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We establish a 3G-theorem for the iterated Green function of (−Δ)pm, (p ≥ 1, m≥ 1), on
the unit ball B of Rn (n ≥ 1) with boundary conditions (∂/∂ν) j(−Δ)kmu = 0 on ∂B, for

0≤ k ≤ p− 1 and 0≤ j ≤m− 1. We exploit this result to study a class of potentials �
(p)
m,n.

Next, we aim at proving the existence of positive continuous solutions for the following
polyharmonic nonlinear problems (−Δ)pmu= h(·,u), inD (in the sense of distributions),
lim|x|→1((−Δ)kmu(x)/(1−|x|)m−1)= 0, for 0≤ k ≤ p− 1, where D = B or B\{0} and h is
a Borel measurable function onD× (0,∞) satisfying some appropriate conditions related

to �
(p)
m,n.

Copyright © 2006 Imed Bachar. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let m ≥ 1, p ≥ 1 be a positive integer and Γ
(p)
m,n be the Green function of the polyhar-

monic operator u �→ (−�)pmu, on the unit ball B ofRn (n≥ 1) with boundary conditions
(∂/∂ν) j(−Δ)kmu|∂B = 0, for 0 ≤ k ≤ p− 1 and 0 ≤ j ≤m− 1, where ∂/∂ν is the outward
normal derivative.

Then Γ
(p)
m,n satisfies for p ≥ 2 and each x, y ∈ B,

Γ
(p)
m,n(x, y)=

∫
B
···

∫
B
Gm,n

(
x,z1

)
Gm,n

(
z1,z2

)···Gm,n
(
zp−1, y

)
dz1 ···dzp−1, (1.1)

where Gm,n is the Green function of the polyharmonic operator u �→ (−�)mu, on B with
Dirichlet boundary conditions (∂/∂ν) ju= 0, 0≤ j ≤m− 1.

In [4], Boggio gave an explicit expression for Gm,n. In fact, he proved that for each x, y
in B,

Gm,n(x, y)= km,n|x− y|2m−n
∫ [x,y]/|x−y|

1

(
v2− 1

)m−1

vn−1
dv, (1.2)
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2 Positive solutions for higher-order equations

where km,n is a positive constant and [x, y]2 = |x− y|2 + (1− |x|2)(1− |y|2), for x, y
in B.

In a recent article, Grunau and Sweers [11] have established interesting estimates for

the Green function Γ
(p)
m,n. In particular, they proved the existence of a positive constant C,

such that for each x, y in B

1
C
H

(p)
m,n(x, y)≤ Γ

(p)
m,n(x, y)≤ CH(p)

m,n(x, y), (1.3)

where

H
(p)
m,n(x, y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

|x− y|n−2pm min

(
1,

(
δ(x)δ(y)

)m
|x− y|2m

)
if n > 2pm,

Log

(
1 +

(
δ(x)δ(y)

)m
|x− y|2m

)
if n= 2pm,

min
(

1,
(
δ(x)δ(y)

)(n−2(p−1)m)/2
/|x−y|n−2(p−1)m

)
(
δ(x)δ(y)

)(n−2pm)/2 if 2(p−1)m<n<2pm,

(
δ(x)δ(y)

)m
Log

(
2 +

1

|x− y|2 + δ(x)δ(y)

)
if n= 2(p− 1)m,

(
δ(x)δ(y)

)m
if n < 2(p− 1)m,

(1.4)

and δ(x)= 1−|x|, denotes the Euclidean distance between x and ∂B.
In the other hand, Grunau and Sweers [10] derived from Boggio’s formula some in-

teresting estimates on the Green function Gm,n in B, including a classical form of a 3G-
theorem, which holds for the Green function GD

1,n of the Laplace operator u �→ (−Δ)u, on
an arbitrary bounded C1,1-domain D (see [6, 26]).

The classical form of the 3G-theorem has been exploited to introduce the classical
Kato class of functions Kn(D), which was widely used in the study of some nonlinear
differential equations (see [18, 25]). Definition and properties of the class Kn(D) can be
found in [2, 6].

Recently, in [3] the authors improved the inequalities on Gm,n established by Grunau
and Sweers in [10]. In particular, they prove the following form of the 3G-theorem.

Theorem 1.1 ([3]). There exists Cm,n > 0 such that for each x, y,z ∈ B,

Gm,n(x,z)Gm,n(z, y)
Gm,n(x, y)

≤ Cm,n

[(
δ(z)
δ(x)

)m
Gm,n(x,z) +

(
δ(z)
δ(y)

)m
Gm,n(y,z)

]
. (1.5)

This form of the 3G-theorem has been proved for the Green function GD
1,n in an arbi-

trary bounded C1,1-domain D, by Kalton and Verbitsky [12] for n≥ 3 and by Selmi [22]
for n= 2.
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In [3], the authors used this inequality (1.5) to introduce and study a new Kato class
Km,n of functions on B defined as follows.

Definition 1.2. A Borel measurable function ϕ in B belongs to the class Km,n if ϕ satisfies
the following condition

lim
α→0

(
sup
x∈B

∫
B∩B(x,α)

(
δ(y)
δ(x)

)m
Gm,n(x, y)

∣∣ϕ(y)
∣∣dy

)
= 0. (1.6)

In the casem= 1, this class was introduced for a boundedC1,1-domainD inRn, in [19]
for n≥ 3 and in [15, 24] for n= 2. Moreover, it is shown that K1,n(D) contains properly
the classical Kato class Kn(D).

The plan for this paper is as follows. In Section 2, we give some estimates for the Green

function Γ
(p)
m,n, which are parallel to those satisfied by the Green function Gm,n in B (see

[3, 10]).
In particular, we prove that the Green function Γ

(p)
m,n satisfies the inequality (1.5). This

enables us to define and study in Section 3 a Polyharmonic Kato class �
(p)
m,n of functions

on B (see Definition 1.3 below).
In particular, we prove thatKm,n =�(1)

m,n ⊂�(2)
m,n⊂··· ⊂�

(p−1)
m,n ⊂�

(p)
m,n and �

(p)
1,n ⊂ ··· ⊂

�
(p)
m−1,n ⊂�

(p)
m,n. So we extend some results obtained in [3].

