
DYNAMICS OF FLEXIBLE SHELLS AND
SHARKOVSKIY’S PERIODICITY

VADIM A. KRYSKO, JAN AWREJCEWICZ, NATALYA E. SAVELEVA,

AND ANTON V. KRYSKO

Received 15 December 2005; Revised 6 June 2006; Accepted 14 June 2006

Complex vibration of flexible elastic shells subjected to transversal and sign-changeable
local load in the frame of nonlinear classical theory is studied. A transition from
partial to ordinary differential equations is carried out using the higher-order Bubnov-
Galerkin approach. Numerical analysis is performed applying theoretical background of
nonlinear dynamics and qualitative theory of differential equations. Mainly the so-called
Sharkovskiy periodicity is studied.
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1. Fundamental relations of flexible shells theory

We investigate a shallow shell which occupied three-dimensional subspace of a space R3

using a curvilinear system of coordinates x, y, z introduced in the following way. In the
shell body the middle surface is fixed for z = 0; axes ox and oy are directed along the
main curvatures of this surface, whereas the oz axis is oriented into the curvature centre
(Figure 1.1). In the given coordinates the shell is treated as the three-dimensional object
Ω defined as follows:

Ω= {x, y,z/(x, y,z)∈ [0,α]× [0,β]× [−h/2,h/2]
}
. (1.1)

We assume that the Lamè coefficients,A, B, and radii of the middle surface R1, R12, and R2

are continuous functions of x, y and their first derivatives. In contrary to the main radii
R1, R2, the radii directed in x, y are denoted by primes. Normal coordinate to the middle
surface is denoted by z. Positive orientation of coordinates is shown in Figure 1.1. It is
assumed that h(x, y) does not have first-order discontinuities, and the maximal thickness
hmax ≡ h0 is sufficiently smaller than a smallest main curvature radius Rmin. We assume
that the quantity h0/Rmin can be neglected in comparison to 1. Shells satisfying this as-
sumption are called thin shells. We assume that the straight normal hypothesis holds
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Figure 1.1

(Kirchhoff-Love hypothesis). We use the following differential equations and deforma-
tion continuity:
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System of (1.2) is reduced to the nondimensional form by introduction of the nondi-
mensional quantities: w = hw, F = Eh2F, t = t0t, ε = ε/τ. Furthermore, for a spherical
rectangular and cylindrical panels we have
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where a and b are shell dimensions associated with x and y, respectively. For a closed
cylindrical shell we have

x = Lx, y = Ry, ky = ky h
R2

(
kx = 0

)
, q = q Eh

4

L2R2
,

px = px
Eh3

R2
, py = py

Eh3

L2
, τ = LR

h

√
ρ

Eg
, M = k2

y , λ= L

R
,

(1.5)

where L and R = Ry denote length and radius of the shell, respectively. In addition t
denotes time, ε denotes the damping coefficient of a shell surrounding medium, μ= 0.3,
and px(t), py(t)are longitudinal loads, whereas q(x, y, t) is the transversal load. Now and
further bars standing over nondimensional quantities are omitted.

The following boundary conditions are added to (1.2):

w = 0,
∂2w

∂x2
= 0, F = 0,

∂2F

∂x2
= 0 for x = 0;1,

w = g(x, y, t),
∂2w

∂y2
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∂2F

∂y2
= z(x, y, t) for y = 0; ξ,

(1.6)

which describe ball-type support on the shell-end face with occurrence of flexible ribs. We
take ξ = 2π for a closed cylindrical shell, and ξ = 1 for both cylindrical and spherical pan-
els. Note that an occurrence of nonhomogeneities of the boundary conditions occurred
in second rows (for y = 0; ξ) exhibits existence of initial imperfections and stresses in the
shell. The following initial conditions are attached:

w|t=0 =w0, ẇ|t=0 = 0. (1.7)

2. The Bubnov-Galerkin algorithm

In order to solve equations the functions w and F, being their solutions, are approxi-
mated by an analytical solution containing a finite number of arbitrary parameters in the
following form:

w =
N1∑

i=0

N2∑

j=0

Aij(t)ϕij(x, y), F =
N1∑

i=0

N2∑

j=0

Bij(t)ψij(x, y), (2.1)

and the initial conditions (1.7) are applied.
In order to find an approximate value of elements w and F, the following coordinate

function systems are taken: {ϕij(x, y),ψij(x, y)} (i, j = 0,1,2, . . .) in (2.1), which satisfy the
following requirements:

