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Using an abstract framework due to Clarke (1999), we prove the existence of
periodic solutions for second-order differential inclusions systems.

1. Introduction

Consider the second-order system

ü(t) = ∇F
(
t,u(t)

)
a.e. t ∈ [0,T ],

u(0)−u(T ) = u̇(0)− u̇(T ) = 0,
(1.1)

where T > 0 and F : [0,T ]×R
n → R satisfies the following assumption:

(A) F(t,x) is measurable in t for each x ∈ R
n and continuously differen-

tiable in x for a.e. t ∈ [0,T ], and there exist a ∈ C(R+,R+), b ∈ L1(0,T ;R
+)

such that ∣∣F(t,x)
∣∣ ≤ a

(‖x‖)b(t),

∥∥∇F(t,x)
∥∥ ≤ a

(‖x‖)b(t),
(1.2)

for all x ∈ R
n and a.e. t ∈ [0,T ].

Wu and Tang in [4] proved the existence of solutions for problem (1.1) when
F = F1 + F2 and F1, F2 satisfy some assumptions. Now we will consider
problem (1.1) in a more general sense. More precisely, our results represent the
extensions to systems with discontinuity (we consider the generalized gradients
unlike continuously gradient in classical results).
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2. Main results

Consider the second-order differential inclusions systems

ü(t) ∈ ∂F
(
t,u(t)

)
a.e. t ∈ [0,T ],

u(0)−u(T ) = u̇(0)− u̇(T ) = 0,
(2.1)

where T > 0, F : [0,T ]×R
n → R and ∂ denotes the Clarke subdifferential.

We suppose that F = F1 +F2 and F1, F2 satisfy the following assumption:
(A′) F1, F2 are measurable in t for each x ∈ R

n, at least F1 or F2 are strictly
differentiable in x and there exist k1 ∈ L2(0,T ;R) and k2 ∈ L2(0,T ;R) such
that ∣∣F1

(
t,x1

)−F1
(
t,x2

)∣∣ ≤ k1(t)
∥∥x1 −x2

∥∥,∣∣F2
(
t,x1

)−F2
(
t,x2

)∣∣ ≤ k2(t)
∥∥x1 −x2

∥∥,
(2.2)

for all x1,x2 ∈ R
n and all t ∈ [0,T ].

Theorem 2.1. Assume that F = F1 +F2, where F1, F2 satisfy assumption (A′)
and the following conditions:

(i) F1(t, ·) is (λ,µ)-subconvex with λ > 1/2 and µ < 2λ2 for a.e. t ∈ [0,T ];
(ii) there exist c1,c2 > 0 and α ∈ [0,1) such that

ζ ∈ ∂F2(t,x) �⇒ ‖ζ‖ ≤ c1‖x‖α +c2, (2.3)

for all x ∈ R
n and a.e. t ∈ [0,T ];

(iii)

1

‖x‖2α

[
1

µ

∫ T

0
F1(t,λx)dt +

∫ T

0
F2(t,x)dt

]
−→ ∞, as ‖x‖ −→ ∞. (2.4)

Then problem (2.1) has at least one solution which minimizes ϕ on H 1
T .

Remark 2.2. Theorem 2.1 generalizes [3, Theorem 1]. In fact, [3, Theorem 1]
follows from Theorem 2.1 letting F1 = 0.

Theorem 2.3. Assume that F = F1 +F2, where F1, F2 satisfy assumption (A′)
and the following conditions:

(iv) F1(t, ·) is (λ,µ)-subconvex for a.e. t ∈ [0,T ], and there exists γ ∈
L1(0,T ;R), h ∈ L1(0,T ;R

n) with
∫ T

0 h(t)dt = 0 such that

F1(t,x) ≥ 〈
h(t),x

〉+γ (t), (2.5)

for all x ∈ R
n and a.e. t ∈ [0,T ];

(v) there exist c1 > 0, c0 ∈ R such that

ζ ∈ ∂F2(t,x) �⇒ ‖ζ‖ ≤ c1, (2.6)
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for all x ∈ R
n and all t ∈ [0,T ], and∫ T

0
F2(t,x)dt ≥ c0, (2.7)

for all x ∈ R
n;

(vi)

1

µ

∫ T

0
F1(t,λx)dt +

∫ T

0
F2(t,x)dt −→ ∞, as ‖x‖ −→ ∞. (2.8)

Then problem (2.1) has at least one solution which minimizes ϕ on H 1
T .

