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A weak Guderley-Morawetz problem is formulated for a mixed elliptic-
hyperbolic system that arises in models of wave propagation in cold
plasma. Weak solutions are shown to exist in a weighted Hilbert space.
This result extends the work of Yamamoto (1994).

1. Introduction

A characteristic feature of wave propagation in cold plasma is the possi-
bility that a hybrid resonance surface, along which the linearized equa-
tion for the scalar potential changes from elliptic to hyperbolic type, may
be tangent to a flux surface. This property can be represented in two di-
mensions by setting the hybrid resonance curve tangent to the line x = 0
at the origin of coordinates. The situation is somewhat different from
that found in, for example, linear models of transonic fluid dynamics,
see (1.6). In that case the sonic line is everywhere normal to the line
x = 0.

A model for such a resonance curve is the equation

x = σ(y), (1.1)

where σ(y) is a continuously differentiable function of its argument sat-
isfying

σ(0) = σ ′(0) = 0. (1.2)

In addition, we assume for simplicity that both σ(y) and σ ′(y) exceed
zero for y exceeding zero.
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This leads to consider mixed elliptic-hyperbolic systems having the
form

Lu = f, (1.3)

where

u =
(
u1(x,y),u2(x,y)

)
, f =

(
f1(x,y),f2(x,y)

)
,

(x,y) ∈Ω ⊂ R× (
R/R

−),
(Lu)1 =

[
x −σ(y)]u1x +Ku1 +u2y,

(Lu)2 = u1y −u2x

(1.4)

with data

u1
dx

ds
+u2

dy

ds
= 0 (1.5)

given on a portion of the boundary of Ω. Here K is a constant in [0,1]
and ds denotes the line element on ∂Ω. The system is elliptic for x > σ(y)
and hyperbolic for x < σ(y). Following [7], we emphasize the analogy to
fluid dynamics by calling the curve x = σ(y) the sonic curve.

In the cold plasma literature, (1.3) and (1.5) tend to appear in scalar-
valued special cases. In all these cases σ(y) is proportional to y2, but this
specific restriction is not imposed by the physics; concerning the physical
model, see [11, 12]. If u1 = ψx, u2 = ψy, σ(y) = y2, and f = (0,0), the sys-
tem reduces to a scalar equation introduced in [7, Section 3]. In the con-
text of this equation, condition (1.5) corresponds to imposing constant
boundary conditions on the scalar solution ψ(x,y). A uniqueness theo-
rem was proven in [7] for K = 1/2, in order to show the existence of a
domain on which the classical Dirichlet problem is ill-posed for the equa-
tion. Numerical arguments for a complex perturbation were also intro-
duced. A similar equation, σ(y) ∝ y2, u1 = ψx, u2 = −ψy, K = 1, f = (0,0),
appeared earlier in the physics literature, also in the context of wave
propagation in cold plasma [10]. In this case certain exact solutions were
constructed. Finally, system (1.3) and (1.5) in the case σ(y) = y2 was
studied in an interesting Ph.D. dissertation [13] on the existence of weak
solutions possessing Dirichlet data on a certain small domain near the
origin of R

2.
These equations share with the Tricomi equation,

yψxx +ψyy = 0, (1.6)

a multiplicity of possible approaches to formulating boundary value
problems. From a mathematical point of view, the Dirichlet problem, in
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which data are assigned on the entire boundary, is the “wrong prob-
lem” to solve for equations of mixed type, as this problem tends to be-
come over-determined in the hyperbolic region. Well-posed problems
for elliptic-hyperbolic equations generally include a characteristic gap
on which data have not been prescribed. In addition to the example of
an over-determined Dirichlet problem for the scalar equation considered
in [7], there are analogous examples for Tricomi-like equations [4].

