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Let D be a bounded domain in Rn (n ≥ 2). We consider the following nonlinear elliptic
problem: Δu = f (·,u) in D (in the sense of distributions), u|∂D = ϕ, where ϕ is a non-
negative continuous function on ∂D and f is a nonnegative function satisfying some
appropriate conditions related to some Kato class of functions K(D). Our aim is to prove
that the above problem has a continuous positive solution bounded below by a fixed har-
monic function, which is continuous on D. Next, we will be interested in the Dirichlet
problem Δu=−ρ(·,u) inD (in the sense of distributions), u|∂D = 0, where ρ is a nonneg-
ative function satisfying some assumptions detailed below. Our approach is based on the
Schauder fixed-point theorem.

Copyright © 2006 Faten Toumi. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let D be a bounded C1,1-domain in Rn (n ≥ 2), and let G be the Green function for
the Laplace operator with zero Dirichlet boundary condition on ∂D. In [4], Chung and
Zhao have established interesting inequalities for the Green functionG. In particular, they
showed that there exists a constant C > 0 such that for each x, y in D,

1
C
H(x, y)≤G(x, y)≤ CH(x, y), (1.1)

where

H(x, y) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
|x− y|n−2

min

(

1,
δ(x)δ(y)
|x− y|2

)

, if n≥ 3,

Log

(

1 +
δ(x)δ(y)
|x− y|2

)

, if n= 2,

(1.2)

and δ(x) denotes the Euclidean distance between x and ∂D.
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2 Nonlinear elliptic problems

Another crucial inequality for the Green function G called 3G-theorem is given by
Kalton and Verbitsky [7] for n ≥ 3 and by Selmi [12] for n = 2, namely, there exists a
constant C0 > 0 depending only on D such that for all x, y, and z in D,

G(x,z)G(z, y)
G(x, y)

≤ C0

(
δ(z)
δ(x)

G(x,z) +
δ(z)
δ(y)

G(y,z)

)

. (1.3)

This 3G-theorem was investigated by Mâagli and Zribi [10], Zeddini [13], and Mâagli
and Mâatoug [9] to introduce a new class of functions denoted by K(D), (see Definition
1.1 below), which contains properly the classical Kato class introduced by Aizenman and
Simon [1]. Moreover, they used the properties of functions belonging to this class K(D)
to study some nonlinear differential equations.

Definition 1.1. A Borel measurable function q in D belongs to the class K(D) if q satisfies

lim
α→0

(

sup
x∈D

∫

D∩B(x,α)

δ(y)
δ(x)

G(x, y)
∣
∣q(y)

∣
∣dy

)

= 0. (1.4)

In this paper, we will exploit the properties pertaining to K(D) to give some results
about the existence of positive solutions of nonlinear elliptic problems. Our plan is as
follows.

In Section 2, we establish some estimates on the Green functionG and some properties
of functions belonging to the Kato class K(D).

In Section 3, we are concerned with the existence of positive continuous solutions of
the nonlinear elliptic problem

Δu= f (·,u) (in the sense of distributions),

u > 0 in D, u|∂D = ϕ,
(1.5)

where ϕ is a nontrivial nonnegative continuous function on ∂D. Then, we fix a nontrivial
nonnegative harmonic function h0 in D, which is continuous in D, and we suppose that
f satisfies the following hypotheses.

(H1) f : D× (0,+∞)→ [0,+∞) is measurable, continuous with respect to the second
variable and satisfies

f (x, t)≤ θ(x, t), for (x, t)∈D× (0,+∞), (1.6)

where θ is a nonnegative measurable function on D× (0,+∞) such that the func-
tion t→ θ(x, t) is nonincreasing on (0,+∞).

(H2) The function ψ defined on D by ψ(x) = θ(x,h0(x))/h0(x) belongs to the class
K(D).

Remark 1.2. Note that the condition “∀c > 0, θ(·,cδ(·))/δ(·) ∈ K(D)” implies the hy-
pothesis (H2). Indeed, from [14], there exists c > 0 such that for each x ∈ D, h0(x) ≥
cδ(x). So, using the fact that t→ θ(x, t)/t is nonincreasing function on (0,+∞), we obtain
(H2).
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Under the assumptions (H1)-(H2), we aim at proving the following result: there exists
a constant c > 1 such that if ϕ≥ ch0 on ∂D, then problem (1.5) has a positive continuous
solution u satisfying for each x ∈D,

h0(x)≤ u(x)≤HDϕ(x), (1.7)

where HDϕ is the harmonic continuous function having boundary value ϕ on ∂D.
This result improves the one of Atherya [2], who considered the following problem:

Δu= g(u) in Ω, u|∂Ω = ϕ, (P)

whereΩ is a simply connected boundedC2-domain inRn(n≥ 3) and g(u)≤max(1,u−α),
for 0 < α < 1. He proved the existence of a positive continuous solution bounded below
by a fixed positive harmonic function h0 provided that there exists a positive constant
c > 1 such that ϕ≥ ch0 on ∂D.