Theorem 2.4. Assume that F = F1 +F2, where F1, F2 satisfy assumption (A′)
and the following conditions:

(vii) F1(t, ·) is (λ,µ)-subconvex for a.e. t ∈ [0,T ], and there exists γ ∈
L1(0,T ;R), h ∈ L1(0,T ;R

n) with
∫ T

0 h(t)dt = 0 such that

F1(t,x) ≥ 〈
h(t),x

〉+γ (t), (2.9)

for all x ∈ R
n and a.e. t ∈ [0,T ];

(viii) there exist c1,c2 > 0 and α ∈ [0,1) such that

ζ ∈ ∂F2(t,x) �⇒ ‖ζ‖ ≤ c1‖x‖α +c2, (2.10)

for all x ∈ R
n and a.e. t ∈ [0,T ];

(ix)

1

‖x‖2α

∫ T

0
F2(t,x)dt −→ ∞, as ‖x‖ −→ ∞. (2.11)

Then problem (2.1) has at least one solution which minimizes ϕ on H 1
T .

3. Preliminary results

We introduce some functional spaces. Let [0,T ] be a fixed real interval (0 <

T < ∞) and 1 < p < ∞. We denote by W
1,p
T the Sobolev space of functions

u ∈ Lp(0,T ;R
n) having a weak derivative u̇ ∈ Lp(0,T ;R

n). The norm over
W

1,p
T is defined by

‖u‖
W

1,p
T

=
(∫ T

0

∥∥u(t)
∥∥p

dt +
∫ T

0

∥∥u̇(t)
∥∥p

dt

)1/p

. (3.1)

We denote by H 1
T the Hilbert space W

1,2
T . We recall that

‖u‖Lp =
(∫ T

0

∥∥u(t)
∥∥p

dt

)1/p

, ‖u‖∞ = max
t∈[0,T ]

∥∥u(t)
∥∥. (3.2)

For our aims, it is necessary to recall some very well-known results (for proof
and details see [2]):
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Proposition 3.1. If u ∈ W
1,p
T then

‖u‖∞ ≤ c‖u‖
W

1,p
T

. (3.3)

If u ∈ W
1,p
T and

∫ T

0 u(t)dt = 0 then

‖u‖∞ ≤ c‖u̇‖Lp . (3.4)

If u ∈ H 1
T and

∫ T

0 u(t)dt = 0 then

‖u‖L2 ≤ T

2π
‖u̇‖L2 (Wirtinger’s inequality),

‖u‖2∞ ≤ T

12
‖u̇‖2

L2 (Sobolev inequality).

(3.5)

Proposition 3.2. If the sequence (uk)k converges weakly to u in W
1,p
T , then

(uk)k converges uniformly to u on [0,T ].

Let X be a Banach space. Now, following [1], for each x,v ∈ X, we define
the generalized directional derivative at x in the direction v of a given f ∈
Liploc(X,R) as

f 0(x;v) = lim sup
y→x,λ↘0

f (y +λv)−f (y)

λ
(3.6)

and denote x by

∂f (x) = {
x∗ ∈ X∗ : f 0(x;v) ≥ 〈

x∗,v
〉
, ∀v ∈ X

}
(3.7)

the generalized gradient of f at x (the Clarke subdifferential).
We recall the Lebourg’s mean value theorem (see [1, Theorem 2.3.7]). Let x

and y be points in X, and suppose that f is Lipschitz on an open set containing
the line segment [x,y]. Then there exists a point u in (x,y) such that

f (y)−f (x) ∈ 〈
∂f (u),y −x

〉
. (3.8)

Clarke considered in [1] the following abstract framework:

• let (T ,�,µ) be a positive complete measure space with µ(T ) < ∞,
and let Y be a separable Banach space;

• let Z be a closed subspace of Lp(T ;Y ) (for some p in [1,∞)), where
Lp(T ;Y ) is the space of p-integrable functions from T to Y ;

• we define a functional f on Z via

f (x) =
∫

T

ft

(
x(t)

)
µ(dt), (3.9)

where ft : Y → R, (t ∈ T ) is a given family of functions;
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• we suppose that for each y in Y the function t → ft (y) is measurable,
and that x is a point at which f (x) is defined (finitely).