Definition 1.3. A Borel measurable function ϕ in B belongs to the class �
(p)
m,n if ϕ satisfies

the following condition

lim
α→0

(
sup
x∈B

∫
B∩B(x,α)

(
δ(y)
δ(x)

)m
Γ

(p)
m,n(x, y)

∣∣ϕ(y)
∣∣dy

)
= 0. (1.7)

In Section 4, first we will investigate the existence of positive bounded continuous so-
lutions for the following iterated polyharmonic nonlinear problem

(−Δ)pmu= f (·,u), in B (in the sense of distributions)

lim
|x|→1

(−Δ)kmu(x)(
1−|x|)m−1 = 0, for 0≤ k ≤ p− 1.

(1.8)

We will fix some r > n and we suppose that the function f satisfies the following hypothe-
ses:

(H1) f is a nonnegative Borel measurable function on B× (0,∞), continuous and non-
increasing with respect to the second variable.

(H2) For each c > 0, the function x �→ f (x,c(δ(x))m)/(δ(x))m is in Km,n.
(H3) For each c > 0, the function x �→ f (x,c(δ(x))m) is in Lr(B).
(H4) For each c > 0, f (·,c) is a nontrivial function.
To study problem (1.8), we assume further that 2≤ n≤ (2p− 1)m, then we prove that

(1.8) has at least one positive solution u ∈ C2pm−1(B) satisfying for all k ∈ {0, . . . , p− 1}
and x ∈ B

1
c

(
δ(x)

)m ≤ (−Δ)kmu(x)≤ c(δ(x)
)m

, for some constant c > 0. (1.9)
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Recently, Mâagli et al. [17] considered the problem (1.8) when p = 1, m ≥ n ≥ 2, and
where the function f satisfies similar hypotheses stated above. Then they proved that
(1.8) has a positive continuous solution u satisfying (1/c)(δ(x))m ≤ u(x) ≤ c(δ(x))m−1,
for some constant c > 0.

Note that for m = p = 1, using the complete maximum principle argument, which
does not hold form≥ 2, Mâagli and Zribi [18] established an existence and an uniqueness
result for the problem (1.8) in a boundedC1,1 domainD ofRn (n≥ 3), where the function
f is required to satisfy the hypotheses (H1), (H4) and

(H0) For each c > 0, f (·,c) is in Kn(D).
Here we prove an existence result of the more general problem (1.8) and we obtain esti-
mates both on the solution u and their derivatives (−Δ)kmu, for all k ∈ {1, . . . , p− 1}.

As second application we are concerned with the existence of infinitely many singular
positive solutions for the following iterated polyharmonic problem

(−Δ)pmu= ψ(·,u), in B\{0} (in the sense of distributions)

lim
|x|→1

(−Δ)kmu(x)(
1−|x|)m−1 = 0, for 0≤ k ≤ p− 1.

(1.10)

We will fix some r > n and we assume the following hypotheses:
(A1) ψ is a Borel measurable function on B× (0,∞), continuous with respect to the

second variable.
(A2) |ψ(x, t)| ≤ tq(x, t), where q is a nonnegative Borel measurable function in B ×

(0,∞) such that the function t �→ q(x, t) is nondecreasing on (0,∞) and limt→0 q(x,
t)= 0.

(A3) For each c > 0, the function gc defined on B by gc(x) = q(x,cGm,n(x,0)) belongs
to the class Km,n.

(A4) For each c > 0, the function x �→Gm,n(x,0)gc(x) is in Lr(B).
Then we will prove the existence of b0 > 0 such that for each b ∈ (0,b0], the problem
(1.10) has a solution u∈ C2pm−1(B\{0}) satisfying for all k ∈ {0, . . . , p− 1} and x ∈ B\{0}

b

2
Γ

(p−k)
m,n (x,0)≤ (−Δ)kmu(x)≤ 3b

2
Γ

(p−k)
m,n (x,0). (1.11)

Moreover, for n≥ 2(p− k)m, we have

lim
|x|→0

(−Δ)kmu(x)

Γ
(p−k)
m,n (x,0)

= b. (1.12)

When m = p = 1 and D is a bounded C1,1-domain in Rn (n ≥ 3) containing 0, the exis-
tence of infinitely many singular positive solutions for the problem (1.10) has been estab-
lished by Zhang and Zhao [25] for the special nonlinearity

ψ(x, t)= p(x)tμ, μ > 1, (1.13)

where the function p satisfies
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(H′
0)

x −→ p(x)
|x|(n−2)(μ−1) ∈ Kn(D). (1.14)

This has been extended by Mâagli and Zribi [19], where ψ satisfies some appropriate
conditions related to the class K1,n(D).

The case p = 1 and m≥ 1, has been studied in [3].
Here, we extend the result to the more general problem (1.10).
Finally, we aim at proving the existence of positive bounded continuous solutions for

the following iterated polyharmonic nonlinear Dirichlet problem

(−Δ)pmu=Φ(·,u), in B (in the sense of distributions)

lim
|x|→1

(−Δ)kmu(x)(
1−|x|)m−1 = 0, 0≤ k ≤ p− 1,

(1.15)

where for a given r > n, the function Φ is required to satisfy the following hypotheses:
(R1) Φ is a nonnegative Borel measurable function on B × [0,∞), continuous with

respect to the second variable.
(R2) There exist a nontrivial nonnegative function h∈ L1

loc(B) and a nonnegative func-
tion ϕ∈ Km,n such that

h(x) f (t)≤Φ(x, t)≤ (δ(x)
)m
ϕ(x)g(t), (1.16)

where f and g : [0,∞)→ [0,∞) are two measurable nondecreasing functions such
that
(R2.1)

lim
t→0

f (t)
t
=∞. (1.17)

(R2.2)

lim
t→∞

g(t)
t
= 0. (1.18)

(R3) The function x �→ (δ(x))mϕ(x) is in Lr(B).
Under these hypotheses, we will prove that the problem (1.15) has at least one positive

solution u∈ C2pm−1(B) satisfying for all k ∈ {0, . . . , p− 1} and x ∈ B
1
c

(
δ(x)

)m ≤ (−Δ)kmu(x)≤ c(δ(x)
)m

, for some constant c > 0. (1.19)

Note that the existence of a positive solution of the problem (1.15) in the case m = 1,
p = 2, has been proved by Peletier and Van der Vorst in [21] for Φ(·, t) = |t|s, s > 1 and
by Dalmasso in [7] for Φ(·, t) = h(t), where h is a positive, nondecreasing continuous
function on [0,∞) and sublinear at 0 and∞.

