-
ized by Charnes et al. [5] has gained a wide range of applications measuring comparative
efficiency. The main point of DEA is to assign an efficiency score to each of the decision-
making units (DMUs). This efficiency score depends on the orientation of the problem.
The data set in DEA that consists of n DMUs defines a production set with a subset
consisting of boundary points that form an efficient frontier. The main object of DEA
is to determine the relative position of a unit in a production set. Banker et al. [3] and
Charnes, Cooper, and Rhodes (CCR) [5] used the term Production possibility set (PPS)
for production set. In formal terms, we define T as

T = {(X ,Y) | input X can produce output Y
}
. (1.1)

The usefulness of the set notion for our purposes comes from the fact that it brings
along two further notions, namely, (i) that of the boundary (or frontier) of the set, and
(ii) that of the interior of the set. This permits one to distinguish between DMUs that
belong to the interior of the production set, which are called inefficient, and those that
do belong to a particular part of the frontier and are called efficient. DEA assigns 1 to all
efficient DMUs. This approach ranks all DMUs based upon their efficiency score. In cases
where several DMUs have the same efficiency score 1, DEA approach cannot rank these
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DMUs. However, decision makers are often interested in a complete ranking, beyond
the dichotomized classification, in order to refine the evaluation of the units. Discrimi-
nating between these efficient DMUs is an interesting subject. This problem has recently
been studied by a number of DEA researchers (see [1, 2, 6, 8] etc.). Andersen and Pe-
tersen [1] proposed a method for ranking efficient DMUs (AP model). In their method
the column corresponding to the unit under consideration is omitted from technological
matrix. However, the feasibility for the problem is not guaranteed and for small variation
in data, some problems are not stable. Another method was suggested by Mehrabian et
al. [8] (MAJ model). Although in MAJ model the basic idea is same as AP model, the
movement strategy towards frontier is different from AP model. However, in some cases,
the infeasibility for the problem may occur; we will prove that too. The method proposed
by the authors removes the existing difficulties in both methods. The paper is structured
as follows. Section 2 provides basic DEA models. An introduction to AP and MAJ mod-
els is given in Section 3. The next section of the paper addresses a method for ranking
efficient DMUs. Some numerical examples are solved in Section 5. Conclusions appear in
Section 6.

2. Background

To describe the DEA efficiency measurement, let there be n DMUs and let the perfor-
mance of each DMU be characterized by a production process of m inputs (xi j , i =
1, . . . ,m) to yield s outputs (yr j , r = 1, . . . ,s).

Definition 2.1. DMUp is called inefficient if and only if it is dominated within the set of
the n DMUs.

The pth DMU is dominated when

n∑
j=1

λjxi j ≤ xip for i= 1,2, . . . ,m,

n∑
j=1

λj yr j ≥ yrp for r = 1,2, . . . ,s,

λj ≥ 0, for j = 1,2, . . . ,n,

(2.1)

and at least one of the above conditions is a strict inequality. Every nondominant DMU
is called efficient. To estimate a DEA efficiency score of the specific pth DMU, we use the
following original DEA model (Charnes et al. [5]):

Maxep subject to eq =
∑s

r=1ur yrq∑m
i=1 vixiq

, q = 1, . . . ,n,

0≤ eq ≤ 1, q = 1, . . . ,n,

ur ≥ ε, r = 1, . . . ,s,

vi ≥ ε, i= 1, . . . ,m,

(2.2)
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where ep, p = 1, . . . ,n, are the efficiency of DMUp. This model can be reduced to a non-
ratio format in the usual manner of Charnes and Cooper [4] as follows:

Max ēp =
s∑

r=1

ur yrp, subject to
m∑
i=1

vixip = 1,

s∑
r=1

ur yr j −
m∑
i=1

vixi j ≤ 0, j = 1, . . . ,n,

ur ≥ ε, r = 1, . . . ,s,

vi ≥ ε, i= 1, . . . ,m.

