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We consider an elliptic system involving critical growth conditions. We
develop a technique of variational methods for elliptic systems. Using
the well-known results of maximum principle for systems developed by
Fleckinger et al. (1995), we can find positive solutions. Also, we gen-
eralize the systems results obtained (for the scalar case) by Brézis and
Nirenberg (1983). Also, we give applications to biharmonic equations.

1. Introduction

In this paper, we are concerned with the existence of solutions of the
elliptic system

−∆u = λu+ δv + g1(u,v),

−∆v = θu+ γv + g2(u,v)
(1.1)

on Ω and u = v = 0 on ∂Ω, where Ω ⊂ R
n, n > 2, is a bounded domain

with the smooth boundary ∂Ω, λ, δ, θ, and γ are real numbers, and g1,
g2 are real-valued functions with critical growth.

The purpose of this paper is to extend the results, obtained in [4], of
elliptic equations for the case of only one equation (the scalar case) to the
case of elliptic systems as (1.1). Our main tools are a variational approach
developed for functionals with values on R

2 (we want to remark that
it is an important innovation in this paper), a maximum principle for
systems developed in [6], and a minimax approach as in [1].
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Letting

U = (u,v), −�∆U = (−∆u,−∆v),

A =
(
λ δ
θ γ

)
, G(U) =

(
g1(u,v),g2(u,v)

)
,

(1.2)

we can write (1.1) as

−�∆U = A(U) +G(U), U = Θ = (0,0) (1.3)

on Ω and U = Θ on ∂Ω.
It is not common to find in the literature a variational approach of

problems like (1.1). Our starting point is [5] where resonance cases were
considered. In that paper, the authors considered the functional

J±(U) =
1
2

∫
Ω

[|∇u|2 ± |∇v|2 − (
λu2 ± 2δuv + γv2)]−∫

Ω
F(U), (1.4)

where ∇F = (g1,g2), for the study problem (1.1) in the cases

A =
(
λ δ
δ γ

)
, A =

(
λ −δ
δ γ

)
. (1.5)

The first case is known as cooperative problem and the second one as
noncooperative problem. It is important to remark that J± are real-valued
functionals and thus it is no clear how critical points of J±, called weak
solutions in that paper, became classical solutions of (1.3). So, it is nec-
essary to maintain the classical concept of weak solutions extended now
to systems like (1.1) and then to develop a critical point theory for func-
tionals with values on R

2.

Weak solutions of (1.1)

It is natural to define weak solutions of (1.1) as follows: u,v ∈H1
0(Ω) are

weak solutions of (1.1) if, for all φ ∈H1
0(Ω),

∫
Ω
∇u∇φ −λuφ − δvφ − g1(u,v)φ = 0,

∫
Ω
∇v∇φ− θuφ − γvφ − g2(u,v)φ = 0.

(1.6)

The novelty here is that we can choose a functional whose critical
points are weak solutions of (1.1) in the sense of (1.6). In Section 3, we
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present such a functional. Also, we can use the regularity theory to show
that weak solutions of (1.1) are classical solutions as well.

Our paper mainly focuses on the cases g1(u,v) = |u|(n+2)/(n−2) and g2(u,
v) = |v|(n+2)/(n−2), n > 2, and as in [4] it is necessary to distinguish be-
tween n = 3 and n ≥ 4 cases.

A superlinear case was considered in [9] where g1(u,v) = |u|r and
g2(u,v) = |v|r , r < (n+ 2)/(n− 2); sufficient conditions were given in that
paper for the existence of positive solutions. The techniques used there
was Leray-Schauder degree theory and measure theory.

2. Preliminaries and notation

We define Lr(Ω) = Lr(Ω)×Lr(Ω), r ≥ 1, and the following operations: for
all U = (u,v) and Φ = (φ,ψ), we have

(1) U ∗Φ = (uφ,vψ);
(2) −�∆U = (−∆u,−∆v);
(3) Up = (up,vp);
(4) DiU = (Diu,Div);
(5) |∇U|2 = (|∇u|2, |∇v|2);
(6) |U| = (|u|, |v|);
(7) U ≥ Θ = (0,0) if and only if u ≥ 0 and v ≥ 0. Also, U > Θ if and

only if u ≥ 0 and v ≥ 0, and u > 0 or v > 0;
(8) αU = (αu,αv) for α ∈ R;
(9) �α ∗U = (au,bv) for all �α = (a,b) ∈ R

2;
(10) ‖|U|‖r = (‖u‖r ,‖v‖r) ∈ R

2 for all U ∈ Lr(Ω), r ≥ 1;
(11)

∫
ΩU = (

∫
Ωu,

∫
Ωv).