On the other hand, recently Dalmasso obtained in [8] an existence result for the prob-
lem (1.15) with m= 1, p = 2, provided that Φ is locally Hölder continuous function on
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B× [0,∞) and such that for each x ∈ B the function Φ(x,·) is nonnegative and nonde-
creasing on [0,∞) and minx∈BΦ(x,·) is sublinear at 0 and maxx∈BΦ(x,·) is sublinear at
∞.

In order to simplify our statements, we define some convenient notations.

Notations 1.4. (i) Let B = {x ∈Rn; |x| < 1} and B = {x ∈Rn; |x| ≤ 1}, for n≥ 1.
(ii) C(B) is the set of continuous functions in B.
(iii) C0(B) is the set of continuous functions in B vanishing at ∂B.
(iv) Ck(B) is the set of functions having all derivatives of order ≤ k continuous in B

(k ∈N).
(v) For x, y ∈ B:

[x, y]2 = |x− y|2 +
(
1−|x|2)(1−|y|2). (1.20)

(vi) Let f and g be two positive functions on a set S.
We call f � g, if there is c > 0 such that

f (x)≤ cg(x), ∀x ∈ S. (1.21)

We call f ∼ g, if there is c > 0 such that

1
c
g(x)≤ f (x)≤ cg(x), ∀x ∈ S. (1.22)

The following properties will be used several times
(i) For s, t ≥ 0, we have

min(s, t)∼ st

s+ t
, (1.23)

(s+ t)λ ∼ sλ + tλ, λ∈R+. (1.24)

(ii) Let λ,μ > 0 and 0 < γ ≤ 1, then we have,

1− tλ ∼ 1− tμ, for t ∈ [0,1]. (1.25)

Log(1 + t)� tγ, for t ≥ 0. (1.26)

Log(1 + λt)∼Log(1 +μt), for t ≥ 0. (1.27)

Log
(
1 + tλ

)∼min
(
1, tλ

)
Log(2 + t), for t ≥ 0. (1.28)

(iii) On B2 (i.e., (x, y)∈ B2), we have

[x, y]2 ∼ |x− y|2 + δ(x)δ(y) (1.29)

δ(x) + δ(y)� [x, y], |x− y| ≤ [x, y]. (1.30)

2. Estimates for the iterated Green function

We start this section by proving some inequalities for the iterated Green function Γ
(p)
m,n,

that we will use later.
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Proposition 2.1. On B2, the following estimates hold

Γ
(p)
m,n(x, y)∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
δ(x)δ(y)

)m
|x− y|n−2pm[x, y]2m

, for n > 2pm,

(
δ(x)δ(y)

)m
[x, y]2m

Log

(
1 +

[x, y]2

|x− y|2
)

, for n= 2pm

(
δ(x)δ(y)

)m
[x, y]n−2(p−1)m , for 2(p− 1)m< n < 2pm.

(2.1)

Proof. The proof follows immediately from (1.3) and the statements (1.23), (1.24), (1.29),
(1.27), and (1.28). �

Using Proposition 2.1, (1.3) and similar argument as in [3, Corollary 2.5] we obtain
the following corollary.

Corollary 2.2. Let r0 > 0. For each x, y ∈ B such that |x− y| ≥ r0,

Γ
(p)
m,n(x, y)�

(
δ(x)δ(y)

)m
r0
n−2(p−1)m . (2.2)

Moreover, On B2, the following estimates hold:

(
δ(x)δ(y)

)m � Γ
(p)
m,n(x, y), (2.3)

Γ
(p)
m,n(x, y)� min

((
δ(x)

)m
,
(
δ(y)

)m)
|x− y|n−(2p−1)m , if n > (2p− 1)m, (2.4)

Γ
(p)
m,n(x, y)�min

((
δ(x)

)m
,
(
δ(y)

)m)
, if n≤ (2p− 1)m. (2.5)

Corollary 2.3. On B2, the following estimates hold:

(
δ(y)
δ(x)

)m
Γ

(p)
m,n(x, y)�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

|x− y|n−2pm for n > 2pm,

Log
(

3
|x− y|

)
for n= 2pm,

(
δ(y)

)2m

|x− y|n−2(p−1)m for 2(p− 1)m< n < 2pm,

(
δ(y)

)2m−2
for n= 2(p− 1)m,

(
δ(y)

)2m
for n < 2(p− 1)m.

(2.6)

Proof. Using Proposition 2.1 and inequalities (1.30), it is easy to check the statement.
�
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Next, we aim at proving inequality (1.5) for the iterated Green function Γ
(p)
m,n. So, we

need the following key lemma, which is due to [16]. Since [16] is not available we refer to
[14] for the proof.

Lemma 2.4. Let x, y ∈ B. Then the following properties are satisfied:
(1) If δ(x)δ(y)≤ |x− y|2 then max(δ(x),δ(y))≤ ((

√
5 + 1)/2)|x− y|.

(2) If |x− y|2 ≤ δ(x)δ(y) then ((3−√5)/2)δ(x)≤ δ(y)≤ ((3 +
√

5)/2)δ(x).

Theorem 2.5 (3G-theorem). There exists a constant Cm,n > 0 such that for each x, y,z ∈ B,

Γ
(p)
m,n(x,z)Γ

(p)
m,n(z, y)

Γ
(p)
m,n(x, y)

≤ Cm,n

[(
δ(z)
δ(x)

)m
Γ

(p)
m,n(x,z) +

(
δ(z)
δ(y)

)m
Γ

(p)
m,n(y,z)

]
. (2.7)

Proof. To prove the inequality, we denote by A(x, y) := (δ(x)δ(y))m/Γ
(p)
m,n(x, y) and we

claim that A is a quasi-metric, that is for each x, y,z ∈ B,

A(x, y)� A(x,z) +A(y,z). (2.8)

To show the claim, we remark that by using (1.3) and Lemma 2.4, we can reproduce the
proof of (1.5) in [3, Theorem 2.8]. This completes the proof. �

3. The Polyharmonic Kato class �
(p)
m,n

In this section, we will study properties of functions belonging to �
(p)
m,n.

Example 3.1. For n > 2pm and s > n/2pm, Ls(B)⊂�
(p)
m,n.

For 2(p− 1)m< n < 2pm and s > n/2(p− 1)m, Ls(B)⊂�
(p)
m,n.

For n≤ 2(p− 1)m or n= 2pm, Ls(B)⊂�
(p)
m,n, for all s∈ (1,∞].

Using (1.7), (2.3) and similar techniques to those used in [3, Lemma 3.3], we obtain
the following lemma.

