
EXACT CONTROLLABILITY FOR A NONLINEAR
STOCHASTIC WAVE EQUATION

BUI AN TON

Received 2 July 2005; Accepted 7 September 2005

The exact controllability for a semilinear stochastic wave equation with a boundary con-
trol is established. The target and initial spaces are L2(G)×H−1(G) withG being a bound-
ed open subset of R3 and the nonlinear terms having at most a linear growth.
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1. Introduction

Let (Ω,�,P) be a probability space with Ω being completely regular and let w be a stan-
dard Wiener process on the space. Let G be a bounded open subset of R3 with a smooth
boundary and consider the initial boundary value problem

dy1 = y2dt in Q a.s.,

dy2−Δy1dt−du= f
(
t, y1
)
dw+ g

(
t, y1
)
dt in Q a.s.,

y1(·, t,ω)= 0 on Γ0× (0,T) a.s.,

y1(·, t,ω)= v on Γ1× (0,T) a.s.,

y(·,0,ω)= α= {α0,α1
}

in G a.s.

(1.1)

The functions f , g are in C1(R) with f ′,g′ in L∞(R) and

Q=G× (0,T), ∂G= Γ0

⋃
Γ1, Γ0

⋂
Γ1 =∅, Γ1 �= ∅. (1.2)

The given surface Γ1 is closed. For given α,β in L2(G)×H−1(G), one wishes to find con-
trols:

{u,v} ∈ L2(Ω,�,P;C
(
0,T ;L2(G)

))×L2(Ω,�,P;L2(0,T ;L2(Γ1
)))

(1.3)
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such that a solution y = (y1, y2) of (1.1) takes the value

y(·,T ,ω)= β in G a.s. (1.4)

for some large T > T0.
The exact controllability of deterministic linear wave equations has been extensively

investigated both theoretically and numerically, using the Hilbert uniqueness method of
Lions [4].The problem arises in applied sciences when one wishes for example to steer
a large complex structure to a specified target (cf. Lions [4], Russell [5]). The result was
extended by Zuazua [8] to semilinear wave equations when the initial and target spaces
are Hγ(G)×H−1+γ(G) for some γ > 0. Using the notion of accretive mapping, the author
has established in [6], the exact controllability of a semilinear wave equation with at most
a linear growth in the nonlinear term, the initial and target spaces being the natural ones,
that is, L2(G)×H−1(G). The literature on the exact controllability of the stochastic wave
equation seems scarce. In [7], the author has shown the exact controllability of (1.1)–
(1.4) when the white noise is independent of the state and it is the purpose of this paper
to treat the general case with f depending on y1.

2. Notations, assumption and some preliminary results

Throughout the paper we will assume that Ω is completely regular and by abuse of no-
tations, we will denote by (·,·) the L2(G) inner product as well as the pairings of H1

0 (G)
with its dual H−1(G).

Assumption 2.1. Let f , g be C1((0,T)×R) functions. We assume that

∥
∥
∥
∥
∂ f

∂ξ
(t,·)

∥
∥
∥
∥
L∞(R)

,
∥
∥
∥
∥
∂g

∂ξ
(t,·)

∥
∥
∥
∥
L∞(R)

≤ C, ∀t ∈ [0,T],

∣
∣ f (t, y)

∣
∣+
∣
∣g(t, y)

∣
∣≤ C

{
1 + |y|}, ∀{t, y} ∈ (0,T)×R.

(2.1)

With initial and target spaces in L2(G)×H−1(G), approximating solutions of the lin-
earized version of (1.1)–(1.4) do not have enough regularity to allow the use of a com-
pactness argument for the nonlinear terms f and g. The difficulty is circumvented by
using an argument of the theory of monotone operators involving accretive mappings
introduced by Browder [2], Kato [3].

Let J be the duality mapping of L2(0,T ;H−1(G)) into its dual, L2(0,T ;H1
0 (G)), with

gauge function Φ(r)= r. Then it is known that

∫ T

0
(J y, y)dt = ‖y‖L2(0,T ;H−1(G))‖J y‖L2(0,T ;H1

0 (G))

= ‖y‖2
L2(0,T ;H−1(G)), ∀y ∈ L2(0,T ;H−1(G)

)
.

