
HOMOLOGICAL LOCAL LINKING
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Abstract. We generalize the notion of local linking to include certain cases
where the functional does not have a local splitting near the origin. Appli-
cations to second-order Hamiltonian systems are given.

1. Introduction

The notion of local linking introduced by Li and Liu [4] plays a useful
role in a wide variety of problems in the Calculus of Variations. Let F be a
real C1 function defined on a Banach space X. We say that F has a local
linking near the origin if X has a direct sum decomposition X = X1 ⊕ X2
with j = dimX1 < ∞, F (0) = 0, and, for some r > 0,


F (u) ≤ 0 for u ∈ X1, ‖u‖ ≤ r,

F (u) > 0 for u ∈ X2, 0 < ‖u‖ ≤ r.
(1)

Then it is clear that 0 is a critical point of F .
In this paper we give the following more general definition of “homologi-

cal” local linking:

Definition 1.1. Assume that 0 is an isolated critical point of F with F (0) =
0 and let q, β be positive integers. We say that F has a local (q, β)-linking
near the origin if there exist a neighborhood U of 0 and subsets A, S, B of
U with A ∩ S = ∅, 0 �∈ A, A ⊂ B such that
1. 0 is the only critical point of F in F0 ∩ U where F0 is the sublevel set

{u ∈ X : F (u) ≤ 0},
2. denoting by i1∗ : Hq−1(A) −→ Hq−1(U \S) and i2∗ : Hq−1(A) −→

Hq−1(B) the embeddings of the singular homology groups induced by
inclusions,

rank i1∗ − rank i2∗ ≥ β,
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3. F ≤ 0 on B,
4. F > 0 on S\{0}.
If F satisfies the condition (1) with j ≥ 1 and 0 is an isolated critical

point of F , taking U to be a sufficiently small closed ball Bρ centered at the
origin, A = ∂Bρ ∩X1, S = Bρ ∩X2, and B = Bρ ∩X1, we see that F has a
local (j, 1)-linking near the origin. The following example in R

� shows that
our definition is, in fact, weaker than (1):

Example 1.2 (Monkey saddle). F (x, y) = x3 − 3xy2 has a local (1, 2)-
linking near the origin; see Proposition 2.1.

Note that the critical groups of F at 0 are given by

C∗(F, 0) = H∗(F0 ∩ U, (F0 ∩ U)\{0})
(see Chang [2] or Mawhin and Willem [8]). It was proved in Liu [7] that if F
satisfies (1) and 0 is an isolated critical point of F , then Cj(F, 0) �= 0. This
fact was used in Perera [9] to obtain a nontrivial critical point u with either
Cj+1(F, u) �= 0 or Cj−1(F, u) �= 0, under an additional assumption on the
behavior of F at infinity. Here we extend these results to the case where F
satisfies the weaker conditions given in Definition 1.1 near the origin. As an
application we prove the existence of nontrivial time-periodic solutions of a
system of ordinary differential equations, under different hypotheses on the
behavior of the nonlinearity at infinity.
For the existence of nontrivial critical points under the usual definition of

local linking and various assumptions at infinity see Li and Liu [4], Li and
Liu [5], Liu [7], Silva [10], Brézis and Nirenberg [1], Li and Willem [6], and
their references.

2. An Example

As an example of homological local linking, we prove the following propo-
sition:

Proposition 2.1. Assume that 0 is an isolated critical point of F and

F (u) = P (u) + o(‖u‖s) at u = 0

where P is homogeneous of degree s > 1, i.e.,

P (λu) = λsP (u) ∀λ ≥ 0, ∀u ∈ X.

Assume also that there are disjoint subsets Ã, S̃ of S∞, the unit sphere in
X, such that

1. the rank of the embedding Hq−1(Ã) −→ Hq−1(S∞\S̃) is at least β+δq1,
2. supÃ P < 0,
3. inf S̃ P > 0.

Then F has a local (q, β)-linking near the origin.
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Proof. Fix ε > 0 so that supÃ P + ε < 0 < inf S̃ P − ε and take ρ > 0
sufficiently small such that 0 is the only critical point of F in U = Bρ =
{u ∈ X : ‖u‖ ≤ ρ} and

|F (u)− P (u)| ≤ ε ‖u‖s for ‖u‖ ≤ ρ.