However, physical applications of (1.6) to transonic fluid dynamics,
and of scalar forms of (1.3) to wave propagation in cold plasma, suggest
that it should be possible to prescribe data over the entire boundary. This
contradiction suggests that classical solutions will have little application
to such physical problems. In terms of weak solutions u to system (1.3),
the Dirichlet problem requires solutions to lie in an appropriate Hilbert
space H̃1 and satisfy

−(u,L∗ϕ
)
L2 = (f,ϕ)L2 , (1.7)

for all ϕ = (ϕ1,ϕ2) ∈ H̃2, where H̃2 is another appropriate Hilbert space
and where ϕ1 = 0 on the entire boundary of the domain (cf. [6, equations
(6)–(8)], for the Tricomi case). This problem may or may not be well-
posed. A different approach is to require that the component ϕ1 of the
test function ϕ vanishes only on the noncharacteristic part of the bound-
ary, and that ϕ satisfies condition (1.5) on characteristics. In the early
literature (see, e.g., [5, Section 4]) an elliptic-hyperbolic problem having
Dirichlet data given on the entire boundary is called the closed, or full
Dirichlet problem to distinguish it from the mathematically natural case
of Dirichlet data given only on part of the boundary. Following [2], we
prefer instead to distinguish the problem in which data are given on the
complement of a characteristic gap by calling such a problem Guderley-
Morawetz, reserving the term Dirichlet problem for Dirichlet data given on
the entire boundary as in [6, 9].

The existence of weak solutions to a Guderley-Morawetz problem is
proven for a Tricomi-like system in [3]. The estimates in [13, Section 2.5]
can be extended to imply the existence of weak solutions to a Guderley-
Morawetz problem for (1.3) and (1.5) on a relatively large and general
domain. This is the content of Theorems 3.1 and 3.2. The arguments in
[13] assume that the weak Dirichlet problem and the weak Guderley-
Morawetz problems are identical. See Remark 2.2. It is claimed in [13],
on the basis of Guderley-Morawetz estimates modeled on [3], that weak
solutions of (1.3) exist for Dirichlet data prescribed on the entire bound-
ary. We make no such claim for the generalization of those estimates
given here. However, the techniques used to prove the existence of weak
solutions to a Guderley-Morawetz problem for (1.3) and (1.5) will yield
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a uniqueness theorem for strong solutions to the Dirichlet problem for
this system, on a more restricted domain, almost for free (see Section 3.3;
also see [13, Theorem 1, Section 2.7]). Moreover, it is possible to derive
the existence of weak solutions to the Dirichlet problem for (1.6) by con-
sidering a sequence of Guderley-Morawetz problems in which the char-
acteristic gap is “marched” to a singular point on the sonic curve; see
[1, 5, 9]. It is a reasonable conjecture that this method can be modified
to apply to systems such as system (1.3) and (1.5) on an appropriate
domain, but this is not attempted here.

Equations (1.3) cannot be mapped into a system of the form studied in
[3] on any domain that includes the origin. On the one hand, relatively
little is known about such elliptic-hyperbolic systems which do not di-
rectly generalize the Tricomi equation. On the other hand, the method
of proof adopted here is by now quite standard. It is required to find a
Hilbert space U, a domain Ω, and a multiplier M under which weak so-
lutions can be shown to exist, without unreasonable restrictions on gen-
erality, by a uniqueness-plus-projection argument using the abc method
and the Riesz representation theorem. Because this system comes from
a physical model, we additionally hope that our conditions on U and
Ω will be physically reasonable. For instance, physical/numerical argu-
ments for special cases suggest that a singularity should be permitted at
the origin [7]. This influences the weighting of the Hilbert space U, as
does the existence of particular physical solutions (Section 2.2.2).

We note that every nondegenerate conic section is equivalent under
the projective group to the unit circle. In that sense, system (1.3) and
(1.5) with the choice σ(y) = y2 is gauge equivalent to a system on the ex-
tended projective disc studied in [8] by similar methods. In that system,
the elliptic part of the domain has a geometric interpretation as hyper-
bolic points in projective space and the hyperbolic part, as ideal points.
As it is not clear that projective invariance has any physical meaning in
the context of cold plasma dynamics, this analogy will not be pursued.

2. Formulation of the boundary value problem

2.1. Domain

In proving weak existence for the Guderley-Morawetz problem we as-
sume that the domain Ω, having piecewise continuous boundary, is en-
closed by the arbitrarily large but finite rectangle

R =
{
(x,y) | −∞ < p ≤ x < �, 0 ≤ y ≤ q <∞}

, (2.1)

where �, p, q are fixed but arbitrary real constants. We assume that R
has been chosen so that the distance along the x-axis from supΩx to � is
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an arbitrary but fixed positive number δ. Because we are assuming the
existence of an elliptic region for (1.3), we take � > 0.