Lemma 3.2. Let ϕ be a function in �
(p)
m,n. Then the function

x �−→ (
δ(x)

)2m
ϕ(x) is in L1(B). (3.1)

In the sequel, we use the notation

‖ϕ‖m,n,p := sup
x∈B

∫
B

(
δ(y)
δ(x)

)m
Γ

(p)
m,n(x, y)

∣∣ϕ(y)
∣∣dy. (3.2)

Proposition 3.3. Let ϕ be a function in �
(p)
m,n, then ‖ϕ‖m,n,p <∞.

Proof. By writing B = (B∩ B(x,α))∪ (B∩ Bc(x,α)), then the result follows from (1.7),
(2.2), and Lemma 3.2. �
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Next we purpose to compare the classes �
(p)
j,n , (1≤ j ≤m).

Proposition 3.4. On B2, the following estimates hold

Γ
(p)
m,n(x, y)� Γ

(p−1)
m,n (x, y), for p ≥ 2. (3.3)

Γ
(p)
m,n(x, y)� δ(x)δ(y)Γ

(p)
m−1,n(x, y), for m≥ 2. (3.4)

In particular,

Km,n =�(1)
m,n ⊂�(2)

m,n ··· ⊂�
(p)
m,n, �

(p)
1,n ⊂�

(p)
2,n ⊂ ··· ⊂�

(p)
m,n. (3.5)

Proof. Using (1.1), (1.5) and the fact that ‖1‖m,n,1 <∞, then (3.3) follows by induction
on p.

The assertion (3.3) implies that Km,n =�(1)
m,n ⊂�(2)

m,n ··· ⊂�
(p−1)
m,n ⊂�

(p)
m,n.

Next, we will prove (3.4).
Let x, y ∈ B and m≥ 2, then by (1.2), we have

Gm,n(x, y)� |x− y|2m−n
(

[x, y]2

|x− y|2 − 1

)∫ [x,y]/|x−y|

1

(
v2− 1

)m−2
dv

vn−1
. (3.6)

Using further (1.29), we deduce that

Gm,n(x, y)� δ(x)δ(y)Gm−1,n(x, y). (3.7)

Hence (3.4) follows from this fact and (1.1).
This proves (3.4), which implies that �

(p)
j,n ⊂�

(p)
j+1,n, for j ∈ {1, . . . ,m− 1}. �

Remark 3.5. Let λ ∈ R and put θ(x) = 1/(δ(x))λ, for x ∈ B. Then by [3, Example 3.9],

θ ∈ Km,n =�(1)
m,n⇔ λ < 2m.

On the other hand, using Lemma 3.2 and [13, lemma, page 726], we deduce that a

necessary condition in order that θ ∈�
(p)
m,n is λ < 2m+ 1.

In fact, for p ≥ 2, this is sufficient as it will be proved in the following proposition.

Proposition 3.6. Let p ≥ 2. Then

θ ∈�
(p)
m,n⇐⇒ λ < 2m+ 1. (3.8)

Proof. “⇒” follows from Remark 3.5.
“⇐” For x ∈ B and α∈ (0,1/2), we put

I = I(x,α) :=
∫
B(x,α)∩B

(
δ(y)
δ(x)

)m
Γ

(p)
m,n(x, y)

1(
δ(y)

)λ dy. (3.9)

Case 1. Suppose that λ≤ 2m.
(a) For n > 2(p− 1)m, using Proposition 2.1, (1.30) and (1.26), it is easy to check that

I �
∫
B(x,α)∩B

(
δ(y)

)2m−λ

|x− y|n−2(p−1)m dy. (3.10)
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Hence, since λ≤ 2m, it follows that

I �
∫
B(x,α)∩B

1
|x− y|n−2(p−1)m dy � α2(p−1)m −→ 0 as α−→ 0. (3.11)

(b) Let n= 2(p− 1)m, then using (1.3), (1.26) and (1.24), we deduce that

I �
∫
B(x,α)∩B

(
1 +

1
[x, y]

)
dy �

∫
B(x,α)∩B

1
|x− y|dy � α

n−1 −→ 0 as α−→ 0. (3.12)

(c) For n < 2(p− 1)m, then by (1.3), we have

I �
∫
B(x,α)∩B

(
δ(y)

)2m−λ
dy � αn −→ 0 as α−→ 0. (3.13)

Case 2 (2m< λ < 2m+ 1). (a) If n > 2(p− 1)m, then

I �
∫
B(x,α)∩D1

1
|x− y|n−2(p−1)m

1(
δ(y)

)λ−2m dy

+
∫
B(x,α)∩D2

1
|x− y|n−2(p−1)m

1(
δ(y)

)λ−2m dy = I1 + I2,
(3.14)

where D1 = {y ∈ B : |x− y|2 ≤ δ(x)δ(y)} and D2 = {y ∈ B : δ(x)δ(y)≤ |x− y|2}.
(a1) y ∈D1. Using Lemma 2.4, we have δ(x)∼ δ(y) and so |x− y| � δ(y).
Hence,

I1 �
∫
B(x,α)∩D1

1
|x− y|n−2pm+λ dy � α2pm−λ −→ 0 as α−→ 0. (3.15)

(a2) y ∈D2. Using Lemma 2.4, we have (1−|y|)≤ ((
√

5 + 1)/2)|x− y|.
Hence,

I2 �
∫ 1

1−α((
√

5+1)/2)

tn−1

(1− t)λ−2m

(∫
Sn−1

1
|x− tω|n−2(p−1)m dσ(w)

)
dt, (3.16)

where σ is the normalized measure on the unit sphere Sn−1 of Rn.
Now it is easy to check that

∫
Sn−1

1
|x− tω|n−2(p−1)m dσ(w)� 1(|x|∨ t)n−2(p−1)m , (3.17)

where |x|∨ t =max(|x|, t)
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Hence

I2 �
∫ 1

1−α((
√

5+1)/2)

t2(p−1)m−1

(1− t)λ−2m
dt −→ 0 as α−→ 0. (3.18)

(b) If n= 2(p− 1)m, then using (1.3), we have

I �
∫
B(x,α)∩D1

Log

(
2 +

1

|x− y|2 + δ(x)δ(y)

)
1(

δ(y)
)λ−2m dy

+
∫
B(x,α)∩D2

Log

(
2 +

1

|x− y|2 + δ(x)δ(y)

)
1(

δ(y)
)λ−2m dy

= I1 + I2,

(3.19)

where D1 and D2 are given in Case 2(a).
(b1) y ∈D1. Using Lemma 2.4, we have δ(x)∼ δ(y) and so |x− y| � δ(y).
Hence, by (1.3), (1.26) and (1.24), we deduce that

I1 �
∫
B(x,α)∩D1

1
|x− y|

1(
δ(y)

)λ−2m dy

�
∫
B(x,α)∩D1

1
|x− y|λ−2m+1

dy � α2pm−λ−1 −→ 0 as α−→ 0.
(3.20)

(b2) y ∈D2. Using Lemma 2.4, we have δ(y)≤ ((
√

5 + 1)/2)|x− y|.
Hence,

I2 �
∫

(1−α((
√

5+1)/2)≤|y|≤1)
Log

(
2 +

3(
δ(y)

)2

)
1(

δ(y)
)λ−2m dy

�
∫ 1

1−α((
√

5+1)/2)

tn−1

(1− t)λ−2m
Log

(
2 +

3
(1− t)2

)
dt −→ 0 as α−→ 0.

