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Abstract. We obtain a parabolic analogue of the well-known maximum
principle established by R. Finn for solutions of the minimal surface equation.

1. Introduction and main results

The aim of this article is to discuss certain properties of the solutions of
the equation

(1) ut =
n∑

i=1

∂

∂xi

(
uxi√

1 + |∇xu|2

)
,

which are parabolic analogues of the well-known maximum principle estab-
lished by Finn [2] for solutions of the minimal surface equation

(2)
n∑

i=1

∂

∂xi

(
uxi√

1 + |∇xu|2

)
= 0.

It is known that while in some respects solutions of the minimal surface
equation behave in complete accordance with the general theory of elliptic
equations, in other respects these solutions reveal completely unexpected
properties. Examples of the latter case are the well-known theorem of Bern-
stein [1] on the non-existence of non-trivial solutions of equation (2) in the
whole space, for n = 2, and Finn’s maximum principle [2].
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Let Ra,b be the ring {(x1, ..., xn) ∈ R
n, a < r < b}, r =

√
x2

1 + ...+ x2
n,

n ≥ 2, 0 < a < b < ∞, and D an arbitrary domain in R
n. Also let

K(r, a) = cosh−1 r
a ,K(r, a) ≤ 0.

The function K(r, a) determines a supersolution (in the case n = 2 a
solution) of the minimal surface equation (2) in the exterior of the sphere
{r = a} that vanishes on this sphere. It is easy to see that this supersolution
cannot be extended inside the sphere {r = a}.

Let us state Finn’s maximum principle in one of its simplest versions (see
[6]).

Let c be an arbitrary fixed constant.

Theorem (Finn). Let D ⊆ Ra,b, and let u(x) be a solution of the minimal
surface equation (2) in D, continuous in D and such that u −K(r, a) ≤ c
on ∂D \ {r = a}. Then u−K(r, a) ≤ c in D.

We note that the essential difference between the behaviour of solutions
of the minimal surface equation and solutions of linear uniformly-elliptic
equations is particularly well seen in the case when part of the boundary of
the domain D lies on the sphere {r = a}, for example, when D = Ra,b.

In view of the fact that each solution of the minimal surface equation is
a solution of (1), it is clear that the second solutions inherit one or other
properties of the first solutions, and hence it is reasonable to assume that
the situation described above for solutions of the minimal surface equation
will also be seen in the case of equation (1), namely: while in some respects
the solutions of equation (1) behave in complete accordance with the general
theory of parabolic equations, in other respects these solutions reveal com-
pletely unexpected properties (see, for example, [4-5]). However, sometimes
these completely unexpected properties are fully expected, and, moreover,
solutions of equation (1) in fact inherit one or other properties of solutions
of the minimal surface equation. The main aim of this article is to give
another confirmation of this intuitive hypothesis.

Suppose, as above, that D is an arbitrary domain in R
n, which in general

may coincide with the whole space, DT = (0, T ) × D, and ∂DT = D ∪
{[0, T ) × ∂D} is the parabolic part of the boundary of DT . If D = R

n we
take ∂D to be empty.

Definition. By a subsolution (supersolution) of equation (1) in DT we
mean a function u(t, x) which belongs to the space C(0, T ;Liploc (D)), whose
derivative ut belongs to the space L1(0, T ;L1,loc(D)), and which satisfies the
following integral inequality:

(3)
∫

DT

[
utϕ+

n∑
i=1

ϕxi

uxi√
1 + |∇xu|2

]
dtdx ≤ 0 (≥ 0)

for an arbitrary nonnegative function ϕ ∈ C(0, T ;
◦
Lip (D)).

Let E be the exterior of the sphere {r = a}, ET = (0, T )×E, ∂FDT =D∪
{[0, T )×{∂D \ {r = a}}}, and let c1 ≥ 1 and c be arbitrary fixed constants.
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Theorem 1. Suppose that u(t, x) is a subsolution of equation (1) in DT ,
DT ⊆ ET , continuous on the set DT ∪∂FDT and such that u−c1K(r, a) ≤ c
on ∂FDT . Then u− c1K(r, a) ≤ c in DT .

Similar results hold for supersolutions of equation (1).

Theorem 1′. Suppose that v(t, x) is a supersolution of equation (1) in DT ,
DT ⊆ ET , continuous on the set DT ∪∂FDT and such that v+c1K(r, a) ≥ c
on ∂FDT . Then v + c1K(r, a) ≥ c in DT .

Apparently the most impressive example is when the domain D coincides
with the ring Ra,b or with the exterior of the sphere {r = a}. In the first
case we have a direct parabolic analogue of the Finn’s maximum principle
[2].