(1) ϕij(x, y)∈HA, ψij(x, y)∈HA, where HA is a Hilbert space, which is also referred
as an energetic space;

(2) for all i and j both functions ϕij(x, y) and ψij(x, y) are linearly independent, con-
tinuous together with their partial derivatives to the fourth order in Ω;
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(3) ϕij(x, y) and ψij(x, y) satisfy the main boundary conditions (and initial condi-
tions) exactly;

(4) ϕij(x, y) and ψij(x, y) are complete in HA;
(5) ϕij(x, y) and ψij(x, y) should representN first elements of the complete functions

system.
Coefficients Aij(t) and Bij(t) are being the sought functions. Let us denote left-hand

sides of system (1.2) by φ1 and φ2, respectively,
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Applying the Bubnov-Galerkin procedure to (2.2) one gets
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The symbol
∑

rs [∗] standing before each equation of system (2.4) shows that this
equation is understood as a system of rs such equations, and the integrals of the Bubnov-
Galerkin approach follow:
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Integrals (2) (excluding Qrs, when a transversal load is not applied to the whole shell
surface) are computed with respect to the whole middle shell surface. After application
of the Bubnov-Galerkin method a system of ordinary differential equations with respect
to the functions Aij(t) and Bij(t) is obtained, which possesses the following matrix form:

G(Ä + εȦ) + HA + WA + C1B + D1AB=Qq(t),

C2A + PB + D2AA= 0,
(2.6)

where H = ‖Hijrs‖, G = ‖Gijrs‖, C1 = ‖C1i jrs‖, C2 = ‖C2i jrs‖, D1 = ‖D1i jklrs‖, D2 =
‖D2i jklrs‖, W = ‖Wijrs‖, P = ‖Pi jrs‖—square matrices with dimensions 2 ·N1 ·N2 × 2 ·
N1 ·N2, A= ‖Aij‖, B= ‖Bij‖, Q= ‖Qij‖—matrices of dimensions 2 ·N1 ·N2× 1.

Second equation of the system (2.6) is computed with respect to B by using the inverse
matrix method on each time step as follows:

B= [−P−1D2A−P−1C2
]

A. (2.7)

Multiplying the first equation of system (2.6) by G−1 and denoting Ȧ= R, one gets the
following first-order differential equations:

Ȧ= R,

Ṙ=−εR− [G−1C1 + G−1D1A
] ·B−G−1HA−G−1WA + G−1Qq(t).

(2.8)

Observe that the mentioned operation is allowed, since the inversed matrices G−1 and
P−1 exist, if the coordinate functions are linearly independent.

Boundary (1.6) and initial (1.7) conditions are added to (2.8), and the defined Cauchy
problem is solved by the fourth order Runge-Kutta method. A computational time step
is chosen using the Runge principle.

3. Sharkovskiy periodicity exhibited by the obtained differential equations

A fundamental question of turbulence follows: how to predict turbulence occurrence us-
ing stability and equilibrium concepts? Feigenbaum investigated intervals between suc-
cessive bifurcations (period-doubling bifurcations) using a quadratic function, referred
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to as a logistic map of the form y = x2 + c. The obtained result by Feigenbaum is a
universal one. Period-doubling scenario occurs not only for the iterations of cx(1− x)
but also in a wide class of mappings of an interval into itself like x2 + c, c · sin(πx) and
cx2 · sin(πx), defined on the appropriate intervals.

The following question arises: are there any other periodic orbits? They should be
repellors, since in a map only attractors can be shown. It occurs that an occurrence of
an orbit of period 3 implies an occurrence of the orbits with the periods n= 1,2,3, . . . . A
role of period 3 orbit has been studied by Li and Yorke [1]. However, their considerations
belong to a particular case of the Sharkovskiy theorem published in [2].

Theorem 3.1 (Sharkovskiy [2]). Let I be a finite or infinite interval in R. Assume that the
mapping f : Z → I is continuous. If there exists a point f of period n, then there is also a
point f of period k for every integer positive number k, k > n, belonging to the following
Sharkovskiy series:

3, 5, 7, 9, . . .

2 · 3, 2 · 5, 2 · 7, 2 · 9, . . .

22 · 3, 22 · 5, 22 · 7, 22 · 9, . . .

···
. . . , 2n, . . . , 22,21,1.

