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We present a result on the averaging for functional differential equations
on finite time intervals. The result is formulated in both classical math-
ematics and nonstandard analysis; its proof uses some methods of non-
standard analysis.

1. Introduction

The idea of the method of averaging is to determine conditions in which
solutions of an autonomous dynamical system can be used to approx-
imate solutions of a more complicated time varying dynamical system.
The method of averaging has become one of the most important tool ever
developed for nonlinear time varying systems. Applications have been
found in celestial mechanics, noise control, nonlinear oscillations, sta-
bility analysis, bifurcation theory and vibrational control, among many
other fields. Although averaging of ordinary differential equations is
considered a mature field—the reader may consult [1, 5, 8, 22, 24] for
more references and information on the subject (see also [13, 14])—aver-
aging of functional differential equations has only recently been devel-
oped (see [6, 7, 9, 11, 12, 15, 16, 19]).

This paper aims to present a result on the averaging for functional
differential equations of the form

ẋ(t) = f

(
t

ε
,xt

)
(1.1)
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on finite time intervals. The result is not new (see [10] and the references
therein). However, by means of nonstandard analysis methods, we pro-
pose a new proof where all the analysis is achieved in R

d (it is not the
case in [10]) which makes it more simple.

The paper is organized as follows. Section 2 contains the notation and
conditions required to state and prove our main result as well as the
main result itself. The proof of this result is given in Section 4.2. To avoid
complicating the proof unnecessarily, several subsidiary lemmas have
been placed in Section 4.1.

The main result is formulated in both classical mathematics and non-
standard analysis. Its proof makes use of Robinson’s nonstandard analysis
(NSA) [21]. We will work in the axiomatic form IST (for internal set the-
ory) of nonstandard analysis, given by Nelson [20]. For that, Section 3.1
is devoted to a short description of IST. Then, in Section 3.2, we present
the nonstandard translate (Theorem 3.6) in the language of IST of our
main result (Theorem 2.2). We recall that IST is a conservative extension of
ordinary mathematics. This means that any statement of ordinary math-
ematics which is a theorem of IST was already a theorem of ordinary
mathematics, so there is no need to translate the proof.

2. Notation, conditions, and main result

Let r ≥ 0 be a given constant. Throughout this paper C0 = C([−r,0],Rd)
will denote the Banach space of all continuous functions from [−r,0] into
R

d with the norm ‖φ‖ = sup{|φ(θ)| : −r ≤ θ ≤ 0}, where | · | is a norm
of R

d. Let t0 ∈ R and T > t0. If x(t) is a continuous function defined on
[t0 − r,T] and t ∈ [t0,T], then xt ∈ C0 is defined by xt(θ) = x(t + θ) for
θ ∈ [−r,0].

The hypotheses, which are denoted by the letter H, are listed as fol-
lows.

(H1) The functional f : R×C0 → R
d in (1.1) is continuous.

(H2) The functional f is Lipschitzian in u ∈ C0, that is, there exists
some constant k such that

∣∣f(τ,u1
)− f

(
τ,u2

)∣∣ ≤ k
∥∥u1 −u2

∥∥, ∀τ ∈ R, ∀u1,u2 ∈ C0. (2.1)

(H3) For all u ∈ C0, there exists a limit

f0(u) := lim
T→∞

1
T

∫T

0
f(τ,u)dτ. (2.2)
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For any φ ∈ C0 and t0 ∈ R, the solution of the averaged equation

ẏ(t) = f0(yt

)
(2.3)

(resp., the solution of (1.1)) such that yt0 = φ (resp., xt0 = φ) is denoted by
y = y(·; t0,φ) (resp., x = x(·; t0,φ)) and J (resp., I) will denote its maximal
interval of definition.

Remark 2.1. Existence and uniqueness of solutions of (2.3) will be jus-
tified a posteriori. Indeed, we will show in Lemma 4.1 below that the
function f0 is k-Lipschitz so that existence and uniqueness are guaran-
teed.

