EXACT CONTROLLABILITY FOR A NONLINEAR
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The exact controllability for a semilinear stochastic wave equation with a boundary con-
trol is established. The target and initial spaces are L>(G) x H~!'(G) with G being a bound-
ed open subset of R* and the nonlinear terms having at most a linear growth.
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1. Introduction

Let (Q, 54, P) be a probability space with Q being completely regular and let w be a stan-
dard Wiener process on the space. Let G be a bounded open subset of R* with a smooth
boundary and consider the initial boundary value problem

dy; = ydt inQa.s.,
dy, — Ayydt —du = f(t,y1)dw+g(t,y1)dt inQa.s.,
yi(t,w)=0 onlyx(0,T)as., (1.1)
y(tw)=v onl;x(0,T)as.,

Y(',O,w)=¢¥={ao,(x1} inGa.S.
The functions f, g are in C'(R) with f’,¢" in L*(R) and
Q=Gx(0,T), 9G=ToJI1, L[ \[1=9, Ii+a. (1.2)

The given surface Iy is closed. For given &, in L*(G) X H™!(G), one wishes to find con-
trols:

{u,v} € L*(Q,54,P;C(0, T; L*(G)) ) X L*(Q, 4, P;L* (0, T5;L*(T1))) (1.3)
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such that a solution y = (y1, y2) of (1.1) takes the value
y(,T,w)=p inGa.s. (1.4)

for some large T > Ty.

The exact controllability of deterministic linear wave equations has been extensively
investigated both theoretically and numerically, using the Hilbert uniqueness method of
Lions [4].The problem arises in applied sciences when one wishes for example to steer
a large complex structure to a specified target (cf. Lions [4], Russell [5]). The result was
extended by Zuazua [8] to semilinear wave equations when the initial and target spaces
are HY(G) x H™"7(G) for some y > 0. Using the notion of accretive mapping, the author
has established in [6], the exact controllability of a semilinear wave equation with at most
a linear growth in the nonlinear term, the initial and target spaces being the natural ones,
that is, L*(G) X H™!(G). The literature on the exact controllability of the stochastic wave
equation seems scarce. In [7], the author has shown the exact controllability of (1.1)-
(1.4) when the white noise is independent of the state and it is the purpose of this paper
to treat the general case with f depending on y;.

2. Notations, assumption and some preliminary results

Throughout the paper we will assume that Q is completely regular and by abuse of no-
tations, we will denote by (-, -) the L?(G) inner product as well as the pairings of H; (G)
with its dual H~1(G).

Assumption 2.1. Let f, g be C1((0,T) X R) functions. We assume that

H%(t’.) L) H%‘g(t’.) L“(R)SC, veeloTh (2.1)

[ fty)|+]gt )| <C{i+1yl}, V{t,y} €(0,T)xR

With initial and target spaces in L*(G) X H~!(G), approximating solutions of the lin-
earized version of (1.1)—(1.4) do not have enough regularity to allow the use of a com-
pactness argument for the nonlinear terms f and g. The difficulty is circumvented by
using an argument of the theory of monotone operators involving accretive mappings
introduced by Browder [2], Kato [3].

Let ] be the duality mapping of L2(0, T; H~(G)) into its dual, L?(0, T; H} (G)), with
gauge function @(r) = r. Then it is known that

T
,y)dt = 2(0,T;H-! 2(0.T:H!
|, Upnde = Iyleona @M arme o)

= ylEormiey Yy EL(0,THHG)).

Moreover ] is monotone and is continuous from the strong topology of L*(0,T;
H~'(G)) to the weak topology of L?(0, T; H} (G)).
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Let F be a mapping of L?(0, T;H~(G)) into L*(0, T; H"'(G)) with D(F) = L*(0,T;
L2(G)). The mapping F is said to be accretive with respect to J if

T
L (F(y)~F(2),J(y—2))dt =0, Vy,ze D(F). (2.3)

Lemma 2.2, Let f be in C1((0,T) X R) and suppose that Assumption 2.1 is satisfied. Then
AL + f is accretive with respect to the duality mapping ] for large, A > Ay.