Then take

A =
{
ρ u : u ∈ Ã

}
,

B =
{
λu : u ∈ Ã, 0 ≤ λ ≤ ρ

}
,

S =
{
λu : u ∈ S̃, 0 ≤ λ ≤ ρ

}
.

On B,

F (λu) ≤ P (λu) + ε ‖λu‖s = λs (P (u) + ε) ≤ λs

(
sup
Ã

P + ε

)
≤ 0,

and on S\{0},

F (λu) ≥ P (λu)− ε ‖λu‖s = λs (P (u)− ε) ≥ λs
(
inf
S̃
P − ε

)
> 0.

Now we verify the condition 2 of Definition 1.1. Set Sρ = ∂Bρ and
S̃ρ =

{
ρ u : u ∈ S̃

}
. By the assumption 1, the rank of the embedding

i∗ : Hq−1(A) −→ Hq−1(Sρ\S̃ρ) is at least β + δq1. The map

(t, λ u) �−→ [(1− t)λ+ t]u 0 ≤ t ≤ 1, u ∈ S∞\S̃, 0 < λ ≤ ρ

is a strong deformation retraction of Bρ\S onto Sρ\S̃ρ and hence the em-
bedding Hq−1(Sρ\S̃ρ) −→ Hq−1(Bρ\S) is an isomorphism. It follows that

rank i1∗ = rank i∗ ≥ β + δq1.

On the other hand, B is contractible to 0 via

(t, λ u) �−→ (1− t)λu 0 ≤ t ≤ 1, u ∈ Ã, 0 ≤ λ ≤ ρ

and hence
rank i2∗ = δq1.

3. Critical Groups of the Origin and
Nontrivial Critical Points

The following theorem extends Theorem 2.1 of Liu [7]:

Theorem 3.1. If F has a local (q, β)-linking near the origin, then

rankCq(F, 0) ≥ β.
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Proof. Consider the following portion of the exact sequence of the pair (F0 ∩
U,F0 ∩ U \{0}):

Cq(F, 0) Hq−1(F0 ∩ U \{0})✲∂∗ Hq−1(F0 ∩ U)✲i∗

We have
rankCq(F, 0) ≥ rank ∂∗ = nullity i∗.

Consider the following commutative diagram induced by inclusions:

❅
❅

❅�

Hq−1(A)

Hq−1(U \S)
i1∗

�
�

�✠

Hq−1(F0 ∩ U \{0})
❄

i3∗

Hq−1(F0 ∩ U)✲
i∗

Hq−1(B)✲i2∗

❄

We have

nullity i∗ ≥ rank i3∗ − rank i2∗
≥ rank i1∗ − rank i2∗
≥ β.

Now we assume that F satisfies the Palais-Smale compactness condition
(PS) and has only isolated critical values, with each critical value corre-
sponding to a finite number of critical points, and set

Kc = set of critical points of F where F = c,

Kb
a = set of critical points of F where a < F < b.

The main result of this section is the following:

Theorem 3.2. Suppose that F has a local (q, β)-linking near the origin and
assume that there are regular values a, b of F such that a < 0 < b and

rankHq(Fb, Fa) < β.

Then∑
u∈K0

a

rankCq−1(F, u) +
∑

u∈Kb
0

rankCq+1(F, u) ≥ β − rankHq(Fb, Fa).

In particular, F has a (nontrivial) critical point u with either

a < F (u) < 0 and Cq−1(F, u) �= 0, or

0 < F (u) < b and Cq+1(F, u) �= 0.

Theorem 3.2 follows from Lemma 3.3 below and Theorem 3.1.
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Lemma 3.3. If a < b are regular values of F , c ∈ (a, b), and q ∈ Z, then∑
u∈Kc

a

rankCq−1(F, u) +
∑

u∈Kb
c

rankCq+1(F, u)

≥
∑

u∈Kc

rankCq(F, u)− rankHq(Fb, Fa).

The proof of Lemma 3.3 makes use of the following topological lemma:

Lemma 3.4. If B′ ⊂ B ⊂ A ⊂ A′ are topological spaces and q ∈ Z, then

rankHq−1(B,B′) + rankHq+1(A′, A)
≥ rankHq(A,B)− rankHq(A′, B′).