(2.3)

Hence, to determine all DMU efficiencies, the above program is solved n times, once for
each DMUp, p = 1, . . . ,n.

3. AP model and MAJ model

3.1. AP model. Andersen and Petersen [1] developed a procedure for ranking efficient
units. Their method enables an efficient DMUp to achieve an efficiency score greater than
or equal to one by removing the pth constraint in (2.3). The mathematical formulation
of this model is as follows:

Max
s∑

r=1

ur yrp, subject to
m∑
i=1

vixip = 1,

s∑
r=1

ur yr j −
m∑
i=1

vixi j ≤ 0, j = 1, . . . ,n, j �= p,

ur ≥ ε, r = 1, . . . ,s,

vi ≥ ε, i= 1, . . . ,m.

(3.1)

The dual formulation of (3.1) is as follows:

Minθp− ε
[ m∑

i=1

si
− +

s∑
r=1

sr
+

]
subject to

n∑
j=1
j �=p

λjxi j + s−i = θpxip, i= 1, . . . ,m,

n∑
j=1
j �=p

λj yr j − s+
r = yrp, r = 1, . . . ,s,

λj ,s−i ,s+
r ≥ 0, ∀i, j,r.

(3.2)

However, there are some problematic areas with this methodology that is shown by the
following example. There are 5 DMUs with two inputs and two outputs. We consider
three cases of DMU1, denoted by DMU11, DMU12 and DMU13 (see Table 3.1).

The AP model for evaluating DMU12 is infeasible, this model for evaluating DMU13

leads to a large score. Table 3.2 presents the results.
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Table 3.1. The data set for infeasibility and unstability of AP model.

DMU11 DMU12 DMU13 DMU2 DMU3 DMU4 DMU5

I1 2 0 0.09 5 10 10 2
I2 10 10 10 7 5 7 13
O1 2 2 2 2 3 2 3
O2 3 3 3 3 1 1 2

Table 3.2. The AP and CCR efficiency indexes.

Efficiency index DMU11 DMU12 DMU13

CCR 1.000 1.000 1.000
AP 1.700 Infeasible 33.300

3.2. MAJ model. An alternative approach suggested in the literature, is MAJ model
(Mehrabian and et al. [8]). The mathematical formulation of MAJ model is as follows:

Min1 +Wp subject to
n∑
j=1
j �=p

λjxi j + s−i =Wp + xip, i= 1, . . . ,m, l

n∑
j=1
j �=p

λj yr j − s+
r = yrp, r = 1, . . . ,s,

λj ,s−i ,s+
r ≥ 0, ∀i, j,r.

(3.3)

In what follows, we show that MAJ model fails to rank DMUs in some cases.

(i) First deficiency. For special data, MAJ model is infeasible. To show this, consider the
dual formulation of MAJ model as follows:

Max
s∑

r=1

ur yrp−
m∑
i=1

vixip, subject to
s∑

r=1

ur yr j −
m∑
i=1

vixi j ≤ 0, j = 1, . . . ,n, j �= p,

m∑
i=1

vixip = 1,

ur ,vi ≥ 0, ∀i,r.

(3.4)

Consider the system of linear equations

Y pdu = 0, Ypdu− t = 0, (3.5)
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Table 3.3. The data set.

DMU1 DMU2 DMU3 DMU4 DMU5

I1 2 0 0.1 5 10

I2 8 8 8 5 4

O1 1 1 1 1 2

O2 2 2 2 1 1

Table 3.4. The results for MAJ model.

DMU1 DMU2 DMU3 DMU4 DMU5

MAJ input orientation 4 2 3 6 1

MAJ output orientation 4 1 3 6 2

where t > 0; Y p is an (n− 1)s-matrix of outputs of DMU1, . . . ,DMUp−1,DMUp+1, . . . ,
DMUn; Yp is the output vector of DMUp; and du ≥ 0 is a nonzero s-vector. For some
Y p and Yp, (3.5) has a solution. For example

Yp =
(
0, . . . ,0, ykp > 0,0, . . . ,0

)
,

du =
(

0, . . . ,0,
t

ykp
,0, . . . ,0

)
,

Y p =



y11 y12 ··· y1p = 0 ··· y1s

y21 y22 ··· y2p = 0 ··· y2s

...
...