Pohozaev’s identity

Consider the general elliptic system

−�∆U =G(U), U = Θ (2.1)

on Ω andU = Θ on ∂Ω, whereG(U) = (g1(u,v),g2(u,v)). Then we define

F(U) =
∫U

Θ
G(t)dt =

(∫u

0
g1(t,v)dt,

∫v

0
g2(u,t)dt

)
. (2.2)

As in the scalar case, if U is a smooth function satisfying (2.1), then it
is easy to check that

n

∫
Ω
F(U) +

2−n
2

∫
Ω
U ∗G(U) =

1
2

∫
∂Ω

〈
X, �η

〉(∂U
∂�η

)2

, (2.3)

where ∂�η denotes the normal outer vector on ∂Ω.
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Particular cases

(a) If, for example, G(U) = |U|(n+2)/(n−2), n > 2, we see that

n

∫
Ω
F(U) =

n

2∗

∫
Ω
|U|2∗ ,

2−n
2

∫
Ω
U ∗G(U) =

2−n
2

∫
Ω
|U|2∗ ,

(2.4)

where 2∗ = 2n/(n− 2).
Then, if Ω is starshaped (〈X, �η〉 > 0) by (2.3), we conclude that there is

no positive solution of (2.1). This result is well known from 1965, see [8].
(b) If, for example, G(U) = A(U) + |U|(n+2)/(n−2), n > 2, Pohozaev’s

identity tells us that

∫
Ω
(λ,γ) ∗U2 +

n+ 2
2

∫
Ω
(δ,θ) ∗U ∗ Ũ =

1
2

∫
∂Ω

〈
X, �η

〉(∂U
∂�η

)2

, (2.5)

where Ũ = (v,u) ∈ H1
0(Ω) and H1

0(Ω) = H1
0(Ω) ×H1

0(Ω). Identity (2.5)
gives us the following negative result.

Theorem 2.1. Suppose that Ω is starshaped and that λ,δ,θ,γ ≤ 0 or also
(δ,θ) ≥ Θ and (λ,γ) ≥ (λ1,λ1), where λ1 is the first eigenvalue of −∆, then
there is no positive solution for problem (1.1) for the case g1(u,v) = |u|(n+2)/(n−2)

and g2(u,v) = |v|(n+2)/(n−2).

Proof. For the first case, it is only sufficient to observe that if U is a so-
lution of (1.1), then U ∗ Ũ > Θ, which is contradictory with (2.5). In the
second case, if U >Θ is a solution of

−�∆U = A(U) + |U|(n+2)/(n−2) on Ω,

U = Θ on ∂Ω,
(2.6)

then ∫
Ω

(− �∆U) ∗Φ1 =
∫
Ω

A(U) ∗Φ1 +
∫
Ω
|U|(n+2)/(n−2) ∗Φ1, (2.7)

where Φ1 = (φ1,φ1) and φ1 is the first eigenfunction of −∆. Then we have∫
Ω

(
λ1,λ1

) ∗U ∗Φ1

=
∫
Ω
(λ,γ) ∗U ∗Φ1 +

∫
Ω
(δ,θ) ∗ Ũ ∗Φ1 +

∫
Ω
|U|(n+2)/(n−2) ∗Φ1.

(2.8)
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Since
∫
Ω(δ,θ) ∗ Ũ ∗Φ1 ≥Θ, the foregoing identity tells us thatU = Θ, con-

trary to our hypothesis U >Θ. This theorem extends to elliptic systems,
a well-known result of [4]. �

Now, we will borrow the ideas of a maximum principle developed in
[6] to prove the following theorem.

Theorem 2.2. If 0 < λ, γ < λ1, (δ,θ) ≥ Θ, and det(λ1I − A) > 0, then all
nonzero solutions of

−∆u = λu+ δv + |u|(n+2)/(n−2),

−∆v = θu+ γv + |v|(n+2)/(n−2)
(2.9)

on Ω and u = v = 0 on ∂Ω are no negative solutions.