Hypothesis 3.3. There is a function k in Lq(T ,R), (1/p+1/q = 1) such that,
for all t ∈ T , ∣∣ft

(
y1

)−ft

(
y2

)∣∣ ≤ k(t)
∥∥y1 −y2

∥∥
Y

∀y1,y2 ∈ Y. (3.10)

Hypothesis 3.4. Each function ft is Lipschitz (of some rank) near each point of
Y , and for some constant c, for all t ∈ T , y ∈ Y , one has

ζ ∈ ∂ft (y) �⇒ ‖ζ‖Y ∗ ≤ c
{
1+‖y‖p−1

Y

}
. (3.11)

Under the conditions described above Clarke proved (see [1, Theorem 2.7.5]):

Theorem 3.5. Under either of Hypotheses 3.3 or 3.4, f is uniformly Lipschitz
on bounded subsets of Z, and there is

∂f (x) ⊂
∫

T

∂ft

(
x(t)

)
µ(dt). (3.12)

Further, if each ft is regular at x(t) then f is regular at x and equality holds.

Remark 3.6. The function f is globally Lipschitz on Z when Hypothesis 3.3
holds.

Now we can prove the following result.

Theorem 3.7. Let F : [0,T ] × R
n → R such that F = F1 + F2 where F1,

F2 are measurable in t for each x ∈ R
n, and there exist k1 ∈ L2(0,T ;R),

a ∈ C(R+,R+), b ∈ L1(0,T ;R
+), c1, c2 > 0, and α ∈ [0.1) such that∣∣F1

(
t,x1

)−F1
(
t,x2

)∣∣ ≤ k1(t)
∥∥x1 −x2

∥∥, (3.13)∣∣F2(t,x)
∣∣ ≤ a

(‖x‖)b(t), (3.14)

ζ ∈ ∂F2(t,x) �⇒ ‖ζ‖ ≤ c1‖x‖α +c2, (3.15)

for all t ∈ [0,T ] and all x,x1,x2 ∈ R
n. We suppose that L : [0,T ]×R

n×R
n →

R is given by L(t,x,y) = (1/2)‖y‖2 +F(t,x).
Then, the functional f : Z ∈ R, where

Z =
{
(u,v) ∈ L2(0,T ;Y ) : u(t) =

∫ t

0
v(s)ds +c, c ∈ R

n

}
(3.16)

given by f (u,v) = ∫ T

0 L(t,u(t),v(t))dt , is uniformly Lipschitz on bounded
subsets of Z and

∂f (u,v) ⊂
∫ T

0

{
∂F1

(
t,u(t)

)+∂F2
(
t,u(t)

)}×{
v(t)

}
dt. (3.17)
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Proof. Let L1(t,x,y) =F1(t,x), L2(t,x,y) =(1/2)‖y‖2+F2(t,x), and f1,f2 :
Z → R given by f1(u,v) = ∫ T

0 L1(t,u(t),v(t))dt , f2(u,v) = ∫ T

0 L2(t,u(t),

v(t))dt . For f1 we can apply Theorem 3.5 under Hypothesis 3.3, with the fol-
lowing cast of characters:

• (T ,�,µ) = [0,T ] with Lebesgue measure, Y = R
n ×R

n is the Hilbert
product space (hence is separable);

• p = 2 and

Z =
{
(u,v) ∈ L2(0,T ;Y ) : u(t) =

∫ t

0
v(s)ds +c, c ∈ R

n

}
(3.18)

is a closed subspace of L2(0,T ;Y );
• ft (x,y) = L1(t,x,y) = F1(t,x); in our assumptions it results that the

integrand L1(t,x,y) is measurable in t for a given element (x,y) of Y

and there exists k ∈ L2(0,T ;R) such that∣∣L1
(
t,x1,y1

)−L1
(
t,x2,y2

)∣∣ = ∣∣F1
(
t,x1

)−F1
(
t,x2

)∣∣
≤ k1(t)