. . .
...

...
...

yn−1,1 yn−1,2 ··· yn−1,p = 0 ··· yn−1,s



(3.6)

is a solution to (3.5). Now, consider d = [du,0]T . It can be seen that Ad = 0, d ≥ 0, d �= 0,
Cd > 0, where A is the technological matrix and C is the cost coefficient in the objective
function in (3.4). This means that for special data, (3.4) is unbounded and by duality
theorem, MAJ model is infeasible. This completes the proof.

(ii) Second deficiency. The following example shows that in some cases of MAJ model,
ranking in input orientation is different from ranking in output orientation. Our illustra-
tive example entails 5 DMUs (see Table 3.3). Each unit consumes two inputs to produce
two outputs.

Running MAJ model yields the results presented in Table 3.4.
It is evident that ranking in input orientation is different from ranking in output ori-

entation (see DMU2 and DMU5).
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Table 4.1. The data set for the simple example.

DMU1 DMU2 DMU3

I1 5 2 1
I2 1 2 4
O 1 1 1

4. A distance-based approach

This section describes a new DEA-based ranking approach that uses L2-norm. In the
proposed method, to rank an efficient unit, this unit is omitted from PPS and the new
frontier is constructed. Then, the shortest distance (L2-norm) from this unit to the new
frontier is determined. This is done for all DEA efficient units.

Definition 4.1. A surface H = {(X ,Y) : −αTX + βTY = 0, α ≥ 0, β ≥ 0}⋂Tc is called a
supporting efficient surface if for each observation j = 1, . . . ,n, −αTXj + βTYj ≤ 0 and at
least m+ s− 1 inequalities are binding.

To have at least m+ s− 1 inequalities −αTXj +βTYj ≤ 0 as equalities, we use the slack
variables s j . The constraints s j ≤ (1− γj)M, s j ≥ 0, γj ∈ {0,1}, ∑ j∈E γj ≥m+ s− 1 force
some of the s j at zero level (M is a large positive constant). Clearly, selecting γt = 1 forces
the st = 0. (E denotes the set of all CCR-efficient DMUs.) Consider the following pro-
gram:

Dp =Max−αTXp +βTYp subject to −αTXj +βTYj + s j = 0, j ∈ E, j �= p,

αT1m +βT1s = 1,

s j ≤
(
1− γj

)
M, j ∈ E, j �= p,∑

j∈E, j �=p
γj ≥m+ s− 1,

α≥ ε·1m,

β ≥ ε·1s,
γj ∈ {0,1}, j ∈ E, j �= p,

s j ≥ 0, j ∈ E, j �= p,

(4.1)

where α is an m-vector, β is an s-vector, ε > 0, Xj = (x1 j , . . . ,xmj)T , Yj = (y1 j , . . . , ys j)T

and 1· = (1,1, . . . ,1)T . It is inherent in this formulation of the DEA model that not all
inefficiencies will be captured by the radial efficiency measures, but that slacks also have to
be considered when judging the extent of inefficiency. In this model, efficiency relates to
the observed ability to generate more output consuming less input (see the dual version of
(4.1)). This model computes the distance between the efficient frontier, evaluated without
unit p, and the unit itself. To highlight the practical implication of this model, consider
the data set that consists of two inputs and one output.The data are listed in Table 4.1.
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Model 8 for evaluating DMU2 is as follows:

D2 =Max−2α1− 2α2 +β subject to − 5α1−α2 +β+ s1 = 0,

−α1− 4α2 +β+ s2 = 0,

α1 +α2 +β = 1,

s1 ≤
(
1− γ1

)
M,

s2 ≤
(
1− γ2

)
M,

γ1 + γ2 ≥ 2,

γ1,γ2 ∈ {0,1}·α1,α2,β ≥ 0.