Proof. We have

T T
j (F(t,y) — f(6.2).](y — 2))dt :j (y—2)f (LELI(y - 2)dt

0 0
<||(y- Z)f,”LZ(O,T;H*‘(G))||](y - Z)”LZ(O,T;H(}(G)) 24)
<|l(y- Z)f,”LZ(O,T;H*‘(G))”y - Z||L2(0,T;H*I(G))

for all y, z in L2(0, T;L*(G)). On the other hand, it is clear that

T
I1(y - Z)f,|~L2(0,T;H*1(G)) = mn J (y—2)f",p)dt
19120 o =1 | Jo
, T (2.5)
<1f Nimoren | (1y =2l lgDdr
< I f' le=omx 1y = 2ll20,:5-16) 191 20,1518 (6)
forall y, zin L?(0, T;L*(G)). Thus,
|(y = 2) f 20,1511 (6)) 26)
< f l=omxp 1y = zllorm-16),  Vy,2 € L*(0, T;L*(G)). '
Take A > || f' [l ~((0,r)xr) and we have
T
| e o= 2a0 -2
T
2 My =2omsan - | [, C)-f@IG-2d| @)
2 A= I f s omxn Iy = 2l ria1a)
>0, Vyzel*(0,T;L*(G)).
The lemma is proved. O

The following result has been shown by the author in [6].

LemMA 2.3. Let f be as in Assumption 2.1 and suppose that

yu—y in (L*(0, T;L*(G))) et N L2 (0, T;HH(G)), (2.8)
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then

f(t’yﬂj) - f(t>)’) iTl(Lz (0’ T;LZ(G)))weuk' (29)

With f as in Assumption 2.1, it follows from Lemma 2.2 that Al + f is accretive with
respect to the duality mapping J. Since

J(yn) — J(y) weaklyin L*(0,T;H; (G)),

(2.10)
||]()’n)||L2(o,T;Hg(G)) = ||yﬂ||L2(0,T;H*1(G)) — lIyllzo,msH-1(6) = ||](J’)||L2(0,T;Hg(c))
and since L?(0, T; H} (G)) is a Hilbert space, we have
J(yn) — J(y) inL*(0,T;H}(G)). (2.11)

Now using an argument of the theory of monotone operators applied to accretive
mappings, the author has shown in [6] the weak convergence in L?(0,T;L*(G)) of the
sequence { f(, yn,)}.

3. Main result

The main result of the paper is the following theorem.

TaeoreM 3.1. Let (Q, 9, P) be a probability space with Q being completely regular and let
w be a standard Wiener process on the space. Let f,g be as in Assumption 2.1 and let &, 8 be
in L*(G) x H™Y(G). Then for T > Ty, there exists a weak solution {u,v,y} in

L2(Q,94,P;C(0, T;L*(G))) x L*(Q, 54, P;L*(0,T;L*(T1)))

x L*(Q,54,P;C(0, T;L*(G))) x L*(Q, 4, P;C(0, T; H(G))), (3.1

of (1.1)—(1.4). Moreover,

4 4
E(HyIHC(O,T;Lz(G))) +E(||y2||C(0,T;H*1(G))) +E(”V”§2(o,T;L2(r1>>) <C(1+%é(ap)) (3.2)
with
%(“xﬂ) = ||“H%2(G)XH’1(G) + Hﬂ”%z((;)fol(G)- (3.3)

The proof of the theorem can be split into three steps.
Step 1. Lety be in

L*(Q,4,P;C(0, T;L(G))) x L*(Q, 54, P;C(0, T;H'(G))) (3.4)
and consider the exact controllability of the linear wave equation

dzy = zdt inQ,
dz; —Azidt=0 inQ,
z1=0 onTyx(0,T), z1=v onlyx(0,T),
z(-,0) = a, 2(,T)=B-y(-,T) inG

(3.5)
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The following result is well known.