∥∥x1 −x2
∥∥

≤ k1(t)
(∥∥x1 −x2

∥∥+∥∥y1 −y2
∥∥)

= k1(t)
∥∥(

x1,y1
)−(

x2,y2
)∥∥

Y
,

(3.19)

for all t ∈ [0,T ] and all (x1,y1), (x2,y2) ∈ Y . Hence f1 is uniformly
Lipschitz on bounded subsets of Z and one has

∂f1(u,v) ⊂
∫ T

0
∂L1

(
t,u(t),v(t)

)
dt. (3.20)

For f2 we can apply Theorem 3.5 under Hypothesis 3.4 with the same cast
of characters, but now ft (x,y) = L2(t,x,y) = (1/2)‖y‖2 + F2(t,x). In our
assumptions, it results that the integrand L2(t,x,y) is measurable in t for a
given element (x,y) of Y and locally Lipschitz in (x,y) for each t ∈ [0,T ].

Proposition 2.3.15 in [1] implies

∂L2(t,x,y) ⊂ ∂xL2(t,x,y)×∂yL2(t,x,y) = ∂F2(t,x)×y. (3.21)

Using (3.15) and (3.21), if ζ = (ζ1,ζ2) ∈ ∂L2(t,x,y) then ζ1 ∈ ∂F2(t,x) and
ζ2 = y, and hence

‖ζ‖ = ∥∥ζ1
∥∥+∥∥ζ2

∥∥ ≤ c1‖x‖α +c2 +‖y‖ ≤ c̃
{
1+∥∥(x,y)

∥∥}
, (3.22)

for each t ∈ [0,T ]. Hence f2 is uniformly Lipschitz on bounded subsets of Z

and one has

∂f2(u,v) ⊂
∫ T

0
∂L2

(
t,u(t),v(t)

)
dt. (3.23)
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It follows that f = f1 + f2 is uniformly Lipschitz on the bounded subsets
of Z.

Propositions 2.3.3 and 2.3.15 in [1] imply that

∂f (u,v) ⊂ ∂f1(u,v)+∂f2(u,v)

⊂
∫ T

0

[
∂L1

(
t,u(t),v(t)

)+∂L2
(
t,u(t),v(t)

)]
dt

⊂
∫ T

0

[(
∂xL1

(
t,u(t),v(t)

)×∂yL1
(
t,u(t),v(t)

))

+(
∂xL2

(
t,u(t),v(t)

)×∂yL2
(
t,u(t),v(t)

))]
dt

⊂
∫ T

0

[(
∂xL1

(
t,u(t),v(t)

)+∂xL2
(
t,u(t),v(t)

))

×(
∂yL1

(
t,u(t),v(t)

)+∂yL2
(
t,u(t),v(t)

))]
dt

=
∫ T

0

(
∂F1

(
t,u(t)

)+∂F2
(
t,u(t)

))×{
v(t)

}
dt.

(3.24)

Moreover, Corollary 1 of Proposition 2.3.3 in [1] implies that, if at least one of
the functions F1, F2 is strictly differentiable in x for all t ∈ [0,T ] then

∂f (u,v) ⊂
∫ T

0
∂F

(
t,u(t)

)×{
v(t)

}
dt. (3.25)

�

Remark 3.8. The interpretation of expression (3.25) is that if (u0,v0) is an
element of Z (so that v0 = u̇0) and if ζ ∈ ∂f (u0,v0), we deduce the existence
of a measurable function (q(t),p(t)) such that

q(t) ∈ ∂F
(
t,u0(t)

)
, p(t) = v0(t) a.e. on [0,T ] (3.26)

and for any (u,v) in Z, one has

〈
ζ,(u,v)

〉 =
∫ T

0

{〈
q(t),u(t)

〉+ 〈
p(t),v(t)

〉}
dt. (3.27)

In particular, if ζ = 0 (so that u0 is a critical point for ϕ(u) = ∫ T

0 [(1/2)‖u̇(t)‖2+
F(t,u(t))]dt), it then follows easily that q(t) = ṗ(t) a.e., or taking into account
(3.26)

ü0(t) ∈ ∂F
(
t,u0(t)

)
a.e. on [0,T ], (3.28)

so that u0 satisfies the inclusions system (2.1).