In the last section, we will study the following nonlinear problem:

Δu=−ρ(·,u) in D (in the sense of distributions), u|∂D = 0, (1.8)

where ρ is required to verify the following hypotheses.
(H3) ρ is nonnegative Borel measurable function on D× (0,∞), continuous with re-

spect to the second variable.
(H4) There exist p,q : D→ (0,∞) nontrivial Borel measurable functions and h,k : (0,

∞)→ [0,∞) nontrivial and nondecreasing Borel measurable functions satisfying

p(x)h(t)≤ ρ(x, t)≤ q(x)k(t), for (x, t)∈D× (0,∞), (1.9)

such that
(A1) p ∈ L1

loc(D),
(A2) q ∈ K(D),
(A3) limt→0+ (h(t)/t)= +∞,
(A4) limt→+∞(k(t)/t)= 0.

Under these hypotheses, we will prove that (1.8) has a positive continuous solution u
satisfying on D,

aδ(x)≤ u(x)≤ b, (1.10)

where a, b are positive constants.
Problem (1.8) has been studied by Dalmasso [5] on the unit ball with more restrictive

conditions on ρ. Indeed, Dalmasso proved the existence of positive solutions provided
that ρ is nondecreasing with respect to the second variable and satisfies

lim
t→0+

(

min
x∈B

ρ(x, t)
t

)

= +∞, lim
t→+∞

(

max
x∈B

ρ(x, t)
t

)

= 0. (1.11)

When ρ(x, t)= ρ(|x|, t), he showed the uniqueness of positive radial solution of (1.8).
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On the other hand, problem (1.8) has been studied on the entire space Rn by Brezis
and Kamin [3] for the special nonlinearity ρ(x, t)= ν(x)tα, 0 < α < 1. More precisely they
proved the existence and the uniqueness of positive solution for the problem below:

Δu=−ν(x)uα in Rn lim
|x|→∞

inf u= 0. (1.12)

Notations and preliminaries. In order to simplify our statement, we adopt the following
notations.

(i) C0(D) := { f ∈ C(D) : limx→∂D f (x)= 0}.
We note that C0(D) is a Banach space endowed with the uniform norm

‖ f ‖∞ = sup
x∈D

∣
∣ f (x)

∣
∣. (1.13)

(ii) Let f and g be two nonnegative functions on a set S.
We call f ∼ g, if there exists a constant c > 0 such that

1
c
g(x)≤ f (x)≤ cg(x) ∀x ∈ S. (1.14)

We call f � g, if there exists a constant c > 0 such that

f (x)≤ cg(x) ∀x ∈ S. (1.15)

(iii) Let f be a nonnegative function in D, then we denote by V f the potential of f
defined on D by

V f (x)=
∫

D
G(x, y) f (y)dy. (1.16)

We recall that if f ∈ L1
loc(D) and V f ∈ L1

loc(D), then we have Δ(V f ) = − f in D (in the
sense of distributions) (see [4, page 52]).

(iv) We denote by d the diameter of D.
(v) For x, y ∈D, we denote [x, y]2 = |x− y|2 + δ(x)δ(y).

2. Properties of the Green function and the class K(D)

In this section, we establish some results concerning the Green function G(x, y) and the
Kato class K(D).

Proposition 2.1 (see [9, 10]). Let q be a nonnegative function in K(D). Then
(i) the potential Vq ∈ C0(D),

(ii) the function x→ δ(x)q(x) is in L1(D).
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In the sequel, we put

‖q‖D = sup
x∈D

∫

D

δ(y)
δ(x)

G(x, y)
∣
∣q(y)

∣
∣dy, (2.1)

αq = sup
x,y∈D

∫

D

G(x,z)G(z, y)
G(x, y)

∣
∣q(z)

∣
∣dz (2.2)

We recall that if q ∈ K(D), then ‖q‖D <∞.
Now, it is obvious to see that by (1.3), we have

αq ≤ 2C0‖q‖D, (2.3)

where C0 is the constant given by (1.3).
Next, we will prove that αq ∼ ‖q‖D.