Corollary 1. Suppose that u(t, x) is a subsolution of equation (1) in (0, T )×
Ra,b, continuous on the set [0, T )×{a < r ≤ b} and such that u−K(r, a) ≤ c
on Ra,b ∪ {[0, T ) × {r = b}}. Then u−K(r, a) ≤ c in (0, T ) ×Ra,b.

Corollary 2. Suppose that u (t, x) is a subsolution of equation (1) in ET ,
continuous on E and such that u−c1K(r, a) ≤ c on E. Then u−c1K(r, a) ≤
c in ET .

The above assertions form a working tool for studying the qualitative
properties of solutions of equation (1) in the same way as Finn’s maximum
principle for solutions of the minimal surface equation (2). We give the
simplest of them.

Corollary 3. Suppose that u(t, x) is a subsolution of equation (1) in (0, T )×
{0 < r < b}, continuous on the set [0, T ) × {0 < r ≤ b} and such that u −
K(r, a) ≤ c on {0 < r < b}∪{[0, T )×{r = b}}. Then lim sup(τ,x)→(t,0) u(t, x)
≤ c for all (τ, x) ∈ (0, T ) × {0 < r < b} and all t ∈ (0, T ).

Proof. For fixed r, lima→0 acosh−1 r
a = 0.

Questions on the solubility of initial-value problems for equation (1) ac-
quire a special interest in connection with what has been said above. It is
easy to construct special cases of insolubility by using the stated assertions.

The basic idea of the proof of Theorem 1 (Theorem 1′) consists in compar-
ing the unknown subsolution (supersolution) of equation (1) with a definite
fixed supersolution (subsolution) of the same equation whose properties have
been thoroughly studied. An application of this fundamental approach is
possible based on the following assertion.

Theorem 2 (Comparison Principle). Let u (t, x) and v (t, x) be respec-
tively a subsolution and a supersolution of equation (1) in DT , continuous
on the set DT ∪ ∂DT and such that u ≤ v on ∂DT . Then u ≤ v in DT .

We note that the comparison principle stated here has no direct analogues
in the framework of the linear theory of parabolic equations. A confirmation
of this is well-known fact that a non-trivial classical solution exists of the
Cauchy problem for the heat conduction equation with zero initial data [7].
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2. Proofs of the main results

Proof of Theorem 2. Let u (t, x) and v (t, x) be respectively a subsolution
and a supersolution of equation (1) in DT such that u ≤ v on ∂DT .

It follows then from (3) that for an arbitrary nonnegative function ϕ ∈
C(0, T ;

◦
Lip(D)) the relations

(3′)
∫

DT

[
utϕ+

n∑
i=1

ϕxi

uxi√
1 + |∇xu|2

]
dtdx ≤ 0

and

(3′′)
∫

DT

[
vtϕ+

n∑
i=1

ϕxi

vxi√
1 + |∇xv|2

]
dtdx ≥ 0

hold.
By subtracting the latter from the former we obtain the inequality

(4)

∫
DT

[
(u− v)t ϕ+

n∑
i=1

ϕxi

(
uxi√

1 + |∇xu|2
− vxi√

1 + |∇xv|2

)]
dtdx

≤ 0.

Let 0 < r < R, s > 1 and p > 1 be arbitrary real numbers. Set
ϕ = exp (−t)ψs (x)wp in (4), where w (t, x) = exp (−t) (u− v)+ (t, x) , ψ ∈
◦
C∞ ({x : |x| < R}) , 0 ≤ ψ (x) ≤ 1, ψ (x) = 1 at {x : |x| ≤ r}. Then

(5)

∫
DT

(u− v)t ψ
swp exp (−t) dtdx

+ p
∫

DT

n∑
i=1

wxi

(
uxi√

1 + |∇xu|2
− vxi√

1 + |∇xv|2

)

· exp (−t)ψswp−1dtdx

+ s
∫

DT

n∑
i=1

ψxi

(
uxi√

1 + |∇xu|2
− vxi√

1 + |∇xv|2

)

· exp (−t)ψs−1wpdtdx

≡ I1 + I2 + I3 ≤ 0.

Estimate further the integrals I1, I2, I3. Since

(u− v)+t =
{

(u− v)t, if u− v > 0,
0, if u− v ≤ 0,
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the following continued equality

(6)

I1 =
∫

DT

(w exp (t))t ψ
swp exp (−t) dtdx

=
∫

DT

wtψ
swpdtdx+

∫
DT

ψsw1+pdtdx

=
1

1 + p

∫
DT

(
w1+p

)
t
ψsdtdx+

∫
DT

ψsw1+pdtdx

takes place.
It follows from the inequality u ≤ v on D that∫

D

ψs (x)w1+p (τ, x) dx → 0 at τ → 0.

Since the integrand ψsw1+p is not negative in DT , we have

(7) I1 ≥
∫

DT

ψsw1+pdtdx.