Under the above assumptions, we will state the main result of this
paper which gives nearness of solutions of (1.1) and (2.3) on finite time
intervals.

Theorem 2.2. Let assumptions (H1), (H2), and (H3) hold. Let φ ∈ C0 and t0 ∈
R. Let x be the solution of (1.1) and y the solution of (2.3) with xt0 = yt0 = φ.
Then for any δ > 0 and T > t0, T ∈ J , there exists ε0 = ε0(δ,T) > 0 such that,
for ε ∈ (0, ε0], x is defined at least on [t0,T] and |x(t)−y(t)| < δ on t ∈ [t0,T].

3. Nonstandard main result

3.1. Internal set theory

In IST we adjoin to ordinary mathematics (say ZFC) a new undefined
unary predicate standard (st). The axioms of IST are the usual axioms of
ZFC plus three others which govern the use of the new predicate. Hence,
all theorems of ZFC remain valid in IST. What is new in IST is an addition,
not a change. We call a formula of IST external in the case where it in-
volves the new predicate st; otherwise, we call it internal. Thus internal
formulas are the formulas of ZFC. The theory IST is a conservative exten-
sion of ZFC, that is, every internal theorem of IST is a theorem of ZFC.
Some of the theorems which are proved in IST are external and can be
reformulated so that they become internal. Indeed, there is a reduction al-
gorithm which reduces any external formula F(x1, . . . ,xn) of IST without
other free variables than x1, . . . ,xn, to an internal formula F ′(x1, . . . ,xn)
with the same free variables, such that F ≡ F ′, that is, F ⇔ F ′ for all
standard values of the free variables. In other words, any result which
may be formalized within IST by a formula F(x1, . . . ,xn) is equivalent
to the classical property F ′(x1, . . . ,xn), provided the parameters x1, . . . ,xn

are restricted to standard values. Here is the reduction of the frequently
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occurring formula ∀x (∀sty A⇒ ∀stz B) where A and B are internal for-
mulas

∀x (∀sty A =⇒∀stz B
) ≡ ∀z ∃finy′ ∀x (∀y ∈ y′ A =⇒ B). (3.1)

The notations ∀stX and ∃finX stand for [∀X, st(X) ⇒ ·· ·] and [∃X,
X finite & . . .], respectively.

A real number x is called infinitesimal when |x| < a for all standard
a > 0, limited when |x| ≤ a for some standard a, appreciable when it is
limited and not infinitesimal, and unlimited, when it is not limited. We
use the following notations: x � 0 for x infinitesimal, x � +∞ for x un-
limited positive, x� 0 for x noninfinitesimal positive. Thus we have

x � 0 ⇐⇒∀sta > 0 |x| < a,

x� 0 ⇐⇒∃sta > 0 x ≥ a,

x limited ⇐⇒∃sta > 0 |x| ≤ a,

x � +∞⇐⇒∀sta > 0 x > a.

(3.2)

Let (E,d) be a standard metric space. Two points x and y in E are
called infinitely close, denoted by x � y, when d(x,y) � 0. If there exists
in that space a standard x0 such that x � x0, the element x is called near-
standard in E and the standard point x0 is called the standard part of x
(it is unique) and is also denoted by ox. A vector in R

d (d standard) is
said to be infinitesimal (resp., limited) if its norm |x| is infinitesimal (resp.,
limited), where | · | is a norm in R

d.
We may not use external formulas to define subsets. The notations

{x ∈ R : x is limited} or {x ∈ R : x � 0} are not allowed. Moreover, we
can prove the following lemma.

Lemma 3.1. There do not exist subsets L and I of R such that, for all x ∈ R,
x is in L if and only if x is limited, or x is in I if and only if x is infinitesimal.