Proposition 2.2. Let q be a function in K(D). Then
(i) for any nonnegative superharmonic function h in D, we have

∫

D
G(x, y)

∣
∣q(y)

∣
∣h(y)dy ≤ αqh(x), ∀x ∈D, (2.4)

(ii) there exists a constant C > 0 such that

C‖q‖D ≤ αq. (2.5)

Proof. (i) Let h be a nonnegative superharmonic function in D, then from [11, Theorem
2.1, page 164], there exists a sequence ( fk) of nonnegative measurable functions on D
such that for all y ∈D,

hk(y)=
∫

D
G(x,z) fk(z)dz (2.6)

increases to h(y).
Since for each x, y ∈D, we have

∫

D
G(x, y)

∣
∣q(y)

∣
∣hk(y)dy ≤ αqhk(x). (2.7)

Thus, from the monotone convergence theorem, we deduce the result.
(ii) Let ϕ1 be a positive eigenfunction corresponding to the first eigenvalue of the

Dirichlet problem Δu + λu = 0, u|∂D = 0. Then, from [8, Proposition 2.6] we have for
x ∈D

ϕ1(x)∼ δ(x). (2.8)

Since, ϕ1 is a superharmonic function inD, then by applying (i) to ϕ1, we deduce (ii). �

Proposition 2.3. Let p > n/2. Then for each λ < 2−n/p, we have

1
(
δ(·))λ

Lp(D)⊂ K(D). (2.9)
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To prove Proposition 2.3, we need the two next lemmas.

Lemma 2.4. On D2, we have
(i) for n≥ 3, G(x, y)∼ δ(x)δ(y)/|x− y|n−2[x, y]2,

(ii) for n= 2, G(x, y)∼ (δ(x)δ(y)/[x, y]2)Log(1 + [x, y]2/|x− y|2).

Proof. (i) For each a,b ≥ 0, we have

min(a,b)∼ ab

a+ b
. (2.10)

So, by (1.1) we deduce (i).
(ii) Using (1.1), the fact that for each t ≥ 0, Log(1 + t)∼min(1, t)Log(2 + t), and (2.10)

we obtain that

G(x, y)∼min

(

1,
δ(x)δ(y)
|x− y|2

)

Log

(

2 +
δ(x)δ(y)
|x− y|2

)

∼ δ(x)δ(y)
[x, y]2

Log

(

1 +
[x, y]2

|x− y|2
)

.

(2.11)

�

Lemma 2.5. Let λ∈R. Then on D2, we have

1
(
δ(y)

)λ

δ(y)
δ(x)

G(x, y)�

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
|x− y|n−2+λ+ , if n≥ 3,

1
|x− y|λ+ Log

(
2d

|x− y|

)

, if n= 2,

(2.12)

where λ+ =max(0,λ).

Proof. By Lemma 2.4, we have on D2

1
(
δ(y)

)λ

δ(y)
δ(x)

G(x, y)�

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
|x− y|n−2

(
δ(y)

)2−λ

[x, y]2
, if n≥ 3,

(
δ(y)

)2−λ

[x, y]2
Log

(

1 +
[x, y]2

|x− y|2
)

, if n= 2.

(2.13)

Now, we remark that

[x, y]2 ∼ |x− y|2 + 4δ(x)δ(y). (2.14)

So, we have

[x, y]2 
max
(∣
∣δ(x)− δ(y)

∣
∣2

+ 4δ(x)δ(y),|x− y|2)


max
((
δ(y)

)2
,|x− y|2).

(2.15)
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Therefore by (2.15) we have

1
[x, y]2

� 1

|x− y|λ+
(
δ(y)

)2−λ+ . (2.16)

Hence, it follows that

(
δ(y)

)2−λ

[x, y]2
� 1
|x− y|λ+ . (2.17)

Thus, for n≥ 3, we obtain

1
(
δ(y)

)λ

δ(y)
δ(x)

G(x, y)� 1
|x− y|n−2+λ+ . (2.18)

Next, it is obvious to see that

Log

(

1 +
[x, y]2

|x− y|2
)

≤ Log

(

2
[x, y]2

|x− y|2
)

≤ Log

(
4d2

|x− y|2
)

. (2.19)

Then, for n= 2, we obtain by (2.17) and (2.19) that

1
(
δ(y)

)λ

δ(y)
δ(x)

G(x, y)� 1
|x− y|λ+ Log

(
2d

|x− y|

)

. (2.20)