Next it can be easily understood that I2 ≥ 0 as

n∑
i=1

(u− v)xi

(
uxi√

1 + |∇xu|2
− vxi√

1 + |∇ xv|2

)
≥ 0.

Then from (5)–(7) we obtain

(8)
∫

DT

ψsw1+pdtdx ≤ |I3|.

We further estimate |I3| in (8). As far as

|I3| ≤ s

∫
DT

exp (−t)ψs−1wp|∇ψ|

·

 n∑

i=1

(
uxi√

1 + |∇xu|2
− vxi√

1 + |∇xv|2

)2



1/2

dtdx

and
n∑

i=1

(
uxi√

1 + |∇xu|2
− vxi√

1 + |∇xv|2

)2

≤ 4,

then

(9) |I3| ≤ 2s
∫

DT

exp(−t)ψs−1wp|∇ψ|dtdx.
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Now from inequalities (8) – (9) we conclude that

(10)
∫

DT

ψsw1+pdtdx ≤
∫

DT

2s exp(−t)ψs−1wp|∇ψ|dtdx.

Taking s = 1 + p, such that, (s− 1) 1+p
p = s, and estimating the right–

hand side in (10) by using of Young’s inequality

AB ≤ 1
2
A

β
β−1 + 2β−1Bβ ,

where A = (ψw)s−1, B = 2s exp(−t)|∇ψ| and β = s, we get the following
inequality∫

DT (R)
ψswsdtdx

≤ 1
2

∫
DT (R)

ψswsdtdx+ 22s−1ss
∫

DT (R)
|∇ψ|s exp(−st)dtdx.

Henceforth DT (R) = (0, T ) × {D ∩ {x : |x| < R}}.
It follows directly from the previous inequality that∫

DT (R)
ψswsdtdx ≤ (4s)s

∫
DT (R)

|∇ψ|s exp(−st)dtdx.

In order to complete the proof of the theorem we need to consider the
two following cases.

If the domain D is bounded we choose r to be sufficiently large, so that,
DT (r) = DT . It follows then from the fact that |∇ψ| = 0 a.e. in DT and
the previous inequality that w = 0 a.e. in DT , and consequently u ≤ v a.e.
in DT .

If the domain D is unbounded, we take s to be sufficiently large, so that
s > n, and minimize the right–hand side of the obtained inequality over all
admissible functions ψ (x) of the type indicated above (that is equivalent to
the calculation of the s–capacity for a certain condenser (see, for example,
[3]). As a result we obtain inequality

(11)
∫

DT (r)
wsdtdx ≤ σn

s
(4s)s

(
s− n
s− 1

)s−1
(

1 −
(
R

r

)n−s
s−1
)1−s

Rn−s.

Here σn is the (n− 1)–dimensional volume of the surface of the unit ball in
R

n.
Now, taking R = 2r and passing to the limit as R → ∞ in (11), we get

the statement of Theorem 2 immediately.
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Proof of Theorem 1. Set

ε = sup
a′≤r

|c1K(r, a) − c1K(r, a′)|

for any fixed a′ > a. Since by the hypotheses of the theorem, it follows that

(12) lim(u(t, x) − c1K(r, a′)) ≤ c+ ε

for all sequences of points (t, x) ∈ DT , tending to the parabolic part of the
boundary of the domain DT , lying on the set [0, T ) × {a′ ≤ r}. Now we
want to establish that

(13) u(t, x) ≤ c1K(r, a′) + c+ ε

throughout the domain D′
T = [0, T ) × {D ∩ {a′ < r}}. The desired result

immediately follows from (13), if we turn a′ to a.
To prove (13) it is sufficient by the comparison principle (Theorem 2) to

show that (12) holds on the parabolic part of the boundary of the domain
D′

T . Since it is true for all points of the parabolic part of the boundary of
the domain DT , lying on the set [0, T )×{a′ ≤ r}, it is sufficient to show that
(13) holds for all interior points of DT , lying on the set (0, T ) × {r = a′}.

Suppose that this is not the case. Then the function u− c1K(r, a) takes
its maximum value M > c + ε at some point (t′, x′) = (t′, x′

1, ..., x
′
n), lying

on the set (0, T ) × {r = a′} and which is interior to the domain DT . By the
comparison principle (Theorem 2) u(t, x) − c1K(r, a′) ≤ M throughout the
domain D′

T .
On the other hand sup |∇u| is bounded at this point, whereas ∂K

∂r |r=a′ =
−∞. Since u(t, x) − c1K(r, a′) = M at the point (t′, x′), there must then be
points of D′

T near (t′, x′) at which u(t, x) − c1K(r, a′) > M .
Hence, our assumption that (13) does not hold leads us to the contradic-

tion, which completes the proof of the theorem.
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