Proof. In this proof, we use the arguments of maximum principle for sys-
tems developed in [6], which plays a crucial role in the proof of Theo-
rem 3.1. Suppose that (u,v) =U ∈ H1

0(Ω) is a nonzero solution of forego-
ing system. Let Φ = (φ,ψ) ∈ H1

0(Ω) such that

Φ = max{Θ,−U}. (2.10)

If we multiply −�∆U = A(U) + |U|(n+2)/(n−2) by Φ, we get

−
∫
Ω

�∆U ∗Φ =
∫
Ω
∇U ∗∇Φ = −

∫
Ω
|∇Φ|2

= −
∫
Ω
(λ,γ) ∗ |Φ|2 +

∫
Ω
(δ,θ) ∗ Ũ ∗Φ+

∫
Ω
|U|(n+2)/(n−2) ∗Φ,

(2.11)

which produces

∫
Ω

(
λ1,λ1

) ∗ |Φ|2 ≤
∫
Ω
|∇Φ|2 ≤

∫
Ω
(λ,γ) ∗ |Φ|2 +

∫
Ω
(δ,θ) ∗ Φ̃ ∗Φ (2.12)

and then

∫
Ω

(
λ1 −λ,λ1 − γ

) ∗ |Φ|2 ≤
∫
Ω
(δ,θ) ∗ Φ̃ ∗Φ. (2.13)
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From (2.13) and Cauchy-Schwarz inequality, we conclude that

(
λ1 −λ

)‖φ‖2
L2 ≤ δ‖φ‖L2‖ψ‖L2 ,(

λ1 − γ
)‖ψ‖2

L2 ≤ θ‖φ‖L2‖ψ‖L2 ,
(2.14)

then

det
(
λ1I−A

)‖φ‖2
L2‖ψ‖2

L2 ≤ 0. (2.15)

Inequality (2.15) implies that φ = 0 or ψ = 0 and then φ = 0 and ψ = 0. By
regularity, we conclude that U ≥Θ. �

Also, for weakly coupled cooperative elliptic systems, a maximum
and strong maximum principle and its characterization have been de-
veloped by López-Gómez and Molina-Meyer in [7, Theorems 2.1 and
2.6] which can be used in Theorem 2.2 in the cooperative case.

3. Main results

For all U = (u,v), Φ = (ϕ,ψ) ∈ L2(Ω). We define an R
2 inner product with

the following bracket:

[U,Φ] =
(∫

Ω
uϕ,

∫
Ω
vψ

)
∈ R

2. (3.1)

It is easy to check that

(1) [U,Φ] = [Φ,U] for any U,Φ ∈ L2(Ω);
(2) [U,Φ+Λ] = [U,Φ]+ [U,Λ] for any U,Φ,Λ ∈ L2(Ω);
(3) [λU,Φ]=λ[U,Φ]=(

∫
Ωλuϕ,

∫
Ωλvψ) for any λ∈R and U,Φ∈L2(Ω);

(4) [(�∆)−1U,Φ] = [U,(�∆)−1Φ] for any U,Φ ∈ L2(Ω).

The weak solutions of our problem (1.1), like we have defined in (1.6),
can be represented as critical points of functional J : H1

0(Ω)→ R
2, defined

as

J(U) =
1
2
[∇U,∇U]− 1

2
[CU,U]−

∫
Ω
F(U), (3.2)

where F(U) =
∫U
Θ G(t)dt = (

∫u
0 g1(t,v)dt,

∫v
0 g2(u,t)dt), U = (u,v) ∈ H1

0(Ω),
and

C =
(
λ− δ 2δ

2θ γ − θ
)
. (3.3)
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In fact, a calculation shows that for U = (u,v) and Φ = (φ,ψ),

J′(U)(Φ) =
d

dt
J(U+ t ∗Φ)|t=Θ

= [∇U,∇Φ]− 1
2
{
[CU,Φ]+ [CΦ,U]

}− [
G(U),Φ

]
.

(3.4)

Now, in the case Φ = (φ,φ), the previous equality is transformed in

J′(U)(Φ) = [∇U,∇Φ]− [AU,Φ]− [
G(U),Φ

]
, (3.5)

then critical points of J become weak solutions of (1.1).
For our main theorem, we use a Lagrange multiplier method which

has been adapted to our purpose. Let

�SC = inf
‖|U|‖p+1=�1

{
[∇U,∇U]− [CU,U]

}
,

�S = inf
‖|U|‖p+1=�1

{
[∇U,∇U]

}
,

(3.6)

where ‖|U|‖p+1 = �1 means that ‖u‖p+1 = 1 and ‖v‖p+1 = 1, and whether
u = 0 then ‖v‖p+1 = 1, also, or v = 0 then ‖u‖p+1 = 1, U = (u,v) ∈ Lp+1(Ω)
and p = (n+ 2)/(n− 2).