(2.2)

Moreover J is monotone and is continuous from the strong topology of L2(0,T ;
H−1(G)) to the weak topology of L2(0,T ;H1

0 (G)).
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Let F be a mapping of L2(0,T ;H−1(G)) into L2(0,T ;H−1(G)) with D(F) = L2(0,T ;
L2(G)). The mapping F is said to be accretive with respect to J if

∫ T

0

(
F(y)−F(z), J(y− z)

)
dt ≥ 0, ∀y,z ∈D(F). (2.3)

Lemma 2.2. Let f be in C1((0,T)×R) and suppose that Assumption 2.1 is satisfied. Then
λI + f is accretive with respect to the duality mapping J for large, λ > λ0.

Proof. We have

∫ T

0

(
f (t, y)− f (t,z), J(y− z)

)
dt =

∫ T

0

(
(y− z) f ′(t,ξ), J(y− z)

)
dt

≤ ∥∥(y− z) f ′
∥
∥
L2(0,T ;H−1(G))

∥
∥J(y− z)

∥
∥
L2(0,T ;H1

0 (G))

≤ ∥∥(y− z) f ′
∥
∥
L2(0,T ;H−1(G))

∥
∥y− z

∥
∥
L2(0,T ;H−1(G))

(2.4)

for all y, z in L2(0,T ;L2(G)). On the other hand, it is clear that

∥
∥(y− z) f ′

∥
∥
L2(0,T ;H−1(G)) = inf

‖ϕ‖L2(0,T ;H1
0 (G))≤1

∣
∣
∣
∣

∫ T

0

(
(y− z) f ′,ϕ

)
dt
∣
∣
∣
∣

≤ ‖ f ′‖L∞((0,T)×R)

∫ T

0

(|y− z|,|ϕ|)dt
≤ ‖ f ′‖L∞((0,T)×R)‖y− z‖L2(0,T ;H−1(G))‖ϕ‖L2(0,T ;H1

0 (G))

(2.5)

for all y, z in L2(0,T ;L2(G)). Thus,

∥
∥(y− z) f ′‖L2(0,T ;H−1(G))

≤ ‖ f ′‖L∞((0,T)×R)‖y− z‖L2(0,T ;H−1(G)), ∀y,z ∈ L2(0,T ;L2(G)
)
.

(2.6)

Take λ > ‖ f ′‖L∞((0,T)×R) and we have

∫ T

0

(
(λI + f )(y− z), J(y− z)

)
dt

≥ λ‖y− z‖2
L2(0,T ;H−1(G))−

∣
∣
∣
∣

∫ T

0

(
f (y)− f (z), J(y− z)

)
dt
∣
∣
∣
∣

≥ {λ−‖ f ′‖L∞((0,T)×R)
}‖y− z‖2

L2(0,T ;H−1(G))

≥ 0, ∀y,z ∈ L2(0,T ;L2(G)
)
.

(2.7)

The lemma is proved. �

The following result has been shown by the author in [6].

Lemma 2.3. Let f be as in Assumption 2.1 and suppose that

yn −→ y in
(
L2(0,T ;L2(G)

))
weak∩L2(0,T ;H−1(G)

)
, (2.8)
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then

f
(
t, ynj

)−→ f (t, y) in
(
L2(0,T ;L2(G)

))
weak. (2.9)

With f as in Assumption 2.1, it follows from Lemma 2.2 that λI + f is accretive with
respect to the duality mapping J . Since

J
(
yn
)−→ J(y) weakly in L2(0,T ;H1

0 (G)
)
,

∥
∥J(yn)

∥
∥
L2(0,T ;H1

0 (G)) =
∥
∥yn
∥
∥
L2(0,T ;H−1(G)) −→ ‖y‖L2(0,T ;H−1(G)) =

∥
∥J(y)

∥
∥
L2(0,T ;H1

0 (G))

(2.10)

and since L2(0,T ;H1
0 (G)) is a Hilbert space, we have

J
(
yn
)−→ J(y) in L2(0,T ;H1

0 (G)
)
. (2.11)

Now using an argument of the theory of monotone operators applied to accretive
mappings, the author has shown in [6] the weak convergence in L2(0,T ;L2(G)) of the
sequence { f (t, ynj )}.

3. Main result

The main result of the paper is the following theorem.