LemMma 3.2. Suppose all the hypotheses of Theorem 3.1 are satisfied, let y be in C(0,T;
L*(G)) x C(0, T;H™Y(G)). Then for T > Ty, there exists {v,z} in

L*(0,T;L*(I'1)) x C(0,T5;L*(G)) x C(0, T;H(G)), (3.6)
weak solution of (3.5). Moreover,

Ivllz20,mz2) + 121l eo mae ey + 122l cio mm1 6y

(3.7)
< C{l + el 2 oyxa-16) + 1B 2 G)xH1(6) + ||?('»T)||L2(G)XH—1(G)}-
The constant C is independent of y, &, .
We will now consider the case when y is in
LY(Q,94,P;C(0, T;L*(G))) x L*(Q,54,P;C(0, T; H1(G))). (3.8)
Let
Sy = {{v,z} : {v,2} solution of (3.5)}. (3.9)

It follows from Lemma 3.2 that S; is nonempty.

LEMMA 3.3. Let S5 be as in (3.9), then it is a closed, bounded convex subset of L*(0,T;
L*(I'y)) X L*(0, T;L*(G)) x L*(0, T; H(G)).

Proof. Since the problem (3.5) is linear, it is clear that S is a convex subset of L*(0,T;
L*(Ty)) x L*(0, T5L*(G)) x L*(0, T; H~'(G)). It follows from Lemma 3.2 that the set is
bounded. Suppose that

nsza} — (1,2} (3.10)
in
L*(0,T;L*(T})) x L*(0, T;L*(G)) x L2(0, T; H '(G)) (3.11)
with {v,,z,} € S. It is trivial to check that indeed {v,z} € S;. O
Let 75, be the projection of
L*(0,T;L*(T})) x L*(0, T;L*(G)) x L2(0, T; H'(G)) (3.12)

onto the closed convex set Sy, defined by
| {v,x} — ﬂs§({v,x}) || =inf {||| {v.x} — (3,2} ||| : V{9,x} € §} (3.13)
with

[ {v, 2} [I] = ||{V>x}||L2(0,T;L2(l"1))><L2(O,T;LZ(G))XLZ(O,T;H"(G))' (3.14)
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Then 75, is uniquely defined and let
vz} = 75,(0) (3.15)

be the unique element of minimal L*(0,T;L*(T;)) x L*(0, T;L*(G)) X L*(0, T; H™'(G))
norm of S.
Let

A(p) = {{¥,z} : {¥,Z} solution of (3.5) as in (3.15)}, (3.16)
then it maps

C(0,T;L*(G)) x C(0, T; H'(G))

— L*(0,T;L*(T1)) x C(0,T;L*(G)) x C(0, T; H'(G)). (3:17)
LemMA 3.4. Let A be as in (3.16), then its graph is closed.
Proof. Tt is an immediate consequence of Lemma 3.2. O
Let ®(w) be the mapping
O(w) = {y(-, )} (3.18)
of Q into C(0, T;L3(G)) x C(0, T; H(G)).
Set
O(w) = Ao ®(w) = {{¥(-,w),Z(-,w)} : solution of (3.5) as in (3.15)}. (3.19)

LEMMA 3.5. The mapping A has a universally measurable section o and the application
000 of

Q — L*(0, T;L*(T)) x C(0, T;L*(G)) x C(0, T; H'(G)) (3.20)

is a measurable section of ®. Furthermore

2 2 ~|12
E(llzllco ey ) +E(l22lleo o) + E(IR G reay)
A~ 2
< 1+ lald g ) + 1Byt 1)+ E(I1FC Dl |-

Proof. The mapping A has nonempty closed images in L?(0, T; L*(T;)) x C(0, T; L*(G)) x
C(0, T;H7'(G)) with a closed graph. It follows from a theorem of Von Neumann that
there exists a universally measurable section ¢ of A (cf. [1, Theorem 3.1]).

Since P is a Radon measure on a completely regular space and since @ is a random
variable and therefore measurable in the sense of Lusin, we deduce that for each positive
integer k there exists a compact set Ki of Q such that

P(K%) <1 (3.22)

(3.21)

and the restriction @y = |k, of ® to Ki is continuous.
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We may assume that {Kj} is an increasing sequence.