(3.21)

(c) If n < 2(p− 1)m, then the result follows by using (1.3), Lemma 2.4 and similar
argument to Case 2(a). �

Corollary 3.7. For p ≥ 2, the class �
(p)
m,n properly contains Km,n.

Proof. The assertion follows from (3.5), Remark 3.5 and Proposition 3.6. �

4. Existence results

We are concerned with the existence of positive continuous solutions for the iterated
polyharmonic nonlinear problems (1.8) and (1.10). The following preliminary results
will be used in the sequel.

Proposition 4.1. Let x0 ∈ B and ϕ be a function in �
(p)
m,n. Then

lim
α→0

(
sup
x∈B

∫
B(x0,α)∩B

(
δ(y)
δ(x)

)m
Γ

(p)
m,n(x, y)

∣∣ϕ(y)
∣∣dy

)
= 0. (4.1)
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Proof. Let ε > 0, then by (1.7) and (2.2) there exists α > 0 such that

∫
B(x0,α)∩B

(
δ(y)
δ(x)

)m
Γ

(p)
m,n(x, y)

∣∣ϕ(y)
∣∣dy � ε+

∫
B(x0,α)∩B∩Bc(x,α)

(
δ(y)

)2m∣∣ϕ(y)
∣∣dy.

(4.2)
Hence using Lemma 3.2, the result holds by letting α→ 0. �

Corollary 4.2. Let ϕ∈�
(p)
m,n and x0 ∈ B. Then

lim
α→0

(
sup
x,y∈B

1

Γ
(p)
m,n(x, y)

∫
B∩B(x0,α)

Γ
(p)
m,n(x,z)Γ

(p)
m,n(z, y)

∣∣ϕ(z)
∣∣dz

)
= 0. (4.3)

Corollary 4.3. Let ϕ be a function in �
(p)
m,n. Then the function

x �−→Φ(x) :=
∫
B

(
δ(y)
δ(x)

)m
Γ

(p)
m,n(x, y)ϕ(y)dy, is continuous on B. (4.4)

Proof. Let x0 ∈ B and ε > 0. By Proposition 4.1, there exists α > 0 such that for each x,x′ ∈
B(x0,α)∩B, we have

∣∣Φ(x)−Φ(x′)
∣∣≤

∫
B

∣∣∣∣∣
Γ

(p)
m,n(x, y)(
δ(x)

)m − Γ
(p)
m,n(x′, y)(
δ(x′)

)m
∣∣∣∣∣
(
δ(y)

)m∣∣ϕ(y)
∣∣dy

≤ ε+
∫

(|x0−y|≥2α)∩B

∣∣∣∣∣
Γ

(p)
m,n(x, y)(
δ(x)

)m − Γ
(p)
m,n(x′, y)(
δ(x′)

)m
∣∣∣∣∣
(
δ(y)

)m∣∣ϕ(y)
∣∣dy.

(4.5)

Now since for y ∈ Bc(x0,2α), the function x �→ (δ(y)/δ(x))mΓ
(p)
m,n(x, y) is continuous on

B(x0,α)∩B, we deduce by Lemma 3.2 and the dominated convergence theorem that

∫
(|x0−y|≥2α)∩B

∣∣∣∣∣
Γ

(p)
m,n(x, y)(
δ(x)

)m − Γ
(p)
m,n(x′, y)(
δ(x′)

)m
∣∣∣∣∣
(
δ(y)

)m∣∣ϕ(y)
∣∣dy −→ 0 as |x− x′| −→ 0.

(4.6)

Hence Φ∈ C(B). This completes the proof. �

The next remark will be used to obtain regularity of the solution.

Remark 4.4. Let r > n and f be a nonnegative measurable function in Lr(B). Let

Vm,n f (x)=
∫
B
Γ

(p)
m,n(x, y) f (y)dy, for x ∈ B. (4.7)

Then Vm,n f ∈ C2pm−1(B).
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Indeed, by using the regularity theory of [1] (see also [10, Theorem 5.1] and [5, Theo-
rem IX.32]) we obtain that Vm,n f ∈W2pm,r(B). Furthermore, since r > n, then one finds
that Vm,n f ∈ C2pm−1(B) (see [9, Chapter 7, page 158] or [5, Corollary IX.15]).

4.1. Positive bounded solutions of the problem (1.8). We consider the case 2 ≤ n ≤
(2p− 1)m to study the existence of positive bounded continuous solutions for the it-
erated polyharmonic nonlinear problem (1.8).

We start with the following existence result.

Theorem 4.5. Let λ > 0 and assume (H1), (H2) and (H4). Then the problem

(−Δ)pmu= f (·,u), in B (in the sense of distributions)

lim
|x|→1

u(x)− λ(
1−|x|)m−1 = 0,

(
Pλ
)

has at least one positive solutions uλ ∈ C(B).

Proof. Let λ > 0. Then by (H1) and (H2), the function ϕ(y) := f (y,λ)/(δ(y))m ∈ Km,n. So
by (3.5) and Proposition 3.3, we have ‖ϕ‖m,n,1 <∞. Let F be the convex set given by

F =
{
u∈ C(B) : λ≤ u≤ λ+

(
δ(x)

)m‖ϕ‖m,n,1

}
. (4.8)

We consider the integral operator T on F, defined by

Tu(x)= λ+
∫
B
Γ

(p)
m,n(x, y) f

(
y,u(y)

)
dy. (4.9)

We will prove that T has a fixed point in F. Since for u∈ F and y ∈ B, we have by (H1)

f
(
y,u(y)

)
(
δ(y)

)m ≤ f (y,λ)(
δ(y)

)m = ϕ(y), (4.10)

then by Corollary 4.3, we deduce that the family TF is equicontinuous in B. In particular,
for all u∈ F, Tu∈ C(B) and so it is clear that TF ⊂ F. Moreover, the family {Tu(x), u∈
F} is uniformly bounded in B. It follows by Ascoli’s theorem that TF is relatively compact
in C(B).