The elliptic region of Ω consists of the region of the first quadrant
bounded by the sonic curve x = σ(y) and a smooth curve C1 emerging
from the origin, along which

dy

dx
≥ 0 (2.2)

with equality only at the origin, and

a(y)
dy

dx
+ b(y) < 0 (2.3)

for specified functions b(y) ≤ 0 and a(y) ≥ 0. We assume that C1 inter-
sects the sonic curve at a point (σ(y0),y0) ∈Ω, where y0 > 0. For exam-
ple, if a, b, and σ are defined as in Theorem 3.2, then the family of curves
given by y = εxm for m > 1/2 and x ≥ 0 satisfies condition (2.3) for

ε ≤
√
�1−2m

Km
(2.4)

whenever K > 0. (Condition (2.3) is automatically satisfied for such a, b,
and σ if K = 0.) If we further specify m ≤ 1/K, then we guarantee that
σ(y0) ≤ � − δ provided we choose

ε ≥
√
(� − δ)1−2m. (2.5)

The hyperbolic region is bounded by a piecewise smooth curve Γ∪C2,
where Γ is a characteristic curve

dx

dy
= −

√
σ(y)−x (2.6)

emerging from the sonic curve at (σ(y0),y0); C2 is a piecewise contin-
uous curve intersecting the characteristic Γ at a single point on the left
endpoint of C2 and intersecting C1 at the origin on the right endpoint of
C2. We assume that dy ≤ 0 and dx ≥ 0 on C2. We orient the boundary in
the counterclockwise direction.

The relation of this domain to the domain considered in [13] is dis-
cussed at the end of Section 3.3.
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2.2. Function spaces

2.2.1. Weak solutions

Denote by U the Hilbert space consisting of all pairs of measurable func-
tions (u1,u2) such that

‖u‖∗ =
[∫∫

Ω
σ ′(y)

(
u2

1 +u
2
2

)
dxdy

]1/2

(2.7)

is finite. Here

(u,w)∗ =
∫∫

Ω
σ ′(y)

(
u1w1 +u2w2

)
dxdy. (2.8)

Denote by W the linear space of continuously differentiable functions
(w1,w2) vanishing at the origin of R

2 and satisfying

w1dx +w2dy = 0 (2.9)

on the characteristic Γ, w1 = 0 on ∂Ω/Γ, and

{∫∫
Ω

1
σ ′(y)

[(
L∗w

)2
1 +

(
L∗w

)2
2

]
dxdy

}1/2

<∞, (2.10)

where (
L∗w

)
1 =

[
x−σ(y)]w1x + (1−K)w1 +w2y,(

L∗w
)

2 =w1y −w2x.
(2.11)

We define a weak solution to (1.3) under the boundary condition (1.5)
to be any u ∈U such that for all w ∈W ,

(w,f) = −(L∗w,u
)

(2.12)

under the L2 inner product ( ,).
Denote by H the Hilbert space of measurable functions (h1,h2) for

which the norm

‖h‖∗ =
[∫∫

Ω

1
σ ′(y)

(
h2

1 +h
2
2

)
dxdy

]1/2

(2.13)
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is finite. The inner product on H is given by

(h,g)∗ =
∫∫

Ω

1
σ ′(y)

(
h1g1 +h2g2

)
dxdy. (2.14)

The prescribed data f will be assumed to lie in the space H.

2.2.2. Similarity solutions

Analysis of scalar special cases of system (1.3) with σ(y) = y2 suggests
the presence of a singularity at the point x = y = 0. See, for example, [7],
where this is discussed in detail. This would suggest a radial weight
for the energy functional. Quadratic radial weights are applied in [13].
However, the space U constructed here also arises naturally in connec-
tion with (1.3).