It happens sometimes in classical mathematics that a property is as-
sumed, or proved, on a certain domain, and that afterwards it is noticed
that the character of the property and the nature of the domain are in-
compatible. So actually the property must be valid on a larger domain.
In the same manner, in nonstandard analysis, the result of Lemma 3.1
is frequently used to prove that the validity of a property exceeds the
domain where it was established in direct way. Suppose that we have
shown that A holds for every limited x, then we know that A holds for
some unlimited x, for otherwise we could let L = {x ∈ R : A}. This state-
ment is called the Cauchy principle. It has the following consequence.
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Lemma 3.2 (Robinson’s lemma). Let g be a real function such that g(t) � 0
for all limited t ≥ 0, then there exists an unlimited positive number ω such that
g(t) � 0 for all t ∈ [0,ω].

Proof. The set of all s such that for all t ∈ [0, s] we have |g(t)| < 1/s con-
tains all limited s ≥ 1. By the Cauchy principle it must contain some un-
limited ω. �

We conclude this section with two other applications of the Cauchy
principle which will be used later.

Lemma 3.3. If P(·) is an internal property such that P(λ) holds for all appre-
ciable real numbers λ > 0, then there exists 0 < λ0 � 0 such that P(λ0) holds.

Lemma 3.4. Let h : I → R be a function such that h(t) � 0 for all t ∈ I. Then
sup{h(t) : t ∈ I} � 0.

Remark 3.5. The use of nonstandard analysis in perturbation theory of
differential equations goes back to the seventies with the Reebian school
(see [17, 18] and the references therein). It gave birth to the nonstandard
perturbation theory of differential equations which has become today
a well-established tool in asymptotic theory. For more informations on
nonstandard analysis and its applications, the reader is referred to [2, 3,
4, 20, 21, 23].

3.2. Main result: nonstandard formulation

Hereafter we give the nonstandard formulation of Theorem 2.2. Then, by
use of the reduction algorithm, we show that the reduction of Theorem
3.6 is Theorem 2.2.

Theorem 3.6. Let f : R×C0 → R
d be standard. Assume that assumptions

(H1), (H2), and (H3) hold. Let φ ∈ C0 and t0 ∈ R be standard. Let x be the
solution of (1.1) and y the solution of (2.3) with xt0 = yt0 = φ. Let ε > 0 be in-
finitesimal. Then for any standard T > t0, T ∈ J , x is defined at least on [t0,T]
and x(t) � y(t) for all t ∈ [t0,T].

The proof of Theorem 3.6 is postponed to Section 4. Theorem 3.6 is
an external statement. As we have recalled, Nelson [20] proposed a re-
duction algorithm that reduces external theorems to equivalent internal
forms. We show that the reduction of Theorem 3.6 is Theorem 2.2.

Reduction of Theorem 3.6. Without loss of generality, let t0 = 0. Let T >
0, T ∈ J , and T standard. The characterization of the conclusion of
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Theorem 3.6 is

∀ε : ε � 0 =⇒ x is defined at least on [0,T]

and x(t) � y(t) for all t ∈ [0,T].
(3.3)

Let B be the formula “If δ > 0 then x is defined at least on [0,T] and
|x(t)−y(t)| < δ on t ∈ [0,T].” Using (3.2), formula (3.3) becomes

∀ε (∀stη ε < η =⇒∀stδ B
)
. (3.4)

In this formula T is standard and ε, η, and δ range over the strictly posi-
tive real numbers. By (3.1), formula (3.4) is equivalent to

∀δ ∃finη′ ∀ε (∀η ∈ η′ ε < η =⇒ B). (3.5)

For η′ a finite set, ∀η ∈ η′, ε < η is the same as ε < ε0 for ε0 = minη′, and
so formula (3.5) is equivalent to

∀δ ∃ε0 ∀ε (ε < ε0 =⇒ B). (3.6)

That is the statement of Theorem 2.2 holds for any standard T > 0, T ∈ J .
By transfer, it holds for any T > 0, T ∈ J .