Next, let us prove the continuity of T in F. We consider a sequence {vk} in F which
converges uniformly to a function v ∈ F. Then we have

∣∣Tvk(x)−Tv(x)
∣∣≤

∫
B
Γ

(p)
m,n(x, y)

∣∣ f (y,vk(y)
)− f

(
y,v(y)

)∣∣dy. (4.11)

Now, by the monotonicity of f , we have

∣∣ f (y,vk(y)
)− f

(
y,v(y)

)∣∣≤ 2 f (y,λ)= 2
(
δ(y)

)m
ϕ(y), (4.12)
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and since f is continuous with respect to the second variable, we deduce by (2.5), Lemma
3.2 and the dominated convergence theorem, that

∀x ∈ B, Tvk(x)−→ Tv(x) as k −→∞. (4.13)

Since TF is relatively compact in C(B), we have the uniform convergence, namely

∥∥Tvk −Tv∥∥∞ −→ 0 as k −→∞. (4.14)

Thus we have proved that T is a compact mapping from F to itself. Hence by Schäuder
fixed point theorem, there exists uλ ∈ F such that

uλ(x)= λ+
∫
B
Γ

(p)
m,n(x, y) f

(
y,uλ(y)

)
dy. (4.15)

Finally, we need to verify that uλ is a solution for the problem (Pλ). Since by (H1) we have
for each y ∈ B, f (y,uλ(y)) ≤ f (y,λ) = (δ(y))mϕ(y), then we deduce from Lemma 3.2,
that the function y �→ f (y,uλ(y)) is in L1

loc(B). So it is clear that uλ satisfies (in the sense
of distributions) the elliptic differential equation

(−Δ)pmu= f (·,u) in B. (4.16)

Moreover, since uλ ∈ F, then it satisfies

0≤ uλ(x)− λ(
1−|x|)m−1 � δ(x). (4.17)

Hence lim|x|→1(uλ(x)− λ/(1−|x|)m−1)= 0. This completes the proof. �

In the sequel, we consider a sequence (λk)k of positive real numbers, decreasing to zero.
We denote by uk the solution of the problem (Pλk ) given by Theorem 4.5 and satisfying
(4.15). That is

uk(x)= λk +
∫
B
Γ

(p)
m,n(x, y) f

(
y,uk(y)

)
dy, ∀k ∈N, ∀x ∈ B. (4.18)

Lemma 4.6. There exists a positive constant a such that for all k ∈N, and x ∈ B, uk(x) ≥
a(δ(x))m.

Proof. By (2.3) and (2.5), we remark that for 2≤ n≤ (2p− 1)m, we have on B

Γ
(p)
m,n(0, y)∼ (δ(y)

)m
. (4.19)

Then again by (2.3) and (2.5), we deduce that there exists a positive constant c > 1 such
that we have for each x, y ∈ B

1
c

(
δ(x)

)m
Γ

(p)
m,n(0, y)≤ Γ

(p)
m,n(x, y)≤ cΓ(p)

m,n(0, y). (4.20)
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This implies by (4.18) that

uk(x)≤ c
(
λk +

∫
B
Γ

(p)
m,n(0, y) f

(
y,uk(y)

)
dy
)
= cuk(0), (4.21)

uk(x)≥ 1
c

(
δ(x)

)m(
λk +

∫
B
Γ

(p)
m,n(0, y) f

(
y,uk(y)

)
dy
)

≥ 1
c

(
δ(x)

)m(
inf
k∈N

uk(0)
)
.

(4.22)

We claim that a = (1/c)(infk∈Nuk(0)) > 0. Assume on the contrary that there exists a
subsequence (uks(0))s which converges to zero. In particular, for s large enough, we have
uks(0)≤ 1. Which implies with (4.21) and (H1) that

uks(0)= λks +
∫
B
Γ

(p)
m,n(0, y) f

(
y,uks(y)

)
dy ≥ λks +

∫
B
Γ

(p)
m,n(0, y) f (y,c)dy. (4.23)

Thus, by letting s to ∞, we reach a contradiction from hypothesis (H4). This completes
the proof. �

Now we are ready to prove the existence result for the problem (1.8).

Theorem 4.7. Assume (H1)–(H4). Then the problem (1.8) has at least one positive solution
u∈ C2pm−1(B), satisfying for all k ∈ {0, . . . , p− 1}

(−Δ)kmu(x)∼ (δ(x)
)m
. (4.24)

Proof. Let (uk)k the sequence of functions satisfying (4.18) and a be the constant given in
Lemma 4.6. By hypothesis (H2), we deduce that the function

ϕ(y) := f
(
y,a

(
δ(y)

)m)
(
δ(y)

)m ∈ Km,n. (4.25)

Since for each k ∈N and y ∈ B, we have by (H1)

f
(
y,uk(y)

)
(
δ(y)

)m ≤ f
(
y,a

(
δ(y)

)m)
(
δ(y)

)m = ϕ(y), (4.26)

then using (4.18) and similar argument as in the proof of Theorem 4.5, we deduce that the
family (uk)k is relatively compact in C(B). Then it follows that there exists a subsequence
(uks)s which converges uniformly to a function u ∈ C(B). Moreover, by Lemma 4.6, we
have u(x)≥ a(δ(x))m, for each x ∈ B. Hence, using the continuity of f with respect to the
second variable, we apply the dominated convergence theorem in (4.18) to obtain that

u(x)=
∫
B
Γ

(p)
m,n(x, y) f

(
y,u(y)

)
dy. (4.27)

Using Lemma 4.6, (H1), and (H3) we obtain for each y ∈ B,

f
(
y,u(y)

)≤ f
(
y,a

(
δ(y)

)m)= (δ(y)
)m
ϕ(y)∈ Lr(B). (4.28)
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So it is clear that u satisfies (in the sense of distributions) the elliptic differential equation

(−Δ)pmu= f (·,u), in B. (4.29)

Furthermore, by (4.27), (4.28), and Remark 4.4, we deduce that u∈ C2pm−1(B).
Therefore, using (4.27) and (1.1) it is easy to check that

(−Δ)kmu(x)=
∫
B
Γ

(p−k)
m,n (x, y) f

(
y,u(y)