As a simple example, consider similarity solutions for the case σ(y) =
y2 having the form u1 = ψx, u2 = ψy, and

ψ(x,y) = xνF
(
y2

x

)
, (2.15)

where ν is a parameter and F satisfies the hypergeometric equation

(1−µ)[ν(ν − 1)F(µ)− 2(ν − 1)µF ′(µ) +µ2F ′′(µ)
]

+
[
2F ′(µ) + 4µF ′′(µ)

]
= 0

(2.16)

for

µ =
y2

x
. (2.17)

Properties of such solutions for complex values of ν are studied in [7].
We consider here the case of real-valued ν, as in [10, 11]. It has been ob-
served [11] that if |x| is sufficiently small, then F ∼ µν or F ∼ µν−1. Taking
F ∼ µν for ν = 1/4, we find that

ψ(x,y) = x1/4F

(
y2

x

)
∼ y1/2. (2.18)

If u lies in the function space U, then ψ has weighted Dirichlet norm

EU(ψ) = ‖u‖2
∗ = 2

∫
Ω
y
(
ψ2
x +ψ

2
y

)
dxdy ∼ vol(Ω)

2
. (2.19)

In fact, EU(ψ) is finite on Ω for all ν ≥ 1/4. If we include solutions of the
form F ∼ µν−1, then EU(ψ) would be finite on Ω for all ν ≥ 5/4.
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2.3. The weak problem is well-posed

Proposition 2.1. Any continuously differentiable weak solution of the Gud-
erley-Morawetz problem for (1.3) and (1.5) on Ω, as defined by (2.12), is a
classical solution.

Proof. We refer to the domain as Ω, but the argument also holds with-
out alteration on much more general domains. For u ∈ U and w ∈W ,
integration by parts yields

(
u,L∗w

)
=
∫∫

Ω
u1
{[
x −σ(y)]w1x + (1−K)w1 +w2y

}
dxdy

+
∫∫

Ω
u2
(
w1y −w2x

)
dxdy

= −
∫∫

Ω

{[
x −σ(y)]u1x +Ku1 +u2y

}
w1dxdy

−
∫∫

Ω

(
u1y −u2x

)
w2dxdy −

∫
∂Ω

(
w1u2 +w2u1

)
dx

+
∫
∂Ω

{[
x −σ(y)]w1u1 −w2u2

}
dy.

(2.20)

On ∂Ω/Γ, w1 = 0, implying that

(
u,L∗w

)
|∂Ω/Γ = −

∫
∂Ω/Γ

w2
(
u1dx +u2dy

)
. (2.21)

Equations (2.6) and (2.9) hold on Γ, implying that

(u,Lw)|Γ =
∫
Γ
−(w1u2 +w2u1

)
dx +

{[
x −σ(y)]w1u1 −w2u2

}
dy

=
∫
Γ
u1

{[
x −σ(y)]w1 −w2

dx

dy

}
dy −u2

(
w1dx +w2dy

)
=
∫
Γ

[
x −σ(y) +

(
dx

dy

)2
]
w1u1dy = 0.

(2.22)

Substituting (2.21) and (2.22) into (2.20) and using (2.12), we obtain

−(w,f) = (
u,L∗w

)
= −(Lu,w)−

∫
∂Ω/Γ

w2
(
u1dx +u2dy

)
. (2.23)
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Because this identity must hold for every w ∈W , we conclude that the
quantity u1dx +u2dy must equal zero almost everywhere on ∂Ω/Γ. Ap-
plying the hypothesis that u is continuously differentiable, we complete
the proof of Proposition 2.1. �

Remark 2.2. The value of the 1-form u1dx + u2dy on the characteristic Γ
is left undetermined by a definition of weak solution based on (2.12), so
this argument will not establish the well-posedness of the weak Dirichlet
problem for (1.3) and (1.5) on Ω (unless we change the boundary con-
ditions on w to w1 = 0 on ∂Ω). However, classical solutions u of either
the Dirichlet problem or the Guderley-Morawetz problem satisfy (2.12).
This ambiguity seems to be the basis for the attempt in [13] to identify
the weak forms of the two problems; (cf. [13, Section 2.3]).

3. Results

Theorem 3.1. Let K ∈ [0,1/2]. Let the functions a(y) and b(y) in condition
(2.3) be given by

a(y) =K
[
y + �−1

∫y

0
σ(t)dt

]
,

b(y) = −
[

1+
σ(y)
�

]
.

(3.1)

For every f ∈H, there exists on Ω a weak solution to system (1.3) with the
boundary condition (1.5) given on ∂Ω/Γ.

Theorem 3.2. The conclusion of Theorem 3.1 extends to the case K ∈ [0,1] if
the definitions of a(y) and b(y) are replaced by

a(y) =Ky,

b(y) = −
[

1+
σ(y)

2�

]
,

(3.2)

and specify σ(y) = y2.