4. Proof of Theorem 3.6

4.1. Preliminary lemmas

In this subsection we state some results which are needed for our proof
of Theorem 3.6. Let f : R×C0 → R

d be standard. The external formula-
tions of conditions (H1), (H2), and (H3) are, respectively,
(H1′) ∀stτ ∈ R ∀stu ∈ C0 ∀τ ′ ∈ R ∀u′ ∈ C0:

τ ′ � τ, u′ � u =⇒ f(τ,u′) � f(τ,u). (4.1)

(H2′) There is a standard constant k such that

∣∣f(τ,u1
)− f

(
τ,u2

)∣∣ ≤ k
∥∥u1 −u2

∥∥, ∀stτ ∈ R, ∀stu1,u2 ∈ C0 (4.2)

(and by transfer the inequality holds for all τ ∈ R and all u1,u2 ∈
C0).

(H3′) There is a standard functional f0 : C0 → R
d such that

∀stu ∈ C0, ∀T � +∞, f0(u) � 1
T

∫T

0
f(τ,u)dτ. (4.3)
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We prove the following lemmas.

Lemma 4.1. The functional f0 is Lipschitz (with the same constant of Lipschitz
as f) and satisfies

f0(u) � 1
T

∫T

0
f(τ,u)dτ (4.4)

for all u ∈ C0, u nearstandard, and all T � +∞.

Proof. First, let u1, u2 ∈ C0, with u1 and u2 standard. By means of condi-
tions (H2) and (H3), we have

∣∣f0(u1
)− f0(u2

)∣∣ ≤ lim
T→∞

1
T

∫T

0

∣∣f(τ,u1
)− f

(
τ,u2

)
dτ
∣∣ ≤ k

∥∥u1 −u2
∥∥. (4.5)

That is, f0 is k-Lipschitz.
Next, let u, 0u ∈ C0 such that ou is standard and u � 0u. By means

of (4.5), conditions (H3′) and (H2′), respectively, for all T � +∞, we have

f0(u) � f0(0u
) � 1

T

∫T

0
f
(
τ, 0u

)
dτ � 1

T

∫T

0
f(τ,u)dτ. (4.6)

�

Lemma 4.2. There exists µ > 0 such that whenever t ≥ 0 is limited and u ∈ C0

is nearstandard there exists α > 0 such that µ < α � 0 and

ε

α

∫ t/ε+α/ε

t/ε

f(τ,u)dτ � f0(u). (4.7)

Proof. Let t ≥ 0 be limited and let u ∈ C0 be nearstandard.
Case 1 (t is such that t/ε is limited). Let S > 0 be unlimited such that
εS � 0. Then

1
S

∫ t/ε+S

t/ε

f(τ,u)dτ =
(

1+
t

εS

)
1

t/ε+S

∫ t/ε+S

0
f(τ,u)dτ − 1

S

∫ t/ε

0
f(τ,u)dτ.

(4.8)
By Lemma 4.1 we have

1
t/ε+S

∫ t/ε+S

0
f(τ,u)dτ � f0(u). (4.9)

Since

1
S

∫ t/ε

0
f(τ,u)dτ � 0,

t

εS
� 0 (4.10)
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we have

1
S

∫ t/ε+S

t/ε

f(τ,u)dτ � f0(u). (4.11)

Then, it suffices to choose µ = ε and take α = εS.
Case 2 (t is such that t/ε is unlimited). Let S > 0. We write

1
S

∫ t/ε+S

t/ε

f(τ,u)dτ =
1

t/ε+S

∫ t/ε+S

0
f(τ,u)dτ

+
t

εS

(
1

t/ε+S

∫ t/ε+S

0
f(τ,u)dτ − 1

t/ε

∫ t/ε

0
f(τ,u)dτ

)
.