(3.1)

Remark 3.2. If there exists an orbit of an odd period larger than one, then the number of
different periods is infinite.

The Sharkovskiy theorem is applicable only for real function given on a real inter-
val. If, for instance, a function f is defined by rotation of each circle point on the angle
of 2/n, then orbits of all points have one and only one period n. In this case any other
periods do not exist at all, and consequently, the Sharkovskiy theorem cannot be ap-
plied.

A construction of one-dimensional transformation for simple dynamical systems al-
lows one to get qualitatively similar bifurcation mechanisms of transition of mechanical
systems into chaos. In the case of a complex continual mechanical system, one may get
a similar picture only in the case when it is approximated by one degree-of-freedom sys-
tem. Although for continual systems, dynamics is of more complexity, but on the dia-
grams exhibiting vibration character versus the control parameters {q0,ωp} one may also
find subspaces with periods 3;2 · 3;5;2 · 5;7;9;11;13; . . . . Motivated by numerical com-
putation we believe that the Sharkovskiy theorem can be extended to fit more complex
class of functions governing nonlinear dynamics of shells.

Investigating vibrations of a cylindrical shell with ky = 112.5 and λ = 3 subjected to
transversal sign-changing load q = q0 sin(ωpt) applied to zone width ϕ0 = 6, among cha-
otic zones, also periodic windows belonging to Sharkovskiy’s series are found. Time his-
tories (signals) in the shell center, phase portraits, power spectra, and Poincaré maps,
as well as the modal characteristics w(wyy) for the orbits mentioned in the Sharkovskiy
theorem are further reported.
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Table 3.1. Indicators of chaos.
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In Table 3.1 the following Sharkovskiy series is shown: 3;5;22 · 5;9. It should be em-
phasized that the so called Sharkovskiy series is not followed from each other, but they
should be separated from the parameters {q0,ω0} space. The following scenarios are de-
tected. In the case of period tripling a partition to three equal parts of the signal is ob-
served; for period 5 we deal with 5 equal parts, and so on. In Poincaré maps one observes
3;5;22 · 5;9 points. In a phase portrait period doubling is observed too. The mentioned
orbits are situated in the windows of regularity occurred in chaos and their structure is
the same in the whole studied manifold.

Investigating complex vibrations of cylindrical panels subject to a longitudinal sign-
changing two parameters excitation of the form px = p0 sin(ωpt) and py = α · px for
ky = 24 and α = 3, besides chaotic zones, also periodic orbits being members of the
Sharkovskiy series are detected. In Table 3.2 power spectra of the orbits mentioned in
the Sharkovskiy theorem as well as the Sharkovskiy series 3;2 · 3;5;2 · 5;7;2 · 7;11;13 are
shown.

It should be emphasized that similar dynamical behavior has been found for both
cylindrical panel as well as closed cylindrical shell.



8 Dynamics of flexible shells and Sharkovskiy’s periodicity

Table 3.2. Power spectra.

�3.5

�9

S

0 7.5 15
ω

ωp

p0 = 12.2, ωp = 13.41

�4

�12

S

0 3 6
ω

ωp

p0 = 3.02, ωp = 4.11

�3.5

�9

S

0 7.5 15
ω

ωp

p0 = 8.68, ωp = 13.41

�3.5

�9

S

0 7.5 15
ω

ωp

p0 = 9.34, ωp = 13.41

�4

�12

S

0 7.5 15
ω

ωp

p0 = 3.5, ωp = 13.41

�2.5

�9

S

0 7.5 15
ω

ωp

p0 = 15.3, ωp = 13.41

�4

�12

S

0 7.5 15
ω

ωp

p0 = 10.3, ωp = 13.41

�12

S

0 7
ω

ωp

p0 = 6.192, ωp = 7.12

3 5 7 11

9

2 � 3 2 � 5 2 � 7 13

4. Concluding remarks

The Sharkovskiy periodicity for differential equations governing dynamics of flexible
shells is reported. In the case of vibrations of the closed cylindrical shell subjected to
uniformly distributed transversal load q = q0 sin(ωpt), in addition to the chaotic zones
also the so-called Sharkovskiy series 3;5;22 · 5;9, have been detected. On the other hand,
investigating the cylindrical panel subjected to longitudinal two-parameters load chaotic
and periodic (being members of the Sharkovskiy series 3;2 · 3;5;2 · 5;7;2 · 7;11;13) orbits
have been detected.
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