(4.2)

The optimal solution to this program is (α1,α2,β) = (3/26,4/26,19/26), D2 = 5/26, and
the supporting efficient surface is

F′ =
{(

x1,x2, y
) | − 3

26
x1− 4

26
x2 +

19
26

y = 0
}
∪T′c . (4.3)

(Note that T′c is the new PPS obtained from omission of DMUp.) From (4.2) it is easy
to show that F′ = {(X ,Y) :−α∗T

X + β∗T
Y = 0}∩T′c is an efficient supporting surface to

T′c , in which (α∗,β∗) is the optimal solution to (4.1) in evaluating DMU2. Consider the
following two cases:

(i) F′ is unique and hence (α∗,β∗) is unique. In this case, set

EFp =
Dp√

α∗T α∗ +β∗T β∗
, (4.4)

(ii) F′ is not unique. In this case, let Xλ =
∑

j �=p λjXj , Yλ =
∑

j �=p λjYj in which λj ≥ 0
for all j. Set

EFp =Minλ≥0
{

the distance between
(
Xp,Yp

)
and

(
Xλ,Yλ

)(
L2-norm

)}
. (4.5)

The proposed efficiency index is now defined as

ÊF p =
EFp

Max1≤ j≤n
{
EFj

} ≤ 1. (4.6)

It is to be noted that in a real data set, the second case is of seldom occurrence.

Definition 4.2. (Xp,Yp) ∈ Tc is nondominant if and only if there exist no λ = (λ1, . . . ,
λn)≥ 0 such that

∑n
j=1 λjXj ≤ Xp and

∑n
j=1 λjYj ≥ Yp and strict inequality holds true for

at least one component.

The following theorem gives a necessary and sufficient condition for efficiency of
DMUp.

Theorem 4.3. Considering (4.1), Dp ≥ 0 if and only if DMUp is efficient in CCR model.
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Proof. We will first prove that if Dp ≥ 0 then DMUp is nondominant in Tc. Suppose, on
the contrary, that DMUp is dominant. Then, there exist some λ = (λ1, . . . ,λn) such that
λj ≥ 0, j = 1, . . . ,n, and

Xp ≥
∑
j �=p

λjXj = Xλ, Yp ≤
∑
j �=p

λjYj = Yλ, (4.7)

and strict inequality holds true for at least one component. Now,

0≤−α∗T
Xp +β∗

T
Yp <−α∗T

Xλ +β∗
T
Yλ, (4.8)

where (α∗,β∗) is the optimal solution to (4.1). But we note that (Xλ,Yλ)∈ Tc and

H− = {(X ,Y) :−αTX +βTY ≤ 0
}

(4.9)

is a convex set, hence we must have

−α∗T
Xλ +β∗

T
Yλ ≤ 0 (4.10)

which contradicts (4.2). To show the converse, suppose that DMUp is CCR-efficient; this
means that Z∗p ≥ 1, where

Z∗p =MaxUTYp,

s.t. VTXp = 1,

UTYj −VTXj ≤ 0, j = 1, . . . ,n, j �= p,

U ≥ ε·1,

V ≥ ε·1.

(4.11)

Hence, if (U∗,V∗) is the optimal solution of this problem, we must have UTYp −VTXp

≥ 0. It is easy to show that (U∗,V∗) is the optimal solution to this problem if and only if
(U∗/(1U∗ + 1V∗),V∗/(1U∗ + 1V∗))= (α∗,β∗) is the optimal solution to (3.3). Hence,
we have

s∑
r=1

u∗r
1U∗ + 1V∗ yrp−

m∑
i=1

v∗i
1U∗ + 1V∗ xip ≥ 0

=⇒ β∗TYp−α∗TXp =Dp ≥ 0.