(4.12)

By Lemma 4.1 we have

1
t/ε+S

∫ t/ε+S

0
f(τ,u)dτ � f0(u) � 1

t/ε

∫ t/ε

0
f(τ,u)dτ. (4.13)

We denote

η(S) =
t

εS

(
1

t/ε+S

∫ t/ε+S

0
f(τ,u)dτ − 1

t/ε

∫ t/ε

0
f(τ,u)dτ

)
. (4.14)

The quantity η(S) is infinitesimal for all S such that t/εS is limited. By
Lemma 3.2 this property holds for some S for which t/εS is unlimited.
The real number S can be chosen so that S > 1 and t/εS � +∞. Since t is
limited we have εS � 0. Then, it suffices to choose µ = ε and take α = εS.

�

Lemma 4.3. Let φ ∈ C0 be standard. Let y be the solution of (2.3) on J with
y0 = φ, and let T1 > 0 be standard such that [0,T1] ⊂ J . Then there exist some
positive integer N0 and some infinitesimal partition {tn : n = 0, . . . ,N0 + 1} of
[0,T1] such that t0 = 0, tN0 ≤ T1 < tN0+1, tn+1 = tn +αn � tn, and

ε

αn

∫ tn/ε+αn/ε

tn/ε

f
(
τ,ytn

)
dτ � f0(ytn

)
. (4.15)

Proof. It will be done in two steps.
Step 1. Let t ∈ [0,T1] and let us show that yt is nearstandard.

As y([−r,T1]) is a standard compact subset of R
d, it suffices to show

that yt is S-continuous on [−r,0] to deduce that it is nearstandard. Taking
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into account that |f0(0)| is standard, for θ,θ′ ∈ [−r,0], θ ≤ θ′, and θ � θ′,
we have∣∣yt(θ′)−yt(θ)

∣∣ = ∣∣y(t+ θ′)−y(t+ θ)
∣∣

≤
∫ t+θ′

t+θ

∣∣f0(ys

)∣∣ds
≤
∫ t+θ′

t+θ

∣∣f0(ys

)− f0(0)
∣∣ds+∫ t+θ′

t+θ

∣∣f0(0)
∣∣ds

≤ k

∫ t+θ′

t+θ

∥∥ys

∥∥ds+ (θ′ − θ)
∣∣f0(0)

∣∣ � 0.

(4.16)

That is, yt is S-continuous on [−r,0].
Step 2. Let µ > 0 be given as in Lemma 4.2, and define the set Aµ = {λ ∈
R / ∀t ∈ [0,T1] ∃α ∈ R : Pµ(t,α,λ)} where

Pµ(t,α,λ) ≡ µ < α < λ,

∣∣∣∣ εα
∫ t/ε+α/ε

t/ε

f
(
τ,yt

)
dτ − f0(yt

)∣∣∣∣ < λ. (4.17)

By Lemma 4.2 the set Aµ contains all the standard real numbers λ > 0.
By Lemma 3.3 there exists λ0 � 0 in Aµ, that is, there exists 0 < λ0 � 0
such that for all t ∈ [0,T1] there exists α ∈ R such that Pµ(t,α,λ0) holds.
By the axiom of choice there exists a function c : [0,T1] → R such that
c(t) = α, that is, Pµ(t,c(t),λ0) holds for all t ∈ [0,T1]. Since c(t) > µ for all
t ∈ [0,T1], the conclusion of the lemma is immediate. �

Lemma 4.4. Let φ ∈ C0 be standard. Let y be the solution of (2.3) on J with
y0 = φ, and let T1 > 0 be standard such that [0,T1] ⊂ J . Then for all t ∈ [0,T1],

∫ t

0
f

(
τ

ε
,yτ

)
dτ �

∫ t

0
f0(yτ

)
dτ. (4.18)

Proof. Let f1(τ,u) := f(τ,u)− f0(u), for τ ∈ R and u ∈ C0. The functional
f1 is Lipschitzian in u ∈ C0, that is, there exists some standard constant
k1 (k1 = 2k, where k is the Lipschitz constant of f) such that