It is important to note that U > Θ in (3.6) because, in other case, we
replace U by |U|.

Now we have our main theorem.

Theorem 3.1. Suppose that
(a) 0 < λ and γ < λ1;
(b) δ,θ ≥ 0;
(c) det(λ1I−A) > 0;
(d) λ+δ and γ + θ less than λ1.

Then the problem

−�∆U = AU+Up, U >Θ (3.7)

on Ω and U = Θ on ∂Ω, where p = (n+ 2)/(n− 2), n ≥ 4, has a weak solution.

Proof. Here we follow similar arguments to the one used in [4] for the
scalar case. Let {Un} ⊂ H1

0(Ω) be a minimizing sequence of �SC. Then

[∇Un,∇Un

]− [
CUn,Un

]
= �SC +

−−−→
o(1) (3.8)

as n→∞.
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Since ‖|Un|‖p+1 = �1 for all n, then {Un} is bounded in L2(Ω) and from
(3.8), we conclude that {Un} is bounded in H1

0(Ω). So, we see that there
exists U ∈ H1

0(Ω) and ‖|U|‖p+1 ≤ �1 such that

(a) Un ⇀U in H1
0(Ω);

(b) Un →U in L2(Ω);
(c) Un →U almost everywhere.

Let Vn =Un −U, then Vn ⇀Θ in H1
0(Ω), Vn →Θ in L2(Ω), and Vn →Θ

a.e.
Since H1

0(Ω) ↪→ Lp+1(Ω), ‖|Un|‖p+1 = �1, and �S ∗ ‖|X|‖2
p+1 ≤ [∇X,∇X], for

all X ∈ H1
0(Ω), we conclude, using (3.8), that

[
CUn,Un

]
> �S− �SC (3.9)

as n→∞.
A direct calculation shows that �SC ≤ �SD, where

D =
(
λ+ δ 0

0 γ + θ

)
. (3.10)

Now, by hypothesis (a) and (b), we see that λ + δ and γ + θ are greater
than zero, then �SC ≤ �SD. Also, as in [4, Lemma 1.1], since n ≥ 4, then
�SD < �S. Then, by (3.9), we affirm that U �= Θ.

Using (3.8), we obtain

[∇U,∇U] +
[∇Vn,∇Vn]− [CU,U] = �SC +

−−−→
o(1). (3.11)

A well-known result, due to Brézis and Lieb [3], tells us that

∥∥∣∣U+Vn
∣∣∥∥p+1

p+1 =
∥∥|U|∥∥p+1

p+1 +
∥∥∣∣Vn∣∣∥∥p+1

p+1 +
−−−→
o(1), (3.12)

and therefore

�1 =
∥∥|U|∥∥p+1

p+1 +
∥∥∣∣Vn∣∣∥∥p+1

p+1 +
−−−→
o(1). (3.13)

So we get

�1 ≤ ∥∥|U|∥∥2
p+1 +

∥∥∣∣Vn∣∣∥∥2
p+1 +

−−−→
o(1). (3.14)

By (3.14) and since �S ∗ ‖|X|‖2
p+1 ≤ [∇X,∇X] for all X ∈ H1

0(Ω), we have

�S ≤ �S ∗∥∥|U|∥∥2
p+1 +

[∇Vn,∇Vn]+−−−→
o(1). (3.15)
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Now, since �S− �SC >Θ and ‖|U|‖2
p+1 ≤ �1, we use (3.11) and (3.15) and we

get

[∇U,∇U]− [CU,U] = �SC − [∇Vn,∇Vn]+−−−→
o(1)

≤ �SC + �S ∗∥∥|U|∥∥2
p+1 − �S+

−−−→
o(1)

≤ �SC ∗∥∥|U|∥∥2
p+1.