The proofs of Theorems 3.1 and 3.2 modify the argument in [3]. In
addition, we adapt a number of choices made in [13], which is also based
on [3]. The results follow from an a priori estimate.

Lemma 3.3. Under the hypotheses of either Theorem 3.1 or Theorem 3.2, there
exists k > 0 such that for all w ∈W ,

k‖w‖∗ ≤
∥∥L∗w

∥∥∗
. (3.3)
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3.1. Proof of Lemma 3.3

We prove the lemma by the abc method. Let

M =
[
a b
c d

]
, (3.4)

where a and b are given by the hypotheses of the Theorems 3.1 and 3.2;
c and d will be chosen. Then

I =
(
L∗w,Mw

)
=
∫∫

Ω

{[
x−σ(y)]w1x + (1−K)w1 +w2y

}(
aw1 + bw2

)
dxdy

+
∫∫

Ω

(
w1y −w2x

)(
cw1 +dw2

)
dxdy.

(3.5)

Notice that a and b are defined so that ax = bx = 0. The idea of the proof
is to estimate I from above and below. Proceeding as in [13, Section 2.4],
we write

a
[
x−σ(y)]w1w1x =

1
2
({
a
[
x−σ(y)]w2

1

}
x −aw2

1

)
;

bw2
[
x−σ(y)]w1x =

{
b[x −σ(y)]w1w2

}
x − bw1w2 − b

[
x−σ(y)]w1w2x;

aw1w2y =
(
aw1w2

)
y −

1
2
(
aw2

2

)
x−ayw1w2 +aw2w2x −aw1yw2;

bw2w2y =
1
2
[(
bw2

2

)
y − byw2

2

]
;

cw1yw1 =
1
2
[(
cw2

1

)
y − cyw2

1

]
(3.6)

with the choices d = a and

c = −b[x −σ(y)]. (3.7)

Taking into account cancellations, we can write I = I1 + I2, where I2 is
a line integral and

I1 =
∫∫

Ω

(
αw2

1 + 2βw1w2 + γw2
2

)
dxdy (3.8)
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for

α =
1
2
{
by
[
x−σ(y)]− b(y)σ ′(y)

}
+
(

1
2
−K

)
a(y),

β = −1
2
[
ay +Kb(y)

]
,

γ = −1
2
by.

(3.9)

Case 1. Under the hypothesis onK in Theorem 3.1, the coefficient of a(y)
in α is nonnegative, and we can write

α =
σ ′(y)

2�
[
2σ(y) + � −x]+K(

1
2
−K

)[
y + �−1

∫y

0
σ(t)dt

]

≥ σ ′(y)
2�

[
2σ(y) + � −x] ≥ δσ ′(y)

2�
,

β = 0,

γ =
σ ′(y)

2�
.

(3.10)

Thus in this case we have

I1 ≥
∫∫

Ω

(
αw2

1 + γw
2
2

)
dxdy ≥ χ

2�

∫∫
Ω
σ ′(y)

(
w2

1 +w
2
2

)
dxdy, (3.11)

where χ = min{δ,1}.
Case 2. Under the hypotheses of Theorem 3.2, we have

α =
y

2�
(
2y2 + 2� −x)+(

1
2
−K

)
Ky ≥ y

2�
(
2y2 + 2� −x)− y

2

=
y

2�
(
2y2 + � −x) ≥ δy

2�
,

β =
Ky2

4�
,

γ =
y

2�
.

(3.12)



28 A boundary value problem for cold plasma dynamics

Notice that

αγ − β2 ≥
(
y

2�

)2(
2y2 + � −x)−(

Ky2

4�

)2

≥
(
y

2�

)2[
� −x+ 7

4
y2

]
≥ δ

(
y

2�

)2

.

(3.13)

Cauchy’s inequality implies that

2βw1w2 ≥ −2|β|∣∣w1
∣∣∣∣w2

∣∣ > −2
√
α
∣∣w1

∣∣√γ
∣∣w2

∣∣ ≥ −αw2
1 − γw2

2 (3.14)

in Ω/{y = 0}. This already implies that the W-norm of w is positive
inside the upper half-plane. It remains, however, to derive an explicit
lower bound on the coefficient of y(w2

1 +w
2
2).