∣∣f1
(
τ,u1

)− f1
(
τ,u2

)∣∣ ≤ k1
∥∥u1 −u2

∥∥, ∀τ ∈ R, ∀u1,u2 ∈ C0. (4.19)

Next, by Lemma 4.3 there exists {tn : n = 0, . . . ,N0 + 1} such that t0 = 0,
tN0 ≤ T1 < tN0+1, tn+1 = tn +αn � tn, and

ε

αn

∫ tn/ε+αn/ε

tn/ε

f1
(
τ,ytn

)
dτ � 0. (4.20)
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Let t ∈ [0,T1] and let N be a positive integer such that tN ≤ t < tN+1.
We have

∣∣∣∣∣
∫ t

tN

f1

(
τ

ε
,yτ

)
dτ

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ t

tN

f1

(
τ

ε
,yτ

)
dτ −

∫ t

tN

f1

(
τ

ε
,0
)
dτ

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

tN

f1

(
τ

ε
,0
)
dτ

∣∣∣∣∣
≤
∫ t

tN

∣∣∣∣f1

(
τ

ε
,yτ

)
− f1

(
τ

ε
,0
)∣∣∣∣dτ +

∣∣∣∣∣
∫ t

tN

f1

(
τ

ε
,0
)
dτ

∣∣∣∣∣
≤ k1

∫ t

tN

∥∥yτ

∥∥dτ +
∣∣∣∣∣
∫ t

tN

f1

(
τ

ε
,0
)
dτ

∣∣∣∣∣.
(4.21)

As y([−r,T1]) is a standard compact subset of R
d, it follows that

∫ t

tN

∥∥yτ

∥∥dτ � 0. (4.22)

We now estimate the second term in the right-hand side of (4.21). For
this, consider all the cases.
Case 1 (Both tN/ε and t/ε are limited). In this case, it is clear that

∣∣∣∣∣
∫ t

tN

f1

(
τ

ε
,0
)
dτ

∣∣∣∣∣ = ε

∣∣∣∣∣
∫ t/ε

tN/ε

f1(s,0)ds

∣∣∣∣∣ � 0. (4.23)

Case 2 (Both tN/ε and t/ε are unlimited). By means of condition (H3′),
we have

∣∣∣∣∣
∫ t

tN

f1

(
τ

ε
,0
)
dτ

∣∣∣∣∣ = ε

∣∣∣∣∣
∫ t/ε

tN/ε

f1(s,0)ds

∣∣∣∣∣
≤ tN

∣∣∣∣∣ 1
tN/ε

∫ tN/ε

0
f1(s,0)ds

∣∣∣∣∣+ t

∣∣∣∣∣ 1
t/ε

∫ t/ε

0
f1(s,0)ds

∣∣∣∣∣ � 0.

(4.24)
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Case 3 (tN/ε is limited and t/ε is unlimited). This case is a combination
of Cases 1 and 2. We write∣∣∣∣∣

∫ t

tN

f1

(
τ

ε
,0
)
dτ

∣∣∣∣∣ = ε

∣∣∣∣∣
∫ t/ε

tN/ε

f1(s,0)ds

∣∣∣∣∣
≤ ε

∣∣∣∣∣
∫ tN/ε

0
f1(s,0)ds

∣∣∣∣∣+ t

∣∣∣∣∣ 1
t/ε

∫ t/ε

0
f1(s,0)ds

∣∣∣∣∣
� 0.

(4.25)

Thus, we have ∣∣∣∣∣
∫ t

tN

f1

(
τ

ε
,0
)
dτ

∣∣∣∣∣ � 0. (4.26)

Therefore, from (4.21) and by means of (4.22) and (4.26), we obtain
that ∣∣∣∣∣

∫ t

tN

f1

(
τ

ε
,yτ

)
dτ

∣∣∣∣∣ � 0, (4.27)

so that ∫ t

0
f

(
τ

ε
,yτ

)
dτ −

∫ t

0
f0(yτ

)
dτ

=
∫ t

0
f1

(
τ

ε
,yτ

)
dτ

�
N−1∑
n=0

∫ tn+1

tn

f1

(
τ

ε
,yτ

)
dτ

=
N−1∑
n=0

∫ tn+1

tn

(
f1

(
τ

ε
,yτ

)
− f1

(
τ

ε
,ytn

))
dτ

+
N−1∑
n=0

∫ tn+1

tn

f1

(
τ

ε
,ytn

)
dτ.