(3.16)

Inequality (3.16) states that �SC is really achieved. Now we will use a
Lagrange multiplier argument. Let

f(V ) =
1
2
[∇V,∇V ]− 1

2
[CV,V ],

h(V ) =
∥∥|V |∥∥p+1

p+1.
(3.17)

A direct calculation shows that for all V,Φ ∈ H1
0(Ω),

f ′(V )(Φ) = [∇V,∇Φ]− 1
2
{
[CV,Φ]+ [V,CΦ]

}
,

h′(V )(Φ) = (p+ 1)
∫
Ω
|V |4/(n−2) ∗V ∗Φ.

(3.18)

Let U ∈ H1
0(Ω) be the function for which �SC is achieved, then there

exists a Lagrange multiplier µ ∈ R
2 such that, for all Φ ∈ H1

0(Ω),

f ′(U)(Φ) = µ ∗h′(U)(Φ). (3.19)

In particular, for Φ =U, we get, from (3.18) and (3.19), that

µ =
1

p+ 1
{
[∇U,∇U]− [CU,U]

}
=

1
p+ 1

�SC. (3.20)

By (3.18), (3.19), and (3.20) and since we can take U >Θ, we have

[∇U,∇Φ]− 1
2
{
[CU,Φ]+ [U,CΦ]

}
= �SC ∗

∫
Ω
|U|(n+2)/(n−2) ∗Φ (3.21)

for all Φ ∈ H1
0(Ω). In particular, if in (3.20) we take Φ as Φ = (ϕ,ϕ), (3.21)

turns out

[∇U,∇Φ]− [AU,Φ] = �SC ∗
∫
Ω
|U|(n+2)/(n−2) ∗Φ. (3.22)
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Equality (3.21) tells us that

−�∆U = AU+ �SC ∗ |U|p (3.23)

on Ω, U = Θ on ∂Ω, n ≥ 4, has a nonzero weak solution. Now, we con-
clude from hypothesis (d), after a direct calculation, that �SC >Θ.

Finally, from (3.22) and Theorem 2.2, it follows that (�SC)1/(p−1) ∗U is
a nonnegative weak solution of problem (3.7). �

Remark 3.2. It is important to note that, for the case δ = θ = 0, hypothesis
(d) of Theorem 3.1 is superfluous. In this case, our system is uncoupled
and each equation can be handled separately, so we are in the context of
[4, Theorem (1.1)].

Regularity of solutions

As in [2], if �∆U + a(x) ∗U = Θ for a(x) ∈ Ln/2(Ω), n ≥ 3, then U ∈ Lr(Ω)
for all r > 0. ThereafterU ∈ C∞(Ω). In our case, we are considering a(x) ∗
U = A(U) + |U|P . Since U ∈ Lp+1(Ω), then a(x) ∈ Ln/2(Ω).

4. A problem related to (3.7)

In this section, we deal with the problem

−�∆U = AU+ |U|2∗−2 ∗U (4.1)

on Ω, U = Θ on ∂Ω, and 2∗ = 2n/(n− 2), n ≥ 4.
It is clear that weak solutions of (4.1) are the critical points of the func-

tional

J(U) =
1
2
[∇U,∇U]− 1

2
[CU,U]− 1

2∗

∫
Ω
|U|2∗ . (4.2)

Our main tool is the following theorem.

Theorem 4.1. For all �c ∈ R
2 such that Θ < �c < (1/n)�Sn/2, n ≥ 4, the func-

tional J satisfies the Palais-Smale condition on �c.

Proof. Let {Ui} ∈ H1
0(Ω) such that J(Ui) → �c and J′(Ui) → Θ, as i→ ∞.

This is

1
2
[∇Ui,∇Ui

]− 1
2
[
CUi,Ui

]− 1
2∗

∫
Ω

∣∣Ui

∣∣2∗ −�c = −−−→
o(1), (4.3)



Mario Zuluaga 237

[∇Ui,∇Φ
]− 1

2
{[

CUi,Φ
]
+
[
Ui,CΦ

]}− [∣∣Ui

∣∣2∗−2 ∗Ui,Φ
]
=
−−−→
o(1), (4.4)

as i→∞, for all U,Φ ∈ H1
0(Ω). In (4.4), we put U = Φ =Ui and we get

[∇Ui,∇Ui

]− [
CUi,Ui

]−∫
Ω

∣∣Ui

∣∣2∗ =
−−−→
o(1) (4.5)

as i→ ∞. Then, the left-hand side of (4.3) minus the left-hand side of
(4.5) produces