This completes the proof. �

Proof of Proposition 2.3. Let α > 0, p > n/2 and q ≥ 1 such that (1/p) + (1/q)= 1. To show
the claim, we use Lemma 2.5 and the Hölder inequality. We distinguish two cases.
Case 1 (n≥ 3). Let f ∈ Lp(D) and λ < 2−n/p. Then, for x ∈D, we have

∫

D∩B(x,α)

δ(y)
δ(x)

G(x, y)

∣
∣ f (y)

∣
∣

(
δ(y)

)λ dy

�
∫

D∩B(x,α)

∣
∣ f (y)

∣
∣

|x− y|n−2+λ+ dy � ‖ f ‖p
(∫ α

0
r
n(1−q)+(2−λ+)q−1

dr

)1/q

� ‖ f ‖pα2−n/p−λ+
,

(2.21)

which tends to zero as α→ 0.
Case 2 (n= 2). Let f ∈ Lp(D) and λ < 2/q. Then, for x ∈D, we have

∫

D∩B(x,α)

δ(y)
δ(x)

G(x, y)

∣
∣ f (y)

∣
∣

(
δ(y)

)λ dy

�
∫

D∩B(x,α)

∣
∣ f (y)

∣
∣

|x− y|λ+ Log

(
2d

|x− y|

)

dy � ‖ f ‖p
(∫ α

0
r
n−1−λ+q

(

Log
2d
r

)q

dr

)1/q

,

(2.22)

which tends to zero as α→0. This completes the proof. �
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In the sequel, we put for f ∈�(D) and x ∈D,

v(x)=
∫

D
G(x, y)

∣
∣ f (y)

∣
∣

(
δ(y)

)λ dy. (2.23)

Remark 2.6. From (1.1), we remark that for x, y ∈ D, we have δ(x)δ(y) � G(x, y). This
implies that there exists a constant C > 0 such that for each f ∈�(D) and x ∈D,

Cδ(x)
∫

D

(
δ(y)

)1−λ∣∣ f (y)
∣
∣dy ≤ v(x). (2.24)

In the next proposition, we will give upper estimates on the function v.

Proposition 2.7. Let p > n/2 and λ < 2−n/p. Then there exists a constant c > 0, such that
for each f ∈ Lp(D) and x ∈D,

v(x)≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c‖ f ‖p
(
δ(x)

)2−n/p−λ
, if 1− n

p
< λ < 2− n

p
,

c‖ f ‖pδ(x)

(

Log
2d
δ(x)

)1/q

, if λ= 1− n

p
,

c‖ f ‖pδ(x), if λ < 1− n

p
.

(2.25)

To prove Proposition 2.7, we need the following lemma.

Lemma 2.8 (see [8]). Let x, y ∈D. Then we have the following properties:
(i) if δ(x)δ(y)≤ |x− y|2 then min(δ(x),δ(y))≤ ((

√
5 + 1)/2)|x− y|,

(ii) if |x− y|2 ≤ δ(x)δ(y) then ((3−√5)/2)δ(x)≤ δ(y)≤ ((3 +
√

5)/2)δ(x).

Proof of Proposition 2.7. Let p > n/2, q ≥ 1 such that (1/p) + (1/q) = 1 and λ < 2− n/p.
Let f ∈ Lp(D), then for each x ∈D, we have

v(x)=
∫

D1

G(x, y)

∣
∣ f (y)

∣
∣

(
δ(y)

)λ dy +
∫

D2

G(x, y)

∣
∣ f (y)

∣
∣

(
δ(y)

)λ dy = I1 + I2, (2.26)

where

D1 =
{
y ∈D : δ(x)δ(y)≥ |x− y|2},

D2 =
{
y ∈D : δ(x)δ(y)≤ |x− y|2}. (2.27)

Now, we remark that for each x ∈D and y ∈D1, we have by (1.1) and Lemma 2.8

1
(
δ(y))λ

G(x, y)�

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
(
δ(x)

)λ

1
|x− y|n−2

, for n≥ 3,

1
(
δ(x)

)λ Log

(

1 +

(
2δ(x)
|x− y|

)2)

, for n= 2.
(2.28)
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Then, by the Hölder inequality and Lemma 2.8, we obtain for n≥ 3

I1 � ‖ f ‖p
(
δ(x)

)−λ
(∫

D1

1
|x− y|(n−2)q dy

)1/q

� ‖ f ‖p
(
δ(x)

)−λ
(∫ ((

√
5+1)/2)δ(x)

0
rn−1−(n−2)qdr

)1/q

� ‖ f ‖p
(
δ(x)

)2−λ−n/p
.