(4.28)

Let τ ∈ [tn, tn+1], n = 0, . . . ,N, and let θ ∈ [−r,0]. We have∣∣yτ(θ)−ytn(θ)
∣∣ = ∣∣y(τ + θ)−y

(
tn + θ

)∣∣
≤
∫ τ+θ

tn+θ

∣∣f0(ys

)∣∣ds
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≤
∫ τ+θ

tn+θ

∣∣f0(ys

)− f0(0)
∣∣ds+∫ τ+θ

tn+θ

∣∣f0(0)
∣∣ds

≤ k

∫ τ+θ

tn+θ

∥∥ys

∥∥ds+ (τ − tn
)∣∣f0(0)

∣∣.
(4.29)

As y([−r,T1]) is a standard compact subset of R
d and |f0(0)| is standard,

from (4.29) we deduce that

∣∣yτ(θ)−ytn(θ)
∣∣ � 0. (4.30)

That is, yτ � ytn for τ ∈ [tn, tn+1], n = 0, . . . ,N. By Lemma 3.4, we have

sup
{∥∥yτ −ytn

∥∥ : τ ∈ [tn, tn+1
]
, 0 ≤ n ≤N − 1

} � 0 (4.31)

and so is

k1 · sup
{∥∥yτ −ytn

∥∥ : τ ∈ [tn, tn+1
]
, 0 ≤ n ≤N − 1

} · tN, (4.32)

so that

∣∣∣∣∣
N−1∑
n=0

∫ tn+1

tn

f1

(
τ

ε
,yτ

)
− f1

(
τ

ε
,ytn

)
dτ

∣∣∣∣∣
≤

N−1∑
n=0

∫ tn+1

tn

∣∣∣∣f1

(
τ

ε
,yτ

)
− f1

(
τ

ε
,ytn

)∣∣∣∣dτ

≤ k1

N−1∑
n=0

∫ tn+1

tn

∥∥yτ −ytn

∥∥dτ
≤ k1 · sup

{∥∥yτ −ytn

∥∥ : τ ∈ [tn, tn+1
]
, 0 ≤ n ≤N − 1

} · tN
� 0.

(4.33)
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Therefore, from (4.28) and by means of (4.20), it follows that

∫ t

0
f

(
τ

ε
,yτ

)
dτ −

∫ t

0
f0(yτ

)
dτ

�
N−1∑
n=0

∫ tn+1

tn

f1

(
τ

ε
,ytn

)
dτ

=
N−1∑
n=0

∫ tn+αn

tn

f1

(
τ

ε
,ytn

)
dτ

= ε
N−1∑
n=0

∫ tn/ε+αn/ε

tn/ε

f1
(
τ,ytn

)
dτ

=
N−1∑
n=0

αn

(
ε

αn

∫ tn/ε+αn/ε

tn/ε

f1
(
τ,ytn

)
dτ

)

=
N−1∑
n=0

αnβn

� 0

(4.34)

since |∑N−1
n=0 αn · βn| ≤ β

∑N−1
n=0 αn = β

∑N−1
n=0 (tn+1 − tn) = β · tN , where β =

max{|βn| : 0 ≤ n ≤N − 1}. By Lemma 3.4, β is infinitesimal and so is β · tN .
This completes the proof of Lemma 4.4. �

Lemma 4.5. Let φ ∈ C0 be standard. Let x be the solution of (1.1) on I, and y
the solution of (2.3) on J , with x0 = y0 = φ. Let T1 > 0 be standard such that
[0,T1] ⊂ I ∩ J . Then x(t) � y(t) for all t ∈ [0,T1].