We claim that there is a constant ε ∈ (0,1), depending only on R, for
which

0 ≤ αγ − δ
(
y

2�

)2

≤ εαγ. (3.15)

To establish this claim, note that the left-hand inequality in (3.15) is obvi-
ous from (3.13), and the right-hand inequality will be satisfied provided

αγ(1− ε) ≤ δ
(
y

2�

)2

. (3.16)

Assuming without loss of generality that y exceeds zero (the inequality
is true trivially otherwise), our criterion becomes

2
{
y2 + �

[
1+

(
1
2
−K

)
K

]}
−x ≤ δ

1− ε . (3.17)

Replace the quantity on the left by its largest possible value, given that
(1/2 −K)K ≤ 1/16. Our requirement becomes that ε be chosen suffi-
ciently close to 1 so that

2q2 +
17�

8
− p ≤ δ

1− ε , (3.18)

or

1− δ

2q2 + 17�/8− p ≤ ε. (3.19)

The quantity on the left exceeds zero, as � − p exceeds δ.
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Now (3.13) and (3.15) imply that inequality (3.14) can be improved
to read

2βw1w2 ≥ −2|β|∣∣w1
∣∣∣∣w2

∣∣ ≥ −2

√
αγ − δ

(
y

2�

)2∣∣w1
∣∣∣∣w2

∣∣
≥ −2

√
εαγ

∣∣w1
∣∣∣∣w2

∣∣ ≥ −√εαw2
1 −

√
εγw2

2.

(3.20)

Thus, in this case

I1 ≥
(
1−√

ε
)∫∫

Ω

(
αw2

1 + γw
2
2

)
dxdy

≥
(
1−√

ε
)

2�

∫∫
Ω
y
(
δw2

1 +w
2
2

)
dxdy

≥ χ
(
1−√

ε
)

2�

∫∫
Ω
y
(
w2

1 +w
2
2

)
dxdy.

(3.21)

The remainder of the proof is identical for either set of hypotheses.
The boundary terms resulting from applying Green’s theorem on Ω are
given by

I2 = −
∫
∂Ω

(
b

2
{
w2

2 −
[
x −σ(y)]w2

1

}
+aw1w2

)
dx

+
∫
∂Ω

(
a

2
{[
x−σ(y)]w2

1 −w2
2

}
+ b

[
x −σ(y)]w1w2

)
dy.

(3.22)

On C2, w1 = 0, dx ≥ 0 and dy ≤ 0, so the signs of a and b imply that

I2|C2 = −1
2

∫
C2

aw2
2 dy + bw2

2 dx ≥ 0. (3.23)

On the characteristic Γ, (2.6) and (2.9) imply that

w2
2 +

[
x −σ(y)]w2

1 =w
2
1

[
σ(y)−x]+ [

x −σ(y)]w2
1 = 0. (3.24)

We have

I2|Γ = I21 + I22, (3.25)
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where

I21 = −
∫
Γ
aw1w2dx +

1
2

∫
Γ
a
{[
x −σ(y)]w2

1 −w2
2

}
dy

=
∫
Γ

a

2
{
w2

2 +
[
x −σ(y)]w2

1

}
dy = 0,

I22 = −
∫
Γ

b

2
{
w2

2 −
[
x−σ(y)]w2

1

}
dx +

∫
Γ
b
[
x−σ(y)]w1w2dy

= −
∫
Γ

b

2
{
w2

2 +
[
x−σ(y)]w2

1

}
dx = 0.

(3.26)

On C1 inequality (2.3) holds; in addition, dx ≥ 0, dy ≥ 0, and w1 = 0.
Writing

∫
C1

aw2
2 dy =

∫
C1

aw2
2
dy

dx
dx, (3.27)

we find that

I2|C1 = −1
2

∫
C1

aw2
2 dy + bw2

2 dx

= −1
2

∫
C1

[
a
dy

dx
+ b

]
w2

2 dx.