(2.29)

Now, assume that n= 2, then since q > 1 and Log(1 + t)� t1/2q, for each t ≥ 1, we obtain

1
(
δ(y)

)λ G(x, y)�
(
δ(x)

)1/q−λ

|x− y|1/q . (2.30)

So, by the Hölder inequality and Lemma 2.8, it follows that

I1 � ‖ f ‖p
(
δ(x)

)1/q−λ
(∫

D1

1
|x− y|dy

)1/q

� ‖ f ‖p
(
δ(x)

)1/q−λ
(∫ ((

√
5+1)/2)δ(x)

0
dr

)1/q

� ‖ f ‖p
(
δ(x)

)2/q−λ = ‖ f ‖p
(
δ(x)

)2−λ−2/p
.

(2.31)

Next, by (1.1), we have for each x ∈D and y ∈D2

1
(
δ(y)

)λ G(x, y)∼ δ(x)
(
δ(y)

)1−λ

|x− y|n . (2.32)

Then, using the Hölder inequality and Lemma 2.8, we obtain

I2 � ‖ f ‖p
(∫

D2

(
δ(x)

(
δ(y)

)1−λ

|x− y|n
)q

dy

)1/q

. (2.33)

For each y ∈ D2, it follows from Lemma 2.8 that δ(y)� |x− y|. So, we will discuss two
cases.
Case 3. If λ≤ 1, it follows that

I2 � ‖ f ‖pδ(x)

(∫

D2

1
|x− y|(n−1+λ)q dy

)1/q

(2.34)

� ‖ f ‖pδ(x)

(∫ d

((
√

5−1)/2)δ(x)
rn−1−(n−1+λ)qdr

)1/q

. (2.35)
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Thus, we distinguish the following two subcases.
(a) If λ≤ 1−n/p, then from (2.35) it follows that

I2 � ‖ f ‖pδ(x)

(∫ d

((
√

5−1)/2)δ(x)
r(1−n−λp)/(p−1)dr

)1/q

� ‖ f ‖pδ(x)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(

Log
2d
δ(x)

)1/q

if λ= 1− n

p
;

1 if λ < 1− n

p
.

(2.36)

(b) If 1−n/p < λ≤ 1, then by (2.34) we obtain

I2 � ‖ f ‖p
(
δ(x)

)2−λ−n/p
(∫

D2

(
δ(x)

)(λ+n/p−1)q

|x− y|(n−1+λ)q dy

)1/q

= ‖ f ‖p
(
δ(x)

)2−λ−n/p
(∫

(((
√

5−1)/2)δ(x)≤|x−y|≤d)

1
|x− y|n dy

)1/q

� ‖ f ‖p
(
δ(x)

)2−λ−n/p
.

(2.37)

Case 4. If λ > 1, then from (2.33) it follows that

I2 � ‖ f ‖p
(
δ(x)

)2−λ−n/p
(∫

D2

(
δ(x)
δ(y)

)(λ−1)q (δ(x)
)n/(p−1)

|x− y|n+n/p−1 dy

)1/q

� ‖ f ‖p
(
δ(x)

)2−λ−n/p
(∫

D2

(
δ(x)
δ(y)

)(λ−1)q 1
|x− y|n dy

)1/q

.

(2.38)

Since (λ− 1)q ∈]0,1[, it follows from [8, Corollary 2.8] that

I2 � ‖ f ‖p
(
δ(x)

)2−λ−n/p
. (2.39)

This completes the proof. �

Remark 2.9. By taking p = +∞ (i.e., q = 1), in Propositions 2.3 and 2.7, we find again the
results of Mâagli in [8].

3. First existence result

In this section, we are interested in the existence of positive solutions for problem (1.5).
We recall that h0 is a fixed nontrivial nonnegative harmonic function in D, which is con-
tinuous in D. Let ϕ be a nontrivial nonnegative continuous function on ∂D.

We denote by HDϕ the solution of the Dirichlet problem

Δw = 0 in D, w|∂D = ϕ. (3.1)

The main result of this section is the following.
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Theorem 3.1. Assume (H1)-(H2). Then there exists a constant c > 1 such that if ϕ≥ ch0 on
∂D, then problem (1.5) has a positive continuous solution satisfying for each x ∈D

h0(x)≤ u(x)≤HDϕ(x). (3.2)

To prove Theorem 3.1, we need the following lemma.
For a fixed q ∈ K+(D), put

Γq =
{
v ∈ K(D) : |v| ≤ q}, (3.3)

then, we have

Lemma 3.2. Let q be a nonnegative function belonging to K(D), the family of functions

Fq =
{∫

D
G(·, y)v(y)dy : v ∈ Γq

}

(3.4)

is uniformly bounded and equicontinuous in D, and consequently, it is relatively compact in
C0(D).