Proof. Consider the following portions of the exact sequences of the triples
(A,B,B′) and (A′, A,B′), respectively:

Hq(A,B′) Hq(A,B)✲j∗ Hq−1(B,B′),✲∂∗

Hq+1(A′, A) Hq(A,B′)✲∂∗ Hq(A′, B′)✲i∗

We have

rankHq−1(B,B′) + rankHq(A,B′) ≥ rankHq(A,B),
rankHq(A′, B′) + rankHq+1(A′, A) ≥ rankHq(A,B′).

Proof of Lemma 3.3. Take ε > 0 such that a < c − ε < c + ε < b and
c is the only critical value of F in [c − ε, c + ε]. Applying Lemma 3.4 to
Fa ⊂ Fc−ε ⊂ Fc+ε ⊂ Fb,

rankHq−1(Fc−ε, Fa) + rankHq+1(Fb, Fc+ε)
≥ rankHq(Fc+ε, Fc−ε)− rankHq(Fb, Fa).

But, by Chapter I, Theorem 4.3, Corollary 4.1, and Theorem 4.2 of Chang
[2],

rankHq−1(Fc−ε, Fa) ≤
∑

u∈Kc
a

rankCq−1(F, u),

rankHq+1(Fb, Fc+ε) ≤
∑

u∈Kb
c

rankCq+1(F, u),

rankHq(Fc+ε, Fc−ε) =
∑

u∈Kc

rankCq(F, u).

The following corollary generalizes Theorem 2.2 of Liu [7] and Theorem 5
of Brézis and Nirenberg [1]. See Remark 2.3 of Liu [7] and the remarks
following Theorem 4 and proof of Theorem 5 of Brézis and Nirenberg [1] for
the history of this result:
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Corollary 3.5 (Three Critical Point Theorem). Suppose that F has a local
(q, β)-linking near the origin and assume that F is bounded below. If q = 1
and β ≥ 2, or q ≥ 2, then F has at least two nontrivial critical points. If
q ≥ 2, then F has a nontrivial critical point which is not a local minimizer.

Proof. F achieves its minimum at some point u0 with

F (u0) ≤ 0 and rankCj(F, u0) = δj0

(for the critical groups of an isolated local minimum point see Example 1 in
Chapter I, Section 4 of Chang [2]). By Theorem 3.1,

Cq(F, 0) �= 0

and hence u0 �= 0. Supposing 0 and u0 to be the only critical points and
taking a < infX F and b = +∞ in Theorem 3.2, we have

β ≤ δq1.

If q ≥ 2, the critical point u �= 0 with either

Cq−1(F, u) �= 0 or Cq+1(F, u) �= 0

obtained in Theorem 3.2 is not a local minimizer.

4. Second-order Hamiltonian systems

Consider the second-order nonautonomous system

ẍ = ∇V (t, x)(2)

where V ∈ C1(R × R
�,R) is 2π-periodic in t and satisfies

(V1): there are constants µ > 2 and R > 0 such that

0 < µV (t, x) ≤ x · ∇V (t, x) for |x| ≥ R, ∀t,
(V2): there is a homogeneous function P ∈ C1(R�,R) of degree s > 2
such that

V (t, x) = P (x) + o(|x|s) at x = 0, uniformly in t.

Theorem 4.1. Assume (V1), (V2), and the following condition on P :

(P ): there are disjoint subsets Ã, S̃ of Sn−1 such that
1. for some positive integers q ≤ n and β, the rank of the embedding

Hq−1(Ã) −→ Hq−1(Sn−1\S̃) is at least β + δq1,
2. P < 0 on Ã,
3. P > 0 on S̃.

Then (2) has at least one nonzero 2π-periodic solution.

Remark 4.2. Our assumption (P ) generalizes the condition (P4) of Felmer
and Silva [3]. See Theorem 7 and the remark following it in Li and Willem
[6] for related results.
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Proof of Theorem 4.1. We seek solutions of (2) as critical points of the func-
tional

F (x) =
∫ 2π

0

[
1
2

|ẋ|2 + V (t, x(t))
]
dt

defined on the Hilbert space X of vector functions x(t) having period 2π and
belonging to H1 on [0, 2π], with the norm

‖x‖ = 1√
2π

[∫ 2π

0
|ẋ|2 + |x|2

]1/2

.