Theorem 3.1. Let (Ω,�,P) be a probability space with Ω being completely regular and let
w be a standard Wiener process on the space. Let f ,g be as in Assumption 2.1 and let α,β be
in L2(G)×H−1(G). Then for T > T0, there exists a weak solution {u,v,y} in

L2(Ω,�,P;C
(
0,T ;L2(G)

))×L4(Ω,�,P;L2(0,T ;L2(Γ1
)))

×L4(Ω,�,P;C
(
0,T ;L2(G)

))×L4(Ω,�,P;C
(
0,T ;H−1(G)

))
,

(3.1)

of (1.1)–(1.4). Moreover,

E
(∥
∥y1
∥
∥4
C(0,T ;L2(G))

)
+E
(∥
∥y2
∥
∥4
C(0,T ;H−1(G))

)
+E
(
‖v‖4

L2(0,T ;L2(Γ1))

)
≤ C
(
1 + �(α,β)

)
(3.2)

with

�(α,β)= ‖α‖4
L2(G)×H−1(G) +‖β‖4

L2(G)×H−1(G). (3.3)

The proof of the theorem can be split into three steps.
Step 1. Let ŷ be in

L4(Ω,�,P;C
(
0,T ;L2(G)

))×L4(Ω,�,P;C
(
0,T ;H−1(G)

))
(3.4)

and consider the exact controllability of the linear wave equation

dz1 = z2dt in Q,

dz2−Δz1dt = 0 in Q,

z1 = 0 on Γ0× (0,T), z1 = v on Γ1× (0,T),

z(·,0)= α, z(·,T)= β− ŷ(·,T) in G.

(3.5)
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The following result is well known.

Lemma 3.2. Suppose all the hypotheses of Theorem 3.1 are satisfied, let ŷ be in C(0,T ;
L2(G))×C(0,T ;H−1(G)). Then for T > T0, there exists {v,z} in

L2(0,T ;L2(Γ1
))×C

(
0,T ;L2(G)

)×C
(
0,T ;H−1(G)

)
, (3.6)

weak solution of (3.5). Moreover,

‖v‖L2(0,T ;L2(Γ1)) +
∥
∥z1
∥
∥
C(0,T ;L2(G)) +

∥
∥z2
∥
∥
C(0,T ;H−1(G))

≤ C
{

1 +‖α‖L2(G)×H−1(G) +‖β‖L2(G)×H−1(G) +
∥
∥ ŷ(·,T)

∥
∥
L2(G)×H−1(G)

}
.

(3.7)

The constant C is independent of ŷ, α, β.

We will now consider the case when ŷ is in

L4(Ω,�,P;C
(
0,T ;L2(G)

))×L4(Ω,�,P;C
(
0,T ;H−1(G)

))
. (3.8)

Let

Sŷ =
{{v,z} : {v,z} solution of (3.5)

}
. (3.9)

It follows from Lemma 3.2 that Sŷ is nonempty.

Lemma 3.3. Let Sŷ be as in (3.9), then it is a closed, bounded convex subset of L2(0,T ;
L2(Γ1))×L2(0,T ;L2(G))×L2(0,T ;H−1(G)).

Proof. Since the problem (3.5) is linear, it is clear that Sŷ is a convex subset of L2(0,T ;
L2(Γ1))× L2(0,T ;L2(G))× L2(0,T ;H−1(G)). It follows from Lemma 3.2 that the set is
bounded. Suppose that

{
vn,zn

}−→ {v,z} (3.10)

in

L2(0,T ;L2(Γ1
))×L2(0,T ;L2(G)

)×L2(0,T ;H−1(G)
)

(3.11)

with {vn,zn} ∈ Sŷ. It is trivial to check that indeed {v,z} ∈ Sŷ. �

Let πSŷ be the projection of

L2(0,T ;L2(Γ1
))×L2(0,T ;L2(G)

)×L2(0,T ;H−1(G)
)

(3.12)

onto the closed convex set Sŷ, defined by

∣
∣
∣
∣
∣
∣{v,x}−πSŷ

({v,x})∣∣∣∣∣∣= inf
{∣∣
∣
∣
∣
∣{v,x}−{v̂, x̂}∣∣∣∣∣∣ :∀{v̂, x̂} ∈ Sŷ

}
(3.13)

with

∣
∣
∣
∣
∣
∣{v,x}∣∣∣∣∣∣= ∥∥{v,x}∥∥L2(0,T ;L2(Γ1))×L2(0,T ;L2(G))×L2(0,T ;H−1(G)). (3.14)
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Then πSŷ is uniquely defined and let

{ṽ,z} = πSŷ (0) (3.15)

be the unique element of minimal L2(0,T ;L2(Γ1))× L2(0,T ;L2(G))× L2(0,T ;H−1(G))
norm of S.