(4.12)

This completes the proof. �

Hence, to rank DMUs, DMU j is better than DMUi if and only if ÊF j > ÊFi. In what

follows, we show that the suggested efficiency index ÊF j is units-invariant. Suppose that
(Xj ,Yj), j = 1, . . . ,n, is substituted by (λXj ,λYj)=DMU ĵ , where λ > 0. It suffices to show
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Table 4.2. The results for the simple example.

Method DMU11 DMU12 DMU13

CCR 1.00 1.00 1.00
Proposed method 0.788 1.50 1.46

AP method 1.70 Infeasible 33.30

Table 5.1. The data set for Example 5.1.

DMU1 DMU2 DMU3 DMU4 DMU5 DMU6

I1 13 6 2 1 9 4
I2 1 3 6 10 5 8
O 1 1 1 1 1 1

that ÊF p̂ = ÊF p. If (α∗,β∗) be the optimal solution to (4.1) for evaluation DMUp, it also
is the optimal solution to (4.1) for evaluation DMU p̂. Hence, Dp̂ = λDp. On the other
hand,

EFp̂ =
Dp̂√

α∗Tα∗ +β∗T β∗
= λDp√

α∗Tα∗ +β∗T β∗
,

ÊF p̂ =
EFp̂

Max1≤ j≤n
{
EFĵ

} = ÊFp.

(4.13)

In this method, a small variation in data leads to a small shift on the frontier. Also,
the proposed model is always feasible and bounded. These guarantee the feasibility and
stability of the method. Consider the presented example in Section 3, again. Using the
proposed method, we have the results presented in Table 4.2.

5. Illustrative examples

In order to provide a numerical illustration of the proposed approach, three examples are
given.

Example 5.1. Consider the data set in Table 5.1 consisting of six DMUs each consuming
two inputs to produce one output.

The results of the proposed approach are summarized in Table 5.2.

Example 5.2. Another example consists of a data set on 15 units with four inputs and
three outputs. Table 5.3 contains a listing of the original data.

Running the proposed model yields the results listed in Table 5.4.

Example 5.3. In order to provide an application of the proposed ranking approach, the
Sherman and Gold’s [9] data set on 14 bank branches is used. Sherman and Gold utilized
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Table 5.2. The results for Example 5.1.

DMU j ÊF j Classification Proposed rank AP rank MAJ rank

1 1.000 Efficient 1 1 1

2 0.339 Efficient 4 4 4

3 0.454 Efficient 3 3 2

4 0.726 Efficient 2 2 3

5 −1.122 Inefficient 6 6 6

6 −0.924 Inefficient 5 5 5

Table 5.3. The raw data for Example 5.2.

DMUs I1 I2 I3 I4 O1 O2 O3

01 63.46 21.39 0 0 42.23 0 4063.68
02 0 0 0 229.24 13.89 0 11250.82
03 0 22.86 15.54 21.59 55.56 0 0
04 199.62 5.47 0 52.29 56.17 0 9829.4
05 302.82 15.52 0 0 92.59 0 0
06 109.1 0 20.47 0 36.29 0 2410.96
07 0 0 56.21 14.03 0 34.13 0
08 6.38 11.52 43.03 0 15.14 13.04 10574.70
09 33.61 28.34 0 75.24 69.46 0 4971.83
10 167.28 0 55.79 0 0 29.87 12458.02
11 99.64 9.77 6.76 0 0 19.89 10099.37
12 0 23.71 0 0 0 27.78 0
13 194.02 8.24 0 0 46.17 0 6506.39
14 0 6.42 119.09 0 0 74.07 0
15 0 10.83 7.31 10.23 26.32 0 0

DEA to evaluate the technical efficiency of branch operation. The data set consists of
three inputs and four outputs over 14 branches. The input and output categories are as
follows:

Input 1: rent (thousands of dollars),
Input 2: full-time equivalent personnel,
Input 3: supplies (thousands of dollars),
Output 1: loan applications, new pass-book loans, life-insurance sales,
Output 2: new accounts, closed accounts,
Output 3: travelers checks sold, bonds sold, bonds redeemed,
Output 4: deposits, withdrawals, checks sold, treasury checks issued, checks, loan
payments, pass-book loan payments, life insurance payments, mortgage payments.