Proof. For t ∈ [0,T1], we have

x(t) = φ(0) +
∫ t

0
f

(
τ

ε
,xτ

)
dτ, (4.35)

y(t) = φ(0) +
∫ t

0
f0(yτ

)
dτ. (4.36)

Subtraction of (4.35) and (4.36) gives

∣∣x(t)−y(t)
∣∣ ≤ ∣∣∣∣

∫ t

0

(
f

(
τ

ε
,xτ

)
− f

(
τ

ε
,yτ

))
dτ

∣∣∣∣
+
∣∣∣∣
∫ t

0

(
f

(
τ

ε
,yτ

)
− f0(yτ

))
dτ

∣∣∣∣
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≤
∫ t

0

∣∣∣∣f
(
τ

ε
,xτ

)
− f

(
τ

ε
,yτ

)∣∣∣∣dτ
+
∣∣∣∣
∫ t

0

(
f

(
τ

ε
,yτ

)
− f0(yτ

))
dτ

∣∣∣∣
≤ k

∫ t

0

∥∥xτ −yτ

∥∥dτ + ∣∣∣∣
∫ t

0

(
f

(
τ

ε
,yτ

)
− f0(yτ

))
dτ

∣∣∣∣.
(4.37)

Since, for τ ∈[0, t], ‖xτ −yτ‖≤sups∈[0,τ] |x(s)−y(s)|, it follows from (4.37)
that

∣∣x(t)−y(t)
∣∣ ≤ k

∫ t

0
sup
s∈[0,τ]

∣∣x(s)−y(s)
∣∣dτ

+
∣∣∣∣
∫ t

0

(
f

(
τ

ε
,yτ

)
− f0(yτ

))
dτ

∣∣∣∣.
(4.38)

The first term on the right-hand side of (4.38) is increasing and therefore

sup
τ∈[0,t]

∣∣x(τ)−y(τ)
∣∣ ≤ k

∫ t

0
sup
s∈[0,τ]

∣∣x(s)−y(s)
∣∣dτ

+ sup
τ∈[0,t]

∣∣∣∣
∫ τ

0

(
f

(
s

ε
,ys

)
− f0(ys

))
ds

∣∣∣∣.
(4.39)

By Gronwall’s lemma, this implies that

sup
τ∈[0,t]

∣∣x(τ)−y(τ)
∣∣ ≤ ekt sup

τ∈[0,t]

∣∣∣∣
∫ τ

0

(
f

(
s

ε
,ys

)
− f0(ys

))
ds

∣∣∣∣ (4.40)

and by means of Lemmas 4.4 and 3.4, respectively, we conclude that
x(t) � y(t), which finishes the proof. �

4.2. Proof of Theorem 3.6

For notation simplicity, we let t0 = 0. Let T > 0 be standard in J . Let K
be a standard tubular neighborhood of diameter ρ around Γ = y([0,T]).
Let I be the maximal interval of definition of x. Define the set A = {T1 ∈
I ∩ [0,T] / x([0,T1]) ⊂K}. The set A is nonempty (0 ∈A) and bounded
above by T . Let T0 be a lower upper bound of A. There is T1 ∈A such that
T0 − ε2 < T1 ≤ T0. By continuation, there is T2, T2 appreciable, such that
x remains defined on [0,T1 + εT2]. Likewise, by continuation, y remains
defined in particular on the same interval. By Lemma 4.5, we have x(t) �
y(t) for t ∈ [0,T1 + εT2]. Suppose T1 + εT2 ≤ T . Then, [0,T1 + εT2] ⊂ I and
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x([0,T1 + εT2]) ⊂K imply that T1 + εT2 ∈A, which is a contradiction with
T1 + εT2 > T0. Thus T1 + εT2 > T , that is, we have x(t) � y(t) for all t ∈
[0,T] ⊂ [0,T1 + εT2].
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