Let

Λ( ŷ)= {{ṽ,z} : {ṽ,z} solution of (3.5) as in (3.15)
}

, (3.16)

then it maps

C
(
0,T ;L2(G)

)×C
(
0,T ;H−1(G)

)

−→ L2(0,T ;L2(Γ1)
)×C

(
0,T ;L2(G)

)×C
(
0,T ;H−1(G)

)
.

(3.17)

Lemma 3.4. Let Λ be as in (3.16), then its graph is closed.

Proof. It is an immediate consequence of Lemma 3.2. �

Let Φ(ω) be the mapping

Φ(ω)= {ŷ(·,ω)
}

(3.18)

of Ω into C(0,T ;L2(G))×C(0,T ;H−1(G)).
Set

Θ(ω)=Λ◦Φ(ω)= {{ṽ(·,ω),z(·,ω)} : solution of (3.5) as in (3.15)
}
. (3.19)

Lemma 3.5. The mapping Λ has a universally measurable section σ and the application
σ ◦Θ of

Ω−→ L2(0,T ;L2(Γ1)
)×C

(
0,T ;L2(G)

)×C
(
0,T ;H−1(G)

)
(3.20)

is a measurable section of Θ. Furthermore

E
(∥
∥z1
∥
∥2
C(0,T ;L2(G))

)
+E
(∥
∥z2
∥
∥2
C(0,T ;H−1(G))

)
+E
(∥
∥ṽ
∥
∥2
L2(0,T ;L2(Γ1))

)

≤ C
{

1 +‖α‖2
L2(G)×H−1(G) +‖β‖2

L2(G)×H−1(G) +E
(∥
∥ ŷ(·,T)

∥
∥2
L2(G)×H−1(G)

)}
.

(3.21)

Proof. The mapping Λ has nonempty closed images in L2(0,T ;L2(Γ1))×C(0,T ;L2(G))×
C(0,T ;H−1(G)) with a closed graph. It follows from a theorem of Von Neumann that
there exists a universally measurable section σ of Λ (cf. [1, Theorem 3.1]).

Since P is a Radon measure on a completely regular space and since Φ is a random
variable and therefore measurable in the sense of Lusin, we deduce that for each positive
integer k there exists a compact set Kk of Ω such that

P
(
Ω

Kk

)
≤ 1

k
(3.22)

and the restriction Φk =Φ|Kk of Φ to Kk is continuous.
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We may assume that {Kk} is an increasing sequence.
The measure P induces on Kk a Radon measure Pk and Φk(Pk) is a Radon mea-

sure on L2(0,T ;L2(Γ1))× C(0,T ;L2(G))× C(0,T ;H−1(G)). Since σ is Φk(Pk) measur-
able, it follows that σ ◦Φk is P measurable on Kk in L2(0,T ;L2(Γ1))× C(0,T ;L2(G))
×C(0,T ;H−1(G)). Let

{
ṽk(·,ω),zk(·,ω)

}=
⎧
⎨

⎩
(σ ◦Φ)(·,ω), if ω ∈ Kk,

0, if ω /∈ Kk.
(3.23)

The functions {ṽk(·,ω),zk(·ω)} from Ω into L2(0,T ;L2(Γ1))× C(0,T ;L2(G))×C(0,T ;
H−1(G)) are measurable. Since P(

⋃
k Kk)= 1, we have

{
ṽk,zk

}−→ {ṽ,z}, a.s. with {ṽ,z} ∈Λ(ŷ). (3.24)

Thus, {ṽ,z} is measurable in the sense of Lusin and therefore is a random variable. The
stated estimate is an immediate consequence of that of Lemma 3.2. �

Step 2. We now consider the linear stochastic system

dy1 = y2dt in Q a.s.,

dy2−Δy1dt =
{
f (t,z1 + ŷ1

)− f
(
t,z1
)}
dw

+{g(t,z1 + ŷ1)− g
(
t,z1
)}
dt in Q a.s.,

y1 = 0 on ∂G× (0,T) a.s.,

y(·,0)= 0 in G a.s.

(3.25)

Lemma 3.6. Suppose all the hypotheses of Theorem 3.1 are satisfied and let z be as in (3.15).
Then there exists a unique y, solution of (3.25). Moreover,

E
(∥
∥y(·, t)∥∥4

L2(G)

)
+E
(∥
∥y1‖4

L2(0,t;H1
0 (G))

)

≤ C
{

1 + exp
{
E
(∥
∥ ŷ1
∥
∥4
L2(0,t;L2(G))

)}}
, ∀ t ∈ [0,T].