Proof. Let q ∈ K(D) and T be the operator defined on Fq by

Tv(x)=
∫

D
G(x, y)v(y)dy. (3.5)

By Proposition 2.1(i), we obtain

sup
x∈D

∣
∣Tv(x)

∣
∣≤ sup

x∈D

∫

D
G(x, y)q(y)dy <∞. (3.6)

Then the family T(Fq) is uniformly bounded.
Next, we propose to prove the equicontinuity of T(Fq) in D.
Let v ∈ Fq, x0 ∈D, and α > 0. Let x,x′ ∈ B(x0,α)∩D.
Then

∣
∣Tv(x)−Tv(x′)

∣
∣≤ ∣∣Vq(x)−Vq(x′)

∣
∣. (3.7)

Since, by Proposition 2.1(i), Vq ∈ C0(D), it follows that

∣
∣Tv(x)−Tv(x′)

∣
∣−→ 0 as |x− x′| −→ 0. (3.8)

Similarly, we have limx→∂D Tv(x)= 0. Which implies that the family T(Fq) is equicontin-
uous in D.

Finally, by Ascoli’s theorem, the family T(Fq) is relatively compact in C0(D). Which
completes the proof. �

Proof of Theorem 3.1. We will use a fixed-point argument.
Let c = 1 + αψ , where αψ is the constant defined by (2.2) associated to the function ψ

given in (H2). Let ϕ∈ C+(∂D) such that ϕ≥ ch0 on ∂D.
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We consider the set Λ given by

Λ= {u∈ C(D) : h0 ≤ u≤HDϕ
}
. (3.9)

Since ϕ≥ ch0 on ∂D, we obtain

HDϕ≥ ch0 on D. (3.10)

So Λ is a nonempty closed bounded and convex set in C(D).
For each u∈Λ, define

Tu(x)=HDϕ(x)−
∫

D
G(x, y) f

(
y,u(y)

)
dy, ∀x ∈D. (3.11)

Now, we will prove that the family TΛ is relatively compact in C(D).
For each y ∈D and u∈Λ, we have by (H2)

0≤ f
(
y,u(y)

)≤ θ
(
y,h0(y)

)

h0(y)
h0(y)� cψ(y). (3.12)

with c = supy∈D h0(y). Then, the function y→ f (y,u(y))∈ Γcψ .
Hence the family

{∫

D
G(·, y) f

(
y,u(y)

)
dy : u∈Λ

}

⊆ Fcψ . (3.13)

So, using Lemma 3.2 and the fact that HDϕ is continuous in D, we conclude that TΛ is a
relatively compact set in C(D).

Next, we intend to show that T maps Λ to itself.
It’s obvious to see that

Tu(x)≤HDϕ(x), ∀x ∈D. (3.14)

Moreover, from (H1), and by using (3.11), (2.4), and (3.10), we obtain that for each x ∈D

Tu(x)≥HDϕ(x)−αψh0(x)≥ h0(x), (3.15)

which proves that TΛ⊂Λ.
Now, let us prove the continuity of the operator T in Λ in the supremum norm. Let

(uk)k be a sequence in Λ which converges uniformly to a function u in Λ. Then, for each
x ∈D, we have

∣
∣Tuk(x)−Tu(x)

∣
∣≤

∫

D
G(x, y)

∣
∣ f
(
y,uk(y)

)− f
(
y,u(y)

)∣
∣dy. (3.16)

On the other hand, by hypothesis (H1), we have

∣
∣ f
(
y,uk(y)

)− f
(
y,u(y)

)∣
∣≤ 2h0(y)ψ(y)� ψ(y). (3.17)



Faten Toumi 13

SinceVψ ∈ C0(D), we conclude by the continuity of f with respect to the second variable
and the dominated convergence theorem that

∀x ∈D, Tuk(x)−→ Tu(x) as k −→ +∞. (3.18)

Since TΛ is a relatively compact family in C(D), therefore the pointwise convergence
implies the uniform convergence, namely,

∥
∥Tuk −Tu

∥
∥∞ −→ 0 as k −→ +∞. (3.19)

Thus, T is a compact mapping on Λ.
Finally the Schauder fixed-point theorem implies the existence of u∈Λ such thatTu=

u, that is, for each x ∈D

u(x)=HDϕ(x)−
∫

D
G(x, y) f

(
y,u(y)

)
dy. (3.20)