(3.28)

Inequality (2.3) implies that the integral on the right is nonnegative.
The preceding arguments establish the lower bound of the lemma.
In order to obtain the upper bound for the inequality of Lemma 3.3

we reason in either Case 1 or Case 2 as in [3], writing

I = lim
τ→0

(
L∗w√
σ ′(y) + τ

,
(√

σ ′(y) + τ
)
Mw

)
≤ C(M)

∥∥L∗w
∥∥∗‖w‖∗. (3.29)

The constant C(M) will be a finite positive number provided the func-
tions a, b, c, d are bounded. The existence of such a bound follows from
the finite character of the constants p, q, and �.

We obtain, under the hypotheses of either theorem, the inequality

C′(p,q,�,ε,δ)‖w‖∗ ≤
∥∥L∗w

∥∥∗ (3.30)

for C′ > 0. This completes the proof of Lemma 3.3.
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3.2. Proof of Theorems 3.1 and 3.2

Both theorems follow from Lemma 3.3 by a standard argument. An in-
equality similar to (3.29) implies that for all w ∈W ,∣∣(w,f)∣∣ ≤ c0

∥∥L∗w
∥∥∗‖f‖∗ (3.31)

for a constant c0 depending only on Ω. For fixed f ∈H, the functional

G
(
L∗w

) ≡ (w,f) (3.32)

on L∗w can be extended to a bounded linear functional on H. The Riesz
representation theorem then implies the existence of an element h =
(h1,h2) ∈H for which

(w,f) =
(
L∗w,h

)∗
. (3.33)

Defining u = (u1,u2), where

u1 = − h1

σ ′(y)
,

u2 = − h2

σ ′(y)
,

(3.34)

we find that u ∈U and

(w,f) =
(
L∗w,h

)∗ = −(L∗w,u
)

(3.35)

for all w ∈W , which completes the proof.

3.3. Remark

By slightly modifying the proof of Lemma 3.3 it is possible to prove
the uniqueness of strong solutions to a Dirichlet problem on a more re-
stricted domain. Replace Ω by a domain Ω′, in which C2 is replaced by
the piecewise linear curve λ1 ∪ λ2, where λ1 is a vertical line segment
x = const < 0, lying in the interior of R, bounded above by Γ and below
by λ2; such vertical lines correspond to flux surfaces in the cold plasma
model; λ2 is the segment of the x-axis bounded on the left by the line
segment λ1 and on the right by the line x = 0. The curves C1 and Γ are
identically defined on Ω and Ω′. Let condition (2.3) be satisfied for b(y)
defined as in Theorem 3.1 and for

a(y) = (1−K)
[
y + �−1

∫y

0
σ(t)dt

]
. (3.36)
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LetK lie in the interval [1/2,1]. Then for every f ∈H there exists at most
one strong solution in U to (1.3) on Ω′ with the boundary condition (1.5)
given on almost all of ∂Ω′. This conclusion extends to the case K ∈ [0,1]
if b(y) and σ(y) are defined as in Theorem 3.2 and a(y) = (1−K)y.

By a strong solution of (1.3) we mean an element u ∈U for which there
exists a sequence uν ∈U such that

lim
ν→∞

∥∥uν −u∥∥∗ = 0,

lim
ν→∞

∥∥Luν − f∥∥∗ = 0.
(3.37)

This strong solution satisfies the boundary condition (1.5) on almost all
of ∂Ω′ if in addition ∫

∂Ω′

(
uν1 dx +u

ν
2 dy

)2(ds)−1 = 0, (3.38)

where ds is the line element on ∂Ω′.
Suppose that we impose the following additional restrictions and

modifications on the domain Ω′: the arbitrarily large finite rectangle R
in the upper half-plane is replaced by a sufficiently small circle R0 in the
upper half-plane, tangent to the origin; the line segment λ1 is chosen to
lie sufficiently close to the y-axis; the line segment λ2 is replaced by that
segment of R0 bounded on the left by λ1 and on the right by the y-axis;
the characteristic curve Γ is a curve satisfying

dx

dy
= −

√
y2 −x, (3.39)

emerging from the parabola x = y2 at a point (δ̃, δ̃2) sufficiently close
to the origin; condition (2.3) is satisfied for b(y) = −(1 + y2) and a(y) =
(1−K)y.

Then Ω′ becomes identical to the domainD considered in [13, Chapter
2]. A uniqueness theorem for solutions of (1.3) and (1.5), with σ(y) =
y2, lying in a radially weighted Hilbert space over D is given in [13,
Section 2.7].
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