(3.26)

Furthermore,

E
(∥
∥y′1
∥
∥2
L2(0,T ;L2(G))

)
≤ C
{

1 + exp
{
E
(∥
∥ ŷ1
∥
∥2
L2(0,T ;L2(G)

)}}
,

E
(

sup
n

1
νn

sup
|s|≤δn

∫ t

0

∥
∥y2(r + s)− y2(r)

∥
∥2
H−1(G)dr

)

≤ C
{

1 + �(α,β) + exp
(
E
(∥
∥ ŷ1
∥
∥4
L2(0,t;L2(G))

))}

(3.27)

with {νn,δn} → 0+ and
∑

n

√
δn/νn <∞. The constant C is independent of t and of z1.

Proof. The existence of a unique solution of (3.25) is well known. we will now establish
the estimate of the lemma.
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(1) A standard argument gives

∥
∥y(·, t)∥∥2

L2(G) +
∥
∥y1
∥
∥2
L2(0,t;H1

0 (G)) ≤
∣
∣
∣
∣

∫ t

0

(
f
(
s,z1 + ŷ1

)− f
(·,z1

)
, y2
)
dw
∣
∣
∣
∣

+
∫ t

0

∥
∥g
(
s,z1 + ŷ1

)− g
(·,z1

)∥∥2
L2(G)ds.

(3.28)

With f , g as in Assumption 2.1, they are Lipschitz continuous in L2(0,T ;L2(G)) and thus

∥
∥y(·, t)∥∥2

L2(G) +
∥
∥y1
∥
∥2
L2(0,t;H1

0 (G))

≤ C
∫ t

0

∥
∥ ŷ1
∥
∥2
L2(G)ds+

∣
∣
∣
∣

∫ t

0

(
f
(·,z1 + ŷ1

)− f
(·,z1

)
, y2
)
dw
∣
∣
∣
∣.

(3.29)

Taking the square of the two sides of (3.29) and then the mathematical expectation,
we obtain by applying the martingale inequality,

E
(∥∥y(·, t)∥∥4

L2(G)

)≤ C
{
E
(∥∥ ŷ1

∥
∥4
L2(0,t;L2(G))

)
+
∫ t

0
E
(∥∥y2

∥
∥4
L2(G)

)
ds
}
. (3.30)

We have used the hypothesis that f is L2(0,T ;L2(G)) Lipschitz continuous. An appli-
cation of the Gronwall lemma yields

E
(∥
∥y(·, t)∥∥4

L2(G)

)
≤ C
{

1 + exp
(
E
(∥
∥ ŷ1
∥
∥4
L2(0,t;L2(G))

))}
(3.31)

for all t ∈ [0,T]. The constant C is independent of z1. Now going back to (3.30) and we
obtain

E
(∥
∥y1
∥
∥4
L2(0,t;H1

0 (G))

)
≤ C
{

1 + exp
{
E
(∥
∥ ŷ1
∥
∥4
L2(0,t;L2(G))

)}}
(3.32)

for all t ∈ [0,T]. The constant C is independent of z1. It is clear that

E
(∥
∥y′1
∥
∥2
L2(0,T ;L2(G))

)
≤ C
{

1 + exp
{
E
(∥
∥ ŷ1
∥
∥2
L2(0,T ;L2(G))

)}}
. (3.33)

(2) For any positive, θ we have
∥
∥y2(t+ θ)− y2(t)

∥
∥
H−1(G)

≤ Cθ +
∫ t+θ

t

∥
∥y1
∥
∥
H1

0 (G)ds+
∥
∥
∥
∥

∫ t+θ

t

{
f
(
s,z1 + ŷ1

)− f
(
s,z1
)}
dw
∥
∥
∥
∥
L2(G)

+C
∫ t+θ

t

∥
∥ ŷ1
∥
∥
L2(G)ds.

(3.34)

Taking the square of the two sides, integrating with respect to t from 0 to T and then
the mathematical expectation, we obtain by applying the martingale inequality,

E

(

sup
|θ|≤δ

∫ T

0

∥
∥y2(t+ θ)− y2(t)

∥
∥2
H−1(G)dt

)

≤ Cδ2 +Cδ2E
(∫ T

0

∥
∥y1
∥
∥2
H1

0 (G)dt
)

+CδE
(∫ T

0

∥
∥ ŷ1
∥
∥2
L2(G)dt

)
≤ C1δ.