Remark 3.9. Of course, if F is continuously differentiable in x, then system
(2.1) becomes system (1.1).



158 Periodic solutions

4. Proofs of the theorems

Proof of Theorem 2.1. From assumption (A′) it follows immediately that there
exist a ∈ C(R+,R+), b ∈ L1(0,T ;R

+) such that∣∣F1(t,x)
∣∣ ≤ a

(‖x‖)b(t), (4.1)

for all x ∈ R
n and all t ∈ [0,T ]. Like, in [4], we obtain

F1(t,x) ≤ (
2µ‖x‖β +1

)
a0b(t), (4.2)

for all x ∈ R
n and all t ∈ [0,T ], where β < 2 and a0 = max0≤s≤1 a(s).

For u ∈ H 1
T , let ū = (1/T )

∫ T

0 u(t)dt and ũ = u− ū. From Lebourg’s mean
value theorem it follows that for each t ∈ [0,T ] there exist z(t) in (ū,u(t))

and ζ ∈ ∂F2(t,z(t)) such that F2(t,u(t))−F2(t, ū) = 〈ζ, ũ(t)〉. It follows from
(2.3) and Sobolev’s inequality that

∣∣∣∣
∫ T

0

[
F2

(
t,u(t)

)−F2(t, ū)
]
dt

∣∣∣∣
≤

∫ T

0

∣∣F2
(
t,u(t)

)−F2(t, ū)
∣∣dt ≤

∫ T

0
‖ζ‖∥∥ũ(t)

∥∥dt

≤
∫ T

0

[
2c1

(‖ū‖α +∥∥ũ(t)
∥∥α)+c2

]∥∥ũ(t)
∥∥dt

≤ 2c1T ‖ũ‖∞‖ū‖α +2c1T ‖ũ‖α+1∞ +c2T ‖ũ‖∞

≤ 3

T
‖ũ‖2∞ + T 3

3
c2

1‖ū‖2α +2c1T ‖ũ‖α+1∞ +c2T ‖ũ‖∞

≤ 1

4
‖u̇‖2

L2 +C1‖u̇‖α+1
L2 +C2‖u̇‖L2 +C3‖ū‖2α,

(4.3)

for all u ∈ H 1
T and some positive constants C1, C2, and C3. Hence we have

ϕ(u) ≥ 1

2

∫ T

0

∥∥u̇(t)
∥∥2

dt + 1

µ

∫ T

0
F1(t,λū)dt −

∫ T

0
F1

(
t,−ũ(t)

)
dt

+
∫ T

0
F2(t, ū)dt +

∫ T

0

[
F2

(
t,u(t)

)−F2(t, ū)
]
dt

≥ 1

4
‖u̇‖2

L2−C1‖u̇‖α+1
L2 −C2‖u̇‖L2−C3‖ū‖2α−(

2µ‖ũ‖β∞+1
)∫ T

0
a0b(t)dt

+ 1

µ

∫ T

0
F1(t,λū)dt +

∫ T

0
F2(t, ū)dt
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≥ 1

4
‖u̇‖2

L2 −C1‖u̇‖α+1
L2 −C2‖u̇‖L2 −C4‖u̇‖β

L2 −C5

+‖ū‖2α

{
1

‖ū‖2α

[
1

µ

∫ T

0
F1(t,λū)dt +

∫ T

0
F2(t, ū)dt

]
−C3

}
(4.4)

for all u ∈ H 1
T , which implies that ϕ(u) → ∞ as ‖u‖ → ∞ by (2.4) because

α < 1, β < 2, and the norm ‖u‖ = (‖ū‖2 +‖u̇‖2
L2)

1/2 is an equivalent norm on

H 1
T . Now we write ϕ(u) = ϕ1(u)+ϕ2(u) where

ϕ1(u) = 1

2

∫ T

0

∥∥u̇(t)
∥∥2

dt, ϕ2(u) =
∫ T

0
F

(
t,u(t)

)
dt. (4.5)

The function ϕ1 is weakly lower semi-continuous (w.l.s.c.) on H 1
T . From (i),

(ii), and Theorem 3.5, taking into account Remark 3.6 and Proposition 3.2, it
follows that ϕ2 is w.l.s.c. on H 1

T . By [2, Theorem 1.1], it follows that ϕ has a
minimum u0 on H 1

T . Evidently, Z � H 1
T and ϕ(u) = f (u,v) for all (u,v) ∈ Z.