∫
Ω

∣∣Ui

∣∣2∗ = n�c+
−−−→
o(1) (4.6)

as i→∞.
From (4.6), we conclude that ‖Ui‖L2∗ (Ω) is bounded. Now, since L2∗(Ω)

↪→ L2(Ω) is continuous, then {Ui} is bounded on L2(Ω); by (4.5) we see
that {Ui} is bounded on H1

0(Ω) as well. Therefore, let U0 ∈ H1
0(Ω) such

that

Ui ⇀U0 in H1
0(Ω), (4.7a)

Ui −→U0 in Lr(Ω), 1 ≤ r < 2∗, (4.7b)

also, Ui →U0 a.e. Now, for all Φ ∈ H1
0(Ω),

(
J′
(
U0

)− J′
(
Ui

))
(Φ)

=
[∇(

U0 −Ui

)
,∇Φ

]
− 1

2
{[

C
(
U0 −Ui

)
,Φ

]
+
[
U0 −Ui,CΦ

]}
+
∫
Ω

(∣∣Ui

∣∣4/(n−2) ∗Ui −
∣∣U0

∣∣4/(n−2) ∗U0

)
∗Φ.

(4.8)

From (4.7a), we see that

[∇(
U0 −Ui

)
,∇Φ

]− 1
2
{[

C
(
U0 −Ui

)
,Φ

]
+
[
U0 −Ui,CΦ

]} −→Θ (4.9)

as i→∞. Also, from (4.7b), we have

∫
Ω

(∣∣Ui

∣∣4/(n−2) ∗Ui −
∣∣U0

∣∣4/(n−2) ∗U0

)
∗Φ −→Θ (4.10)
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as i→∞. So, from (4.8), we conclude that

(
J′
(
U0

)− J′
(
Ui

))
(Φ) −→Θ (4.11)

as i→ ∞. Then, by using the foregoing convergence and our hypothe-
sis J′(Ui) → Θ, we conclude that, for all Φ ∈ H1

0(Ω), J′(U0)(Φ) = Θ and
therefore

J′
(
U0

)(
U0

)
=
[∇U0,∇U0

]− [
CU0,U0

]−∫
Ω

∣∣U0
∣∣p+1 = 0. (4.12)

Let Vi =Ui −U0, then

−−−→
o(1) = J′

(
Ui

)(
Vi
)
=
[∇Vi,∇Vi]+ [∇U0,∇Vi

]
− 1

2
{[

CUi,Vi
]
+
[
Ui,CVi

]}
−
∫
Ω

∣∣Ui

∣∣4/(n−2) ∗Ui ∗Vi

(4.13)

as i→∞.
From (4.7a), (4.7b), (4.13), and identity (3.12), we see that, as i→∞,

[∇Vi,∇Vi] =
∫
Ω

∣∣Ui

∣∣4/(n−2) ∗Ui ∗Vi +
−−−→
o(1)

=
∫
Ω

∣∣U0 +Vi
∣∣4/(n−2) ∗ (U0 +Vi

) ∗ (U0 +Vi −U0
)
+
−−−→
o(1)

=
∫
Ω

∣∣U0 +Vi
∣∣p+1 −

∫
Ω

∣∣U0 +Vi
∣∣4/(n−2) ∗ (U0 +Vi

) ∗U0 +
−−−→
o(1)

=
∥∥U0

∥∥p+1
p+1 +

∥∥Vi∥∥p+1
p+1

−
∫
Ω

∣∣U0 +Vi
∣∣4/(n−2) ∗ (U0 +Vi

) ∗U0 +
−−−→
o(1).

(4.14)

Since Vi →Θ in Lr(Ω), for 1 ≤ r < 2∗, we get

[∇Vi,∇Vi] = ∥∥Vi∥∥2∗

2∗ +
−−−→
o(1). (4.15)