(3.35)
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We have used the hypothesis that f and g are L2(0,T ;L2(G)) Lipschitz continuous.
Taking into account the estimates of the first part, we get the stated result. �

Step 3. Let

�=
{
(
y1, y2

)
: E
(∥
∥y(·, t)∥∥4

L2(G)

)
,E
(∥
∥y′1
∥
∥2
L2(0,t;L2(G))

)
≤ C exp(t),

E

(

sup
|θ|≤δ

∫ t

0

∥
∥y2(r + θ)− y2(r)

∥
∥2
H−1(G)dr

)

≤ Cδ, ∀t ∈ [0,T]

}

.

(3.36)

Let h be an element of

L2(Ω,�,P;L2(0,T ;H1
0 (G)

))×L2(Ω,�,P;L2(G)
)
. (3.37)

Since Ω is completely regular and h is a random variable and hence is measurable in
the Lusin, for each k there exists a compact subset Kk of Ω such that

P
(
Ω

Kk

)
≤ 1

k
(3.38)

and the restriction of h to Kk is continuous on Kk with values in H1
0 (G)×L2(G), we may

assume without loss of generality that the Kk’s are increasing.

Lemma 3.7. Let � be as above, then it is a compact convex subset of

L2(Kk,�,P;C
(
0,T ;L2(G)

))×L2(Kk,�,P;C
(
0,T ;H−1(G)

))
. (3.39)

Proof. (1) Let yn be in �, then

E
(∥
∥yn
∥
∥4
C(0,T ;L2(G))

)
+E
(∥
∥y1,n

∥
∥4
L2(0,t;H1

0 (G))

)
+E
(∥
∥y′1,n

∥
∥4
L2(0,T ;L2(G))

)
≤ C,

E

(

sup
|θ|≤δ

∫ T

0

∥
∥y2,n(t+ θ)− y2,n(t)

∥
∥2
H−1(G)dt

)

≤ Cδ.
(3.40)

Since yn are random variables, they are measurable in the sense of Lusin. By hypoth-
esis, Ω is completely regular, thus for each positive integer k, there exist compact subsets
Kn

1,k, Kn
2,k of Ω with

P

(
Ω

Kn
1,k

)

,P

(
Ω

Kn
2,k

)

≤ 1
k

(3.41)

and the restrictions of yn to Kn
1,k ×Kn

2,k are continuous with values in C(0,T ;L2(G))∩
L2(0,T ;H1

0 (G))×C(0,T ;L2(G)). Moreover the sets Kn
1,k, Kn

2,k are increasing. Without loss
of generality we will assume that

Kk ⊂ Kn
j,k, j = 1,2. (3.42)
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(2) Since yn are in �, a simple proof by contradiction gives
∥
∥yn(·,ω)

∥
∥
C(0,T ;L2(G)) +

∥
∥y1,n(·,ω)

∥
∥
L2(0,T ;H1

0 (G))

+
∥
∥y′1,n(·,ω)

∥
∥
L2(0,T ;L2(G)) ≤ Ck(ω), a.s. in Kk,

sup
|θ|≤δ

∫ T

0

∥
∥y2,n(t+ θ,ω)− y2,n(t,ω)

∥
∥2
H−1(G)dt ≤ δCk(ω), a.s. in Kk.

(3.43)

Since Kk is a compact subset of Ω, we have

Kk ⊂
N⋃

j=1

Vj
(
ωj ,δ

)⊂Ω. (3.44)

It follows from Aubin’s theorem that there exists a subsequence such that

y1,ns

(·,ωj
)−→ y1

(·,ωj
)

in C
(
0,T ;L2(G)

)
. (3.45)

Furthermore, y1,n→ y1 in

(
L4(Ω,�,P;L2(0,T ;H1

0 (G)
)))

weak∩
(
L4(Ω,�,P;L∞

(
0,T ;L2(G)

)))
weak∗ . (3.46)

From the diagonalization process, we get

y1,n
(·,ωj

)−→ y1
(·,ωj

)
in C
(
0,T ;L2(G)

)
, ∀ j. (3.47)

Since the restriction of y1 to Kk is continuous with values in C(0,T ;L2(G)), we have
∫

Kk

∥
∥y1,n(·,ω)− y1(·,ω)

∥
∥2
C(0,T ;L2(G))dP

≤
N∑

j=1

{∫

Vj

(∥
∥y1,n(·,ω)− y1,n

(·,ωj
)∥∥2

C(0,T ;L2(G))

+
∥
∥y1,n

(·,ωj
)− y1

(·,ωj
)∥∥2

C(0,T ;L2(G))

)
dP

+
∥
∥y1
(·,ωj

)− y1(·,ω)
∥
∥2
C(0,T ;L2(G))dP

}
≤ Cε.