Now, let us verify that u is a solution of problem (1.5).
Since ψ ∈ K(D), it follows from Proposition 2.1(ii), that ψ ∈ L1

loc(D).
Furthermore, we have f (·,u)≤ cψ, then f (·,u)∈ L1

loc(D) and V( f (·,u))∈ Fcψ . So by
Lemma 3.2, we have

V
(
f (·,u)

)∈ C0(D)⊂ L1
loc(D). (3.21)

Thus, applying Δ to both sides of (3.20) and using the fact that Δ(V f )=− f , we obtain,
that u satisfies the elliptic differential equation

Δu= f (·,u) in D (in the sense of distributions). (3.22)

Moreover, since HDϕ= ϕ in ∂D and V( f (·,u))∈ C0(D), we conclude that u|∂D = ϕ. So u
is a positive continuous solution of problem (1.5). �

Now, let us state another comparison result for the solution u of problem (1.5), in the
case of the special nonlinearity f (x, t)= q(x)Φ(t).

For this aim, suppose that the following hypotheses on q and Φ are adopted.
(i) Φ : (0,∞)→ (0,∞) is continuously differentiable nonincreasing function.
(ii) q is a nontrivial nonnegative function on D such that

q ∈ Cαloc(D), 0 < α < 1, ∀c > 0, x −→ q(x)
δ(x)

Φ
(
cδ(x)

)∈ K(D). (3.23)

Moreover, let F be the function defined on [0,∞) by

F(t)=
∫ t

0

1
Φ(s)

ds. (3.24)

It is obviously seen, from hypotheses adopted on Φ, that the function F is a bijection
from [0,∞) to itself. Then, we have the following.
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Theorem 3.3. Let u be the solution given by (3.20) of the following problem:

Δu+ qΦ(u)= 0, in D, u|∂D = ϕ. (3.25)

Then, we have u∈ C2+α(D)∩C(D). Further, u satisfies on D

u(x)≤min
(
HDϕ(x),F−1(HD(F ◦ϕ)(x)−Vq(x)

))
. (3.26)

Proof. Let v be the function defined on D by

v = F(u)−HD(F ◦ϕ) +Vq. (3.27)

Then v ∈ C2(D) and we have

Δv = 1
Φ(u)

Δu− Φ′(u)
(
Φ(u)

)2 |∇u|2− q =−
Φ′(u)
(
Φ(u)

)2 |∇u|2. (3.28)

Thus, Δv ≥ 0. In addition, since Vq ∈ C0(D), it follows that v ∈ C0(D). Then, the max-
imum principle (see [6, pages 465-466]) implies that v ≤ 0, in D. This completes the
proof. �

Remark 3.4. (1) Let λ > 0 and ϕ(x)= λ,∀x ∈ ∂D. Then, we have for each x ∈D,

HD(F ◦ϕ)(x)−Vq(x)= F(λ)(x)−Vq(x)≤ F(λ). (3.29)

Thus for each x ∈D,

F−1(HD(F ◦ϕ)(x)−Vq(x)
)≤ λ=HDϕ(x). (3.30)

Therefore, from (3.26) we have for each x ∈D,

h0(x)≤ u(x)≤ F−1(HD(F ◦ϕ)(x)−Vq(x)
)
. (3.31)

(2) By hypothesis (i), we have

Φ
(‖u‖∞

)≥Φ
(‖ϕ‖∞

)
. (3.32)

Therefore,

h0(x)≤ u(x)≤HDϕ(x)−Φ
(‖ϕ‖∞

)
Vq(x). (3.33)

Then we have

h0 ≤ u≤min
(
HDϕ−Φ

(‖ϕ‖∞
)
,F−1(HD(F ◦ϕ)−Vq)). (3.34)

Example 3.5. Let h0 be a nontrivial nonnegative harmonic function, which is continuous
on D. Then, from [14], there exists c1 such that for each x ∈D

h0(x)≥ c1δ(x). (3.35)
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Let α > 0, and f be a nonnegative measurable function on D× (0,∞), continuous with
respect to the second variable satisfying

f (x, t)� t−α(δ(x)
)α+1

q(x), (3.36)

where the function q belongs to K+(D).

Then, there exists c > 0 such that if ϕ≥ (1 + c)h0 on ∂D, the problem

Δu= f (·,u) (in the sense of distributions)

u > 0 in D, u|∂D = ϕ,
(3.37)

has a positive continuous solution in D satisfying

h0(x)≤ u(x)≤HDϕ(x). (3.38)

4. Second existence result

In this section, we prove the following result for problem (1.8).