The measure P induces on K a Radon measure Py and ®y(Py) is a Radon mea-
sure on L?(0,T;L*(T1)) x C(0,T;L*(G)) x C(0, T;H~'(G)). Since ¢ is ®(Px) measur-
able, it follows that ¢ o ®; is P measurable on K in L%(0,T;L*(T'})) x C(0, T;L*(G))
x C(0, T;H '(G)). Let

(O'Oq))(-,w), iwaKk)

{%C(')w))ik("w)} = {0’ ifw ¢ K. (3.23)

The functions {Vi(-,w),zx(-w)} from Q into L2(0, T;L3(T;)) x C(0,T;L*(G)) x C(0,T;
H~'(G)) are measurable. Since P(J; Kx) = 1, we have

Vo zk} — {(v,z}, as. with {V,z2} € A(y). (3.24)
Thus, {V,Z} is measurable in the sense of Lusin and therefore is a random variable. The

stated estimate is an immediate consequence of that of Lemma 3.2. O

Step 2. We now consider the linear stochastic system

dy) = ydt inQa.s.,
dy, — Aydt = {f(t,21+ 1) — f(21) }dw
+{g(t,z1+ 1) —g(t,z1)}dt inQas., (3.25)
y1=0 ondGx(0,T)as.,
y(-,0)=0 inGa.s.

LEmMA 3.6. Suppose all the hypotheses of Theorem 3.1 are satisfied and let Z be as in (3.15).
Then there exists a unique'y, solution of (3.25). Moreover,

E(Ily(-,t)||f4}<c)> +E(|In “iz(o,l‘;Hol(G)))

<cli+exp {E(IDllioueen) ) Vel (3.26)
Furthermore,
E(||)’i||i2(o,T;L2(G))) < C{l +exp {E(||?1||12,2(0,T;L2(G)> H,
E(sgpv—ln sup 0t||)’2(r+s) - )’2(7’)||§1*1(G)dr> (3.27)

< C{l +€(a,B) +exp (E(||?1 ||i2(0,t;L2(G))>)}

with {v,,8,} — 0" and >.,,/8,/v, < . The constant C is independent of t and of Z,.

Proof. The existence of a unique solution of (3.25) is well known. we will now establish
the estimate of the lemma.
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(1) A standard argument gives

t
||Y('>t)||22(c) +||y1||iz(0,t;H(}(G)) = ’ J (f(szi+31) = f(-21), p2)dw
0 (3.28)

t
+ | g2+ 7 g2 o ds.
With f, g as in Assumption 2.1, they are Lipschitz continuous in L?(0, T;L*(G)) and thus
2 2
Iy Co O]z + ||)’1||L2(o,t;Hg(G))
to, t R (3.29)
<c Inilhedst | [ (FCzt50 = F(20.0dw|.

Taking the square of the two sides of (3.29) and then the mathematical expectation,
we obtain by applying the martingale inequality,

E(y(0llie) = CLEUR N oueian) + | Elballb@)ds) 330

We have used the hypothesis that f is L?(0, T;L?(G)) Lipschitz continuous. An appli-
cation of the Gronwall lemma yields

E(llyC0l1)) = C{1+exp (B(I1 12000 ) )} (3.31)

for all t € [0, T]. The constant C is independent of z,. Now going back to (3.30) and we
obtain

4 ~ 14
E(| |/V1||L2(o,t;Hg(G))> = C{l +exp {E<| 7] |L2(0,t;L2(G))) H’ (3.32)
for all t € [0, T]. The constant C is independent of ;. It is clear that
7112 A~ 112
E(| |y1||L2(O,T;L2(G))) = C{l +exp <{E(H)’l ||L2(0,T;L2(c))) } } (3.33)

(2) For any positive, 0 we have

[y2(t+0) = y2(D]51(6)

t+0

t+60
- ce+j j {57+ 1) — f(s71) }dw

t

[yl ey s + ' pe (334

t+6
+C [ illseds

Taking the square of the two sides, integrating with respect to ¢ from 0 to T' and then
the mathematical expectation, we obtain by applying the martingale inequality,

T
E(supj lya(t+0) y2<t>||imc>dt)
16]<6Y0 (335)