From (4.2) and (4.5), we deduce that

J
(
Ui

)
=

1
n

{[∇Ui,∇Ui

]− [
CUi,Ui

]}
+
−−−→
o(1) (4.16)

as i→∞.
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Now, since Vi → Θ in L2(Ω) and Vi ⇀ Θ in H1
0(Ω), from (4.16), we

obtain

J
(
Ui

)
=

1
n

{[∇U0,∇U0
]− [

CU0,U0
]}

+
1
n

[∇Vi,∇Vi]+−−−→
o(1) (4.17)

as i→∞.
Now, from (4.12), we see that [∇U0,∇U0] − [CU0,U0] ≥ Θ, then, by

(4.17), we have

[∇Vi,∇Vi] ≤ nJ
(
Ui

)
+
−−−→
o(1) (4.18)

as i→∞.
The foregoing inequality, united with our hypothesis J(Ui)→ �c ∈ (Θ,

(1/n)�Sn/2), produces

[∇Vi,∇Vi] ≤ const < �Sn/2 (4.19)

for all i large enough.
It is important to note that [∇Φ,∇Φ] = ‖Φ‖2

H1
0(Ω)

and Φ ∈ H1
0(Ω). Now,

since H1
0(Ω) ↪→ L2∗(Ω) and√

�S‖Φ‖L2∗ (Ω) ≤ ‖Φ‖H1
0(Ω), (4.20)

we deduce from (4.15) that

∥∥Vi∥∥2
H1

0(Ω)

(
�S2∗/2 −∥∥Vi∥∥2∗−2

H1
0(Ω)

)
≤ −−−→
o(1) (4.21)

as i→∞. Now, from (4.19) and since n≥4, we deduce that �S2∗/2−‖Vi‖2∗−2
H1

0(Ω)

is greater than a positive constant for i large enough. Then from (4.21),
we conclude that Vi →Θ. �

Now, we are ready for the following theorem.

Theorem 4.2. Suppose that
(e) λ+δ, γ + θ < λ1;
(f) λ+ δ,γ + θ > 0.

Then problem (4.1) has at least a nonzero solution.

Proof. First, we conclude, from hypothesis (e), that �SC > Θ, then for all
U0 = (u0,v0) ∈ H1

0(Ω), ‖U0‖2∗
L2∗ (Ω)

= �1, we have

M =
[∇U0,∇U0

]− [
CU0,U0

]
> �SC >Θ. (4.22)
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Now, we show that, for all U0 = (u0,v0) ∈ H1
0(Ω) and ‖U0‖2∗

L2∗ (Ω)
= �1,

1
n
�Sn/2
C ≤ sup

�t>Θ

J
(
�t ∗U0

) ≤ 1
n
�S1/n. (4.23)

In fact, let

ψ(t) = J
(
�t ∗U0

)
=

1
2

M ∗�t 2 − 1
2∗
�t 2∗ , �t ∈ R

2. (4.24)

It is clear that ψ(�t) > Θ, for �t > Θ small enough and limt→∞ψ(�t) → − �∞.
Now, by a direct calculation, we see that, for�t = M(n−2)/4, ψ(�t) reaches its
maximum value. Then, from (4.22), we get

sup
t>Θ

ψ
(
�t
)
=

1
n

Mn/2 >
1
n
�Sn/2
C . (4.25)

Finally, from our hypothesis (f), we deduce that �SC < �S, then

sup
t>Θ

ψ
(
�t
)
<

1
n
�Sn/2. (4.26)

Therefore, (4.25) and (4.26) produce (4.23). Now, by Theorem 4.1, J(Θ) =
Θ, ψ(�t) → − �∞, and (4.23), we apply the mountain pass lemma of Am-
brosetti and Rabinowitz [1], adapted in this case to our functional J, to
prove the existence of �c ∈ R

2 such that

�c = infsupJ(U) ∈
(
Θ,

1
n
�Sn/2

)
, (4.27)

where inf and sup are taken on suitable sets and J−1(�c) �= Φ. Therefore,
U ∈ J−1(�c) is a nonzero weak solution of (4.1). �

The biharmonic equation

The results of foregoing theorem can be applied to the following class of
nonlinear biharmonic equation under Navier-Dirichlet boundary condi-
tions:

∆2u = θu+ |u|2∗−2u (4.28)

on Ω, u = ∆u = 0 on ∂Ω, and θ > 0. Indeed, U = (u,v) with v = −∆u satis-
fies the problem

−�∆U = AU+G(U) (4.29)
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on Ω and U = Θ on ∂Ω, where

A =
(

0 1
θ 0

)
, G(U) =

(|u|2∗−2u,0
)
. (4.30)

As a direct application of Theorem 4.2, we obtain the following theorem.

Theorem 4.3. Suppose that
(g) θ,1 < λ1;
(h) θ > 0 (this is a cooperative case).

Then problem (4.28) has a weak solution u∈H3(Ω)∩H1
0(Ω)with ∆u∈H1

0(Ω).
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