Theorem 4.1. Assume (H3)-(H4). Then problem (1.8) has a positive solution u ∈ C0(D).
Moreover there exist positive constants a and b, such that

aδ(x)≤ u(x)≤ b. (4.1)

Proof. By (A2) and (H4), the function q ∈ K+(D). Then, from Proposition 2.1(i), we have
Vq ∈ C0(D). So, M := supx∈D(Vq(x)) <∞.

From (A4), there exists b > 0 such that Mk(b)≤ b.
On the other hand, by (A1), there exists a compact K ⊂D such that

0 <
∫

K
δ(y)p(y)dy <∞. (4.2)

Furthermore, by (1.1), there exists α > 0 such that for each x, y in D

G(x, y)≥ αδ(x)δ(y). (4.3)

Next, let r be the constant given by

r := inf
y∈K

δ(y). (4.4)

Then, from (H4), there exists a > 0 such that

αh(ar)
∫

K
δ(y)p(y)dy ≥ a. (4.5)

Now, let Ω be the convex set

Ω := {u∈ C0(D) : aδ(x)≤ u(x)≤ b} (4.6)
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and S be the operator defined on Ω by

Su(x)=
∫

D
G(x, y)ρ

(
y,u(y)

)
dy. (4.7)

We will prove that S is a compact mapping on Ω.
By (H4), we have for each u∈Ω

ρ(·,u)≤ k(b)q = q̃. (4.8)

Since q ∈ K+(D), it follows that the function y→ ρ(y,u(y))∈ Γq̃.
Hence, the family

{∫

Ω
G(·, y)ρ

(
y,u(y)

)
dy : u∈Ω

}

⊆ Fq̃ . (4.9)

Consequently, by Lemma 3.2, the family S(Ω) is relatively compact in C0(D). Next, we
need to verify that for u∈Ω and x ∈D, we have

aδ(x)≤ Su(x)≤ b. (4.10)

Let u∈Ω and x ∈D, then by (H4), we have

Su(x)≤
∫

D
G(x, y)q(y)k

(
u(y

)
)dy

≤ k(b)
∫

D
G(x, y)q(y)dy

≤Mk(b)≤ b.

(4.11)

On the other hand, from (H4) and using (1.1) and (4.5), we have

Su(x)≥ αδ(x)
∫

D
δ(y)p(y)h

(
u(y)

)
dy

≥ αδ(x)
∫

K
δ(y)p(y)h

(
aδ(y)

)
dy

≥ δ(x)
[

αh(ar)
∫

K
δ(y)p(y)dy

]

≥ aδ(x).

(4.12)

Thus, it follows that S(Ω)⊂Ω.
Now, we consider a sequence (uk)k inΩwhich converges uniformly to u inΩ. Since ρ is

continuous with respect to the second variable, we deduce by the dominated convergence
theorem that for all x ∈D,

Suk(x)−→ Su(x) as k −→ +∞. (4.13)

Therefore, using the fact that S(Ω) is relatively compact in C0(D), we conclude that
‖Suk − Su‖∞ as k → +∞. Hence S is a compact mapping from Ω to itself. Then by the



Faten Toumi 17

Schauder fixed-point theorem, there exists a function u∈Ω such that

u(x)=
∫

D
G(x, y)ρ

(
y,u(y)

)
dy. (4.14)

Now, since q ∈ K+(D) then by Proposition 2.1(ii), we have ρ(·,u) ∈ L1
loc(D) and V(ρ(·,

u))∈ C0(D)⊂ L1
loc(D).

So, u satisfies (in the sense of distributions)Δu=−ρ(·,u) inD. Moreover, limx→∂D u(x)
= limx→∂D V(ρ(·,u(·)))(x)= 0. So u is a solution of problem (1.8). �

Example 4.2. Let p > n/2 and f ∈ Lp+(D). Assume that the function g : (0,∞)→ [0,∞) is
a nontrivial continuous and nondecreasing function satisfying

lim
t→0+

g(t)
t
= +∞, lim

t→+∞
g(t)
t
= 0. (4.15)

Then for each λ < 2−n/p the problem

Δu=−(δ(x)
)−λ

f (x)g(u) in D, u|∂D = 0, (4.16)

has a positive solution u∈ C0(D). Moreover, from Proposition 2.7, we have for each x ∈
D,

u(x)≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c‖ f ‖p
(
δ(x)

)2−n/p−λ
, if 1− n

p
< λ < 2− n

p
,

c‖ f ‖pδ(x)

(

Log
2d
δ(x)

)(p−1)/p

, if λ= 1− n

p
,

c‖ f ‖pδ(x), if λ < 1− n

p
.

(4.17)
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