)
dy, ∀k ∈ {0, . . . , p− 1}. (4.30)

Now since by (H2), the function ϕ ∈ Km,n, then it follows by [3, Proposition 3.4] that
‖ϕ‖m,n,1 <∞. So using (4.30), (4.28), and (3.3), there exists c > 0, such that for all k ∈
{0, . . . , p− 1} and x ∈ B, we have

(−Δ)kmu(x)≤ c
∫
B
Gm,n(x, y)

(
δ(y)

)m
ϕ(y)dy ≤ c(δ(x)

)m‖ϕ‖m,n,1. (4.31)

On the other hand, from (4.30), (2.3) and (H1), there exists c0 > 0, such that for all k ∈
{0, . . . , p− 1} and x ∈ B, we have

(−Δ)kmu(x)≥ c0
(
δ(x)

)m∫
B

(
δ(y)

)m
f
(
y,c
(
δ(y)

)m‖ϕ‖m,n,1

)
dy. (4.32)

Now by (H3), we deduce that

∫
B

(
δ(y)

)m
f
(
y,c
(
δ(y)

)m‖ϕ‖m,n,1

)
dy <∞. (4.33)

That is (−Δ)kmu(x)∼ (δ(x))m and u is the required solution. �

Example 4.8. Assume that 2 ≤ n ≤ (2p− 1)m. Let α > 0, r > n and λ < 1/r. Let ρ be a
nonnegative nontrivial measurable function in B such that 0 ≤ ρ(x) ≤ (δ(x))mα−λ, for
x ∈ B. Then the following problem

(−Δ)pmu= ρ(x)u−α, in B (in the sense of distributions)

lim
|x|→1

(−Δ)kmu(x)(
1−|x|)m−1 = 0, for 0≤ k ≤ p− 1,

(4.34)

has a positive solution u∈ C2pm−1(B) satisfying for all k ∈ {0, . . . , p− 1}

(−Δ)kmu(x)∼ (δ(x)
)m
. (4.35)
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4.2. Positive singular solutions of the problem (1.10). We are interested in the existence
of positive singular solutions for the iterated polyharmonic nonlinear problem (1.10).
Our main result is the following theorem.

Theorem 4.9. Assume (A1)–(A4). Then the problem (1.10) has infinitely many solutions.
More precisely, there exists b0 > 0 such that for each b ∈ (0,b0], the problem (1.10) has a
solution u∈ C2pm−1(B\{0}) satisfying for all k ∈ {0, . . . , p− 1} and x ∈ B

b

2
Γ

(p−k)
m,n (x,0)≤ (−Δ)kmu(x)≤ 3b

2
Γ

(p−k)
m,n (x,0). (4.36)

Moreover, for n≥ 2(p− k)m we have lim|x|→0((−Δ)kmu(x)/Γ
(p−k)
m,n (x,0))= b.

To prove Theorem 4.9, we need the following results.
Next, for a nonnegative function ρ ∈ Km,n we denote by

Mρ =
{
h∈ Km,n, |h| ≤ ρ}. (4.37)

Then we have the following proposition.

Proposition 4.10. Let k ∈ {0,1, . . . , p− 1} and ρ be a nonnegative function in Km,n. Then
the family of functions

{∫
B

Γ
(p−k)
m,n (x, y)Γ

(p−k)
m,n (y,0)

Γ
(p−k)
m,n (x,0)

h(y)dy : h∈Mρ

}
(4.38)

is uniformly bounded and equicontinuous on B, and consequently it is relatively compact in
C(B).

Proof. Using Theorem 2.5, (3.3) and (2.2), the proof follows by similar arguments as in
[3, Lemma 4.3]. �

Put F := {ω ∈ C+(B) : ‖ω‖∞ ≤ 1}, where ‖ · ‖∞ is the uniform norm. So we obtain the
following corollary.

Corollary 4.11. Assume (A1)–(A3). For k ∈ {0,1, . . . , p− 1}, we define the operator Tk on
F by

Tkω(x)= 1

Γ
(p−k)
m,n (x,0)

∫
B
Γ

(p−k)
m,n (x, y)ψ

(
y,ω(y)Γ

(p)
m,n(y,0)

)
dy, x ∈ B. (4.39)

Then the family of functions Tk(F) is relatively compact in C(B).

Proof. Since by (A2) and (3.3) there exists a constant c > 0 such that for each k ∈ {0, . . . ,

p− 1}, |ψ(y,ω(y)Γ
(p)
m,n(y,0))/Γ

(p−k)
m,n (y,0)| � gc(x) = q(x,cGm,n(x,0)), then the result fol-

lows from (A3) and Proposition 4.10. �
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Remark 4.12. Let k ∈ {0, . . . , p− 1}, n≥ 2(p− k)m and α > 0. Then for y ∈ Bc(0,2α)∩B,
we have

lim
|x|→0

Γ
(p−k)
m,n (x, y)

Γ
(p−k)
m,n (x,0)

= 0. (4.40)

So, using the same argument as in the proof of Proposition 4.10, we deduce that |Tkω(x)|
→ 0 as |x| → 0, uniformly for all ω ∈ F.

Now we are ready to prove Theorem 4.9.

Proof of Theorem 4.9. We aim at proving the existence of a constant b0 > 0 such that for
each b ∈ (0,b0], there exists a continuous function u in B\{0} satisfying the following
integral equation

u(x)= bΓ(p)
m,n(x,0) +

∫
B
Γ

(p)
m,n(x, y)ψ

(
y,u(y)

)
dy, x ∈ B\{0}. (4.41)

Let k ∈ {0,1, . . . , p− 1} and β ∈ (0,1). Then by Proposition 4.10, we deduce that the func-
tion

Tk,β(x)= 1

Γ
(p−k)
m,n (x,0)

∫
B
Γ

(p−k)
m,n (x, y)Γ

(p−k)
m,n (y,0)q

(
y,βΓ

(p)
m,n(y,0)

)
dy (4.42)

is continuous in B. Moreover, by (A3), Proposition 3.3, (A2) and the dominated conver-
gence theorem we deduce that

lim
β→0

Tk,β(x)= 0, ∀x ∈ B. (4.43)

Since the function β→ Tk,β(x) is nondecreasing in (0,1), it follows by Dini lemma, that

lim
β→0

(
sup
x∈B

Tk,β(x)
)
= 0. (4.44)

Using further (3.3) and that the function t → q(x, t) is nondecreasing in (0,∞), there
exists β ∈ (0,1) such that for each l ∈ {0, . . . , p− 1} and x ∈ B,