(3.48)

Hence,

y1,n −→ y1 in L2(Kk,�,P;C
(
0,T ;L2(G)

))
. (3.49)

(3) With y2,n, we will apply a compactness theorem involving fractional time derivative
instead of Aubin’s theorem. We get as before as a subsequence such that

y2,n
(·,ωj

)−→ y2
(·,ωj

)
in C
(
0,T ;H−1(G)

)
, j = 1, . . . ,N ,

y2,n −→ y2 in
(
L4(Ω,�,P;L∞

(
0,T ;L2(G)

)))
weak∗ .

(3.50)

Again by the diagonalization process, we get a subsequence such that

y2,n
(·,ωj

)−→ y2
(·,ωj

)
in C
(
0,T ;H−1(G)

)
, j = 1, . . . ,N. (3.51)



Bui An Ton 11

Since y2,n and y2 are continuous on Kk with values in C(0,T ;H−1(G)), we have
∫

Kk

∥
∥y2,n(·,ω)− y2(·,ω)

∥
∥2
C(0,T ;H−1(G))dP

≤
N∑

j=1

∫

Vj

{∥
∥y2,n(·,ω)− y2,n

(·,ωj
)∥∥2

C(0,T ;H−1(G))

+
∥
∥y2,n

(·,ωj
)− y2

(·,ωj
)∥∥2

C(0,T ;H−1(G))

+
∥
∥y2
(·,ωj

)− y2(·,ω)
∥
∥2
C(0,T ;H−1(G))

}
dP ≤ Cε.

(3.52)

Thus,

yn −→ y1 in L2(Kk,�,P;C
(
0,T ;L2(G)

))×L2(Kk,�,P;C
(
0,T ;H−1(G)

))
(3.53)

and the lemma is proved. �

Let � be the nonlinear mapping of � into

L2(Ω,�,P;C
(
0,T ;L2(G)

))×L2(Ω,�,P;C
(
0,T ;H−1(G)

))
(3.54)

defined by

�(ŷ)= y, (3.55)

where y is the unique solution of (3.25) given by Lemma 3.6.

Lemma 3.8. The mapping � takes � into �.

Proof. It is an immediate consequence of the estimates of Lemma 3.6 and of the Gronwall
lemma. �

We will consider � as a subset of

L2(Kk,�,P;C
(
0,T ;L2(G)

))×L2(Kk,�,P;C
(
0,T ;H−1(G)

))
. (3.56)

Lemma 3.9. Let � be as in (3.70), then � is continuous from

L2(Kk,�,P;C
(
0,T ;L2(G)

))×L2(Kk,�,P;C
(
0,T ;H−1(G)

))
(3.57)

into itself.

Proof. (1) Let ŷn ∈� and let �(ŷn)= yn with yn being a solution of (3.25). Let zn be the
solution of (3.5) with ŷ replaced by ŷn.

Suppose that

{
ŷn,yn

}−→ {ŷ,y} (3.58)

in

{
L2(Kk,�,P;C

(
0,T ;L2(G)

))×L2(Kk,�,P;C
(
0,T ;H−1(G)

))}2
. (3.59)
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We now show that �(ŷ) = y. With ŷn ∈�, it follows from the estimates of Lemmas
3.2, 3.5 that

E
(∥
∥z1,n

∥
∥2
C(0,T ;L2(G))

)
+E
(∥
∥z2,n

∥
∥2
C(0,T ;H−1(G))

)

+E
(∥
∥ṽn
∥
∥2
L2(0,T ;L2(Γ1))

)
+E
(∥
∥z′1,n

∥
∥
L2(0,T ;H−1(G))

)
≤ C.