From Theorem 3.7, it results that f is uniformly Lipschitz on bounded subsets
of Z, and therefore ϕ possesses the same properties relative to H 1

T . Proposition
2.3.2 in [1] implies that 0 ∈ ∂ϕ(u0) (so that u0 is a critical point for ϕ). Now
from Theorem 3.7 and Remark 3.8 it follows that problem (2.1) has at least one
solution u ∈ H 1

T . �

Proof of Theorem 2.3. Let (uk) be a minimizing sequence of ϕ. It follows from
(iv), (v), Lebourg’s mean value theorem, and Sobolev inequality, that

ϕ
(
uk

) ≥ 1

2

∥∥u̇k

∥∥2
L2 +

∫ T

0

〈
h(t),uk(t)

〉
dt +

∫ T

0
γ (t)dt

+
∫ T

0
F2

(
t, ūk

)
dt −

∫ T

0
‖ζ‖∥∥ũk(t)

∥∥dt

≥ 1

2

∥∥u̇k

∥∥2
L2 −∥∥ũk

∥∥∞
∫ T

0

∥∥h(t)
∥∥dt

+
∫ T

0
γ (t)dt −c1

∥∥ũk

∥∥∞ +c0

≥ 1

2

∥∥u̇k

∥∥2
L2 −c2

∥∥u̇k

∥∥
L2 −c3,

(4.6)

for all k and some constants c2, c3, which implies that (ũk) is bounded. On the
other hand, in a way similar to the proof of Theorem 2.1, one has

∣∣∣∣
∫ T

0

[
F2

(
t,u(t)

)−F2(t, ū)
]
dt

∣∣∣∣ ≤ 1

4
‖u̇‖2

L2 +C1‖u̇‖L2 , (4.7)
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for all k and some positive constant C1, which implies that

ϕ
(
uk

) ≥ 1

2

∥∥u̇k

∥∥2
L2 + 1

µ

∫ T

0
F1

(
t,λūk

)
dt −

∫ T

0
F1

(
t,−ũk(t)

)
dt

+
∫ T

0
F2

(
t, ūk

)
dt +

∫ T

0

[
F2

(
t,u(t)

)−F2
(
t, ūk

)]
dt

≥ 1

4

∥∥u̇k

∥∥2
L2 −a

(∥∥ũk

∥∥∞
)∫ T

0
b(t)dt −C1

∥∥u̇k

∥∥
L2

+ 1

µ

∫ T

0
F1

(
t,λūk

)
dt +

∫ T

0
F2

(
t, ūk

)
dt,

(4.8)

for all k and some positive constant C1. It follows from (vi) and the boundedness
of (ũk) that (ūk) is bounded. Hence ϕ has a bounded minimizing sequence (uk).
This completes the proof. �

Proof of Theorem 2.4. From (vii), (3.26), and Sobolev’s inequality it follows
that

ϕ(u) ≥ 1

2
‖u̇‖2

L2 +
∫ T

0

〈
h(t),u(t)

〉
dt +

∫ T

0
γ (t)dt

+
∫ T

0
F2(t, ū)dt +

∫ T

0

[
F2

(
t,u(t)

)−F2(t, ū)
]
dt

≥ 1

4
‖u̇‖2

L2 −‖ũ‖∞
∫ T

0

∥∥h(t)
∥∥dt +

∫ T

0
γ (t)dt

−C1‖u̇‖α+1
L2 −C2‖u̇‖L2 +

∫ T

0
F2(t, ū)dt −C3‖ū‖2α

≥ 1

4
‖u̇‖2

L2 −C1‖u̇‖α+1
L2 −C4

(‖u̇‖L2 +1
)

+‖ū‖2α

[
1

‖ū‖2α

∫ T

0
F2(t, ū)dt −C3

]
,

(4.9)

for all u ∈ H 1
T and some positive constants C1, C3, and C4. Now it follows

like in the proof of Theorem 2.1 that ϕ is coercive by (ix), which completes the
proof. �
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