1

Γ
(p−l)
m,n (x,0)

∫
B
Γ

(p−l)
m,n (x, y)Γ

(p)
m,n(y,0)q

(
y,βΓ

(p)
m,n(y,0)

)
dy ≤ 1

3
. (4.45)

Let b0 = (2/3)β and b ∈ (0,b0]. We will use a fixed point argument. Let

S=
{
ω ∈ C(B) :

b

2
≤ ω(x)≤ 3b

2

}
. (4.46)
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Then, S is a nonempty, closed, bounded, and convex set in C(B). We define for 0 ≤ k ≤
p− 1, the operator Lk on S by

Lkω(x)= b+
1

Γ
(p−k)
m,n (x,0)

∫
B
Γ

(p−k)
m,n (x, y)ψ

(
y,ω(y)Γ

(p)
m,n(y,0)

)
dy, ∀x ∈ B. (4.47)

By Corollary 4.11 and (A2) it is easy to verify that Lk is a compact operator mapping S into
itself. So by the Schäuder fixed point theorem there exists of ω0 ∈ S such that L0ω0 = ω0.

For all x ∈ B\{0}, put u(x) = ω0(x)Γ
(p)
m,n(x,0). Then, u is a continuous function in

B\{0} satisfying (4.41). Finally let us prove that u is a solution of the problem (1.10).
Indeed, since u is a positive continuous function in B\{0}, then it follows from (4.41)
that Vm,nψ(·,u)∈ L1

loc(B\{0}). By (A2), (3.3), (A4) and Remark 4.4, we deduce that u∈
C2pm−1(B\{0}). So from (4.41), we derive that for each x ∈ B\{0} and 0≤ k ≤ p− 1

(−Δ)kmu(x)= bΓ(p−k)
m,n (x,0) +

∫
B
Γ

(p−k)
m,n (x, y)ψ

(
y,u(y)

)
dy

= Γ
(p−k)
m,n (x,0)Lkω0(x).

(4.48)

Finally, using Remark 4.12 and that the set S is invariant under Lk, we verify that u is the
required solution. This completes the proof. �

Example 4.13. Assume that n > 2m. Let r > n, 1 ≤ λ < 1 + 1/mr and μ ≥ λ. Then there
exists b0 > 0 such that for each b ∈ (0,b0], the following nonlinear problem

(−Δ)pmu(x)=
(
u(x)

)μ+1

(
δ(x) +u(x)

)λ(
Gm,n(x,0)

)μ , in B\{0},

lim
|x|→1

(−Δ)kmu(x)(
1−|x|)m−1 = 0, for 0≤ k ≤ p− 1,

(4.49)

has a positive solution u∈ C2pm−1(B\{0}) satisfying for k ∈ {0,1, . . . , p− 1} and all x ∈ B

b

2
Γ

(p−k)
m,n (x,0)≤ (−Δ)kmu(x)≤ 3b

2
Γ

(p−k)
m,n (x,0) (4.50)

and for n≥ 2(p− k)m, we have lim|x|→0((−Δ)kmu(x)/Γ
(p−k)
m,n (x,0))= b.

Indeed, hypotheses (A1)–(A3) are obviously satisfied and hypothesis (A4) follows from
Corollary 2.2 and [13, lemma, page 726].

4.3. Positive solutions of the problem (1.15).

Theorem 4.14. Assume (R1)–(R3). Then the problem (1.15) has at least one positive solu-
tion u∈ C2pm−1(B), satisfying for all k ∈ {0, . . . , p− 1}

(−Δ)kmu(x)∼ (δ(x)
)m
. (4.51)
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Proof. Let K be a compact in B such that γ := ∫K h(y)dy > 0 and define r := miny∈K
(δ(y))m > 0.

By Corollary 2.2 and (3.4), there exist c1 > 0 and c2 > 0 such that for each x, y ∈ B we
have

c1
(
δ(x)δ(y)

)m ≤ Γ
(p)
m,n(x, y)≤ c2Gm,n(x, y). (4.52)

By (R2.1) we can find a > 0 such that c1rγ f (ar)≥ a.

Since by (R2) the function ϕ∈ Km,n ⊂�
(p)
m,n, then it follows by Proposition 3.3 that

β := ‖ϕ‖m,n,p <∞. (4.53)

By (R2.2) we can find b > a such that c2βg(2mb)≤ b.
Now let Λ be the convex set given by

Λ=
{
u∈ C(B) : a

(
δ(x)

)m ≤ u(x)≤ b(δ(x)
)m}

, (4.54)

and T be the operator defined on Λ by

Tu(x)=
∫
B
Γ

(p)
m,n(x, y)Φ

(
y,u(y)

)
dy. (4.55)

Using (R1), (R2), (4.52) and similar arguments as in the proof of Corollary 4.3 one can
verify that T is a compact operator mapping Λ into itself.

So the Schäuder fixed point theorem implies the existence of u∈Λ such that

u(x)=
∫
B
Γ

(p)
m,n(x, y)Φ

(
y,u(y)

)
dy. (4.56)

Using (R2), (R3) and similar arguments as in the proof of Theorem 4.7, it is easy to verify
that u∈ C2pm−1(B).

Furthermore, from (1.1) we obtain that for each k ∈ {0, . . . , p− 1} and x ∈ B

(−Δ)kmu(x)=
∫
B
Γ

(p−k)
m,n (x, y)Φ

(
y,u(y)

)
dy. (4.57)

Finally, using (4.57), (4.52) and (R2), we show that u is the required solution. �

Example 4.15. Let r > n, μ∈ (0,1) and 0 < λ <min(μ/2,1/r).
Then the problem

(−Δ)pmu(x)=
(
1 +u2(x)

)μ/2
(
δ(x) +u2(x)

)λ , in B

lim
|x|→1

(−Δ)kmu(x)(
1−|x|)m−1 = 0, for 0≤ k ≤ p− 1,

(4.58)
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has at least one positive solution u∈ C2pm−1(B), satisfying

(−Δ)kmu(x)∼ (δ(x)
)m

, ∀k ∈ {0, . . . , p− 1}. (4.59)

Indeed, hypotheses of Theorem 4.14, are satisfied with Φ(x, t) = (1 + t2)μ/2/(δ(x) +
t2)λ, ϕ(x)= 1/(δ(x))λ+m, g(t)= (1 + t2)μ/2, f (t) = (1 + t2)μ/2−λ and h(x) is some positive
constant.
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