Table 5.5 contains a listing of the original data.
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Table 5.4. The results for Example 5.2 using different algorithms.

DMU j ÊF j Classification Proposed rank AP rank MAJ rank

01 15.45 Efficient 6 4 6

02 41.95 Efficient 2 Infeasible 3

03 0.004 Efficient 15 10 15

04 5.69 Efficient 12 7 12

05 8.29 Efficient 9 8 10

06 6.39 Efficient 11 Infeasible 9

07 2.95 Efficient 13 Infeasible 13

08 88.19 Efficient 1 1 1

09 11.44 Efficient 7 5 7

10 10.674 Efficient 8 Infeasible 8

11 22.12 Efficient 5 6 5

12 23.39 Efficient 3 Infeasible 2

13 6.72 Efficient 10 3 11

14 23.06 Efficient 4 2 4

15 0.044 Efficient 14 9 14

Table 5.5. The raw data for Example 5.3.

DMUs I1 I2 I3 O1 O2 O3 O4

01 140,000 42,900 87,500 484,000 4,139,100 59,860 2,951,430
02 48,800 17,400 37,900 384,000 1,685,500 139,780 3,336,860
03 36,600 14,200 29,800 209,000 1,058,900 65,720 3,570,050
04 47,100 9,300 26,800 157,000 879,400 27,340 2,081,350
05 32,600 4,600 19,600 46,000 370,900 18,920 1,069,100
06 50,800 8,300 18,900 272,000 667,400 34,750 2,660,040
07 40,800 7,500 20,400 53,000 465,700 20,240 1,800,250
08 31,900 9,200 21,400 250,000 642,700 43,280 2,296,740
09 36,400 76,000 21,000 407,000 647,700 32,360 1,981,930
10 25,700 7,900 19,000 72,000 402,500 19,930 2,284,910
11 44,500 8,700 21,700 105,000 482,400 49,320 2,245,160
12 42,300 8,900 25,800 94,000 511,000 26,950 2,303,000
13 40,600 5,500 19,400 84,000 287,400 34,940 1,141,750
14 76,100 11,900 32,800 199,000 694,600 67,160 3,338,390

Running AP, MAJ, and proposed models yield a ranking pattern which is reported
in Table 5.6. Note that DMU1, DMU2, DMU3, DMU4, DMU6, DMU9, DMU10 and
DMU14 are efficient in Tc.
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Table 5.6. The results for Example 5.3 using different algorithms.

DMU j ÊF j Classification Proposed rank AP rank MAJ rank

01 0.284 Efficient 4 6 4

02 1.000 Efficient 1 2 1

03 0.411 Efficient 3 4 3

04 0.007 Efficient 8 8 8

05 −0.02 Inefficient 11 12 11

06 0.263 Efficient 5 3 5

07 −0.105 Inefficient 14 14 14

08 −0.011 Inefficient 9 9 9

09 0.737 Efficient 2 1 2

10 0.046 Efficient 6 5 6

11 −0.016 Inefficient 10 10 10

12 −0.105 Inefficient 13 13 13

13 −0.026 Inefficient 12 11 12

14 0.011 Efficient 7 7 7

6. Conclusion

In multidimensional cases, or if the number of observations is relatively small as com-
pared to the sum of number of inputs and outputs, running the DEA model will typically
result in a relatively large number of efficient units. Often, decision makers are inter-
ested in a complete ranking, beyond the dichotomized classification, in order to refine
the evaluation of the units. This paper provides an analytical procedure for ranking effi-
cient units. In this method, the difficulties of the existing methods have been removed.
The proposed approach can be analytically separated in the following two computational
processes: (i) the first stage omits the unit being scored from PPS and determines the new
frontier and (ii) the second stage finds the shortest distance from the unit being scored to
new frontier.
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