It is well-known that F satisfies (PS). As in the proof of Lemma 3.2 of Wang
[11], (V1) also implies that

Hj(X,Fa) = 0 ∀j ∈ Z

for a < 0 and |a| sufficiently large. The conclusion follows from Theorem 3.2
and the Lemma 4.3 below.

Lemma 4.3. If V satisfies (V2) with P as in Theorem 4.1, then F has a
local (q, β)-linking near the origin.

Proof. We have the splitting X = X1 ⊕X2 where X1 is the space of constant
functions, identified with R

�, and X2 is the space of functions in X whose
integral is zero. We take

U =
{
λx1 + x2 : x1 ∈ Sn−1, x2 ∈ X2, 0 ≤ λ ≤ ρ, ‖x2‖ ≤ ρ

}
,

A =
{
ρ x1 : x1 ∈ Ã

}
,

B =
{
λx1 : x1 ∈ Ã, 0 ≤ λ ≤ ρ

}
,

S =
{
λx1 + x2 : x1 ∈ S̃, x2 ∈ X2, 0 ≤ λ ≤ ρ, ‖x2‖ ≤ ρ

}
.

As in the proof of Proposition 2.1, F ≤ 0 on B for ρ > 0 sufficiently small.
On S\{0},

F (λx1 + x2) =
∫ 1

2
|ẋ2|2 + P (λx1 + x2) + o(1) |λx1 + x2|s as ρ → 0.

By the mean value theorem and the Young’s inequality,

P (λx1 + x2) = P (λx1) +∇P (λx1 + θ x2) · x2 for some θ ∈ [0, 1]
≥ λsP (x1)− C |λx1 + θ x2|s−1|x2|
≥ λs min

S̃
P − C

(
λ(s−1)p + |x2|p′

+ |x2|s
)

where p, p′ are conjugate exponents with 2 < p′ < s. It follows that

F (λx1 + x2) ≥ λs
(
2πmin

S̃
P − C ρ(s/p′−1)p + o(1)

)

+
∫ 1

2
|ẋ2|2 − C

(
‖x2‖p′

+ ‖x2‖s
)

> 0

on S for small ρ.
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Set U1 = {x1 ∈ X1 : |x1| ≤ ρ} and S1 =
{
λx1 : x1 ∈ S̃, 0 ≤ λ ≤ ρ

}
. As

in the proof of Proposition 2.1, the rank of the embedding Hq−1(A) −→
Hq−1(U1\S1) is at least β + δq1. The map

(t, λ x1 + x2) �−→ λx1 + (1− t)x2 0 ≤ t ≤ 1, x1 ∈ Sn−1\S̃, x2 ∈ X2,

0 < λ ≤ ρ, ‖x2‖ ≤ ρ

is a strong deformation retraction of U \S onto U1\S1, and hence the em-
bedding Hq−1(U1\S1) −→ Hq−1(U \S) is an isomorphism.

Remark 4.4. Note that Theorem 3.2 gives a critical point x with either

F (x) < 0 and Cq−1(F, x) �= 0, or

F (x) > 0 and Cq+1(F, x) �= 0,
yielding Morse index estimates for x via the Shifting theorem when V , and
hence F , is C2 (see Chapter I, Theorem 5.4 of Chang [2]): either

F (x) < 0 and m(x) ≤ q − 1 ≤ m∗(x), or

F (x) > 0 and m(x) ≤ q + 1 ≤ m∗(x)
where m(x) and m∗(x) = m(x) + dimker d2F (x) denote the Morse index
and the large Morse index of x, respectively. This additional information
can sometimes be used to distinguish x from the constant solutions, when
they exist.

Now we replace (V1) by the condition
(V1)′: V (t, x) → +∞ as |x| → ∞ uniformly in t,

which implies that F satisfies (PS) and is bounded below. Then Corollary
3.5 yields

Theorem 4.5. Assume (V1)′, (V2), and (P ). If q = 1 and β ≥ 2, or q ≥ 2,
then (2) has at least two nonzero 2π-periodic solutions.

Remark 4.6. See Theorems 7 and 7’ in Brézis and Nirenberg [1] for related
results.
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