(3.60)

(2) A proof as done in Lemma 3.7 gives

z1,n −→ z1 in L2(0,T ;H−1(G)), a.s. in Kk, (3.61)

and {z1,n,z2,n, ṽn} → {z1,z2, ṽ} in
(
L2(Ω,�,P;L∞

(
0,T ;L2(G)

)))
weak∗ ×

(
L2(Ω,�,P;L∞

(
0,T ;H−1(G)

)))
weak∗

× (L2(Ω,�,P;L2(0,T ;L2(Γ1
))))

weak.
(3.62)

(3) An application of Lemma 2.3 gives

{
f
(·,z1,n + ŷ1,n

)
,g
(·,z1,n + ŷ1,n

)}−→ { f (·,z1 + ŷ1
)
,g
(·,z1 + ŷ1

)}
(3.63)

weakly in (L2(0,T ;L2(G)))2, a.s. in Kk.
(4) We have to show that {v,z} = πSŷ (0). It is easy to check that

⋂

n

Sŷn = Sŷ. (3.64)

Thus, Sŷ is a closed convex subset of

L2(0,T ;L2(Γ1
))×L2(0,T ;L2(G)

)×L2(0,T ;H−1(G)
)
. (3.65)

We have
∣
∣
∣
∣
∣
∣{v,z}∣∣∣∣∣∣≤ liminf

∣
∣
∣
∣
∣
∣{vn,zn

}∣∣
∣
∣
∣
∣

≤ ∣∣∣∣∣∣{vn,zn
}∣∣
∣
∣
∣
∣, ∀{vn,zn

}∈ Sŷn , n≥ n0

≤ ∣∣∣∣∣∣{v,z}∣∣∣∣∣∣, ∀{v,z} ∈ Sŷ.

(3.66)

Therefore {v,z} = πSŷ (0).
(5) Since yn is in �, it is clear that y ∈�. It is now trivial to check that

�(ŷ)= y (3.67)

and the lemma is proved. �

Lemma 3.10. The mapping � has a fixed point in �.

Proof. The mapping � is defined on all of the space

X = L2(Kk,�,P;C
(
0,T ;L2(G)

))×L2(Kk,�,P;C
(
0,T ;H−1(G)

))
(3.68)

and takes �, considered as a subset of X , into �. Since � is continuous from X into X , it
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follows from the Schauder fixed point theorem that there exists ỹ ∈� such that

�
(

ỹ(·,ω)
)= ỹ(·,ω) in Kk. (3.69)

�

Proof of Theorem 3.1. From Lemma 3.9, we have

dz1 = z2dt in Q a.s. in Kk,

dz2−Δz1dt = 0 in Q a.s. in Kk,

z1 = 0 on Γ0× (0,T) a.s. in Kk,

z1 = ṽ on Γ1× (0,T) a.s. in Kk,

z(·,0)= α, z(·,T)= β− ỹ(·,T) in G a.s. in Kk

(3.70)

with

dỹ1 = ỹ2dt in Q a.s. in Kk,

dỹ2−Δ ỹ1dt =
{
f
(
t,z1 + ỹ1

)− f
(
t,z1
)}
dw

+
{
g
(
t,z1 + ỹ1

)− g
(
t,z1
)}
dt in Q a.s. in Kk,

ỹ1 = 0 on ∂G× (0,T) a.s. in Kk,

ỹ1(·,0)= 0 in G a.s. in Kk,

(3.71)

and {v,z} = πSỹ (0). Let

ỹk(·,ω)=
⎧
⎨

⎩
ỹ(·,ω), if ω ∈ Kk,

0, if ω /∈ Kk.
(3.72)

The same applies for zk. Since P(
⋃

k Kk)= 1, we get

ỹk −→ ỹ, a.s. in Ω (3.73)

with values in C(0,T ;L2(G))×C(0,T ;H−1(G)). The same applies for zk. Let

f̃k(·,ω)=
⎧
⎨

⎩
f
(·, ỹ1(·,ω) + z1(·,ω)

)
, if ω ∈ Kk,

0, otherwise.
(3.74)

The f̃k are measurable functions from Ω to L2(0,T ;L2(G)) and since P(
⋃
Kk)= 1, we

deduce that

f̃k −→ f
(·, ỹ1 + z1

)
a.s. in Ω (3.75)

with values in L2(0,T ;L2(G)). The same applies for g̃k.
Set

u=−
∫ t

0
f
(
s,z1
)
ds−

∫ t

0
g
(
s,z1
)
ds,

{
y1, y2

}= { ỹ1 + z1, ỹ2 + z2
}

,
(3.76)
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then {u,v,y} is a solution of (1.1)–(1.4). The estimates of the theorem are now immediate
consequences of those of Lemmas 3.5, 3.8. �
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