T T
<o+ C(SZE( jo [ y1||§15(c)dt> i caE(jO I y1||§2(®dt) <G
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We have used the hypothesis that f and g are L*(0, T;L?(G)) Lipschitz continuous.
Taking into account the estimates of the first part, we get the stated result. O

Step 3. Let

% - {um E(Iy 0o E( Pronaocan) < Cexp(o),

(3.36)
(supj [1y2(r+6) = y2() [ 1(G)dr> <Cs, Vtelo, T]}
16]<8
Let h be an element of
L*(Q, 54, P;L%(0, T;Hy (G))) X L* (Q, 4, P; L*(G)). (3.37)

Since Q is completely regular and h is a random variable and hence is measurable in
the Lusin, for each k there exists a compact subset Ki of Q) such that

P(K%) < % (3.38)

and the restriction of h to Kj is continuous on K with values in Hj (G) X L*(G), we may
assume without loss of generality that the K’s are increasing.

LEmMA 3.7. Let B be as above, then it is a compact convex subset of
L* (K, 4, P;C(0, T; L*(G)) ) x L* (K, 4, P;C(0, T;H'(G))). (3.39)

Proof. (1) Lety, be in %, then

E(”Yﬂ”éoT-Lz( >+E(||}’1n||220t-Hg( >+E<||}’{n||220T-L2(G))>SC’

(SUPJ 12 (t+6) = y2n(Oll3r1 dt)<ca
CIE

(3.40)

Since y, are random variables, they are measurable in the sense of Lusin. By hypoth-
esis, () is completely regular, thus for each positive integer k, there exist compact subsets

p( 0 )p( = > <1 (3.41)
L,k 2k k

and the restrictions of y, to K{'; x K}, are continuous with values in C(0,T;L*(G)) N
L*(0,T; Hi(G)) x C(0, T;L*(G)). Moreover the sets K}, K are increasing. Without loss
of generality we will assume that

K CKYy  j=1.2 (3.42)
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(2) Since y, are in %, a simple proof by contradiction gives

||Yn("“’)||c<o,T;L2(G)) + ||)’1,n('aw)”LZ(o,T;H(}(G))
Y1) o6y < Cr(w),  as.in K,

. (3.43)
sup . | y2n(t+6,0) — yz,n(t,w)||i1,,(G)dt <6Ci(w), a.s.in K.
161<6
Since K is a compact subset of ), we have
N
Ki ¢ |JVi(w;,8) c Q. (3.44)
j=1
It follows from Aubin’s theorem that there exists a subsequence such that
Yin (Hwj) — y1(-wj)  in C(0,T;L4(G)). (3.45)
Furthermore, y;, — y; in
(L*(Q, 4, P17 (0, T;H3 (G)))) yeare N (LH(Q, PsL¥ (0, T5L2(G))) ) eurr-~ (3:46)
From the diagonalization process, we get
)’1,n('>wj) _’yl(’w]) lnC(07T)L2(G))7 V] (347)

Since the restriction of y; to K is continuous with values in C(0, T;L*(G)), we have

2
JK;( [y1n(- @) = b4 ("w)”C(O,T;LZ(G))dP

N
2
<21 ] (a0 = 3G o
j=1 Vi

(3.48)
yia () _yl("wj)”zC(O,T;LZ(G)))dP
(@) _yl('>w)||2C(O,T;L2(G))dP} = Ce.
Hence,
Yin — y1 in L (K, s, P;C(0, T;L%(G))). (3.49)

(3) With y, ,, we will apply a compactness theorem involving fractional time derivative
instead of Aubin’s theorem. We get as before as a subsequence such that
yan(5w;) — y2(-w;)  inC(0,T;HYG)), j=1,...,N,

Yo — o in (LY(Q,d,P;L° (0, T;LX(G)))) (3.50)

weak™ *

Again by the diagonalization process, we get a subsequence such that

Yon(-wj) — y2(-wj) inC(0,T;H'(G)), j=1,...,N. (3.51)
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Since y,,, and y, are continuous on Kj with values in C(0, T; H 1(G)), we have
2
JKk ly2n(-s @) — yZ("w)HC(O,T;H*l(G))dP

N
< 12 (- @) = Y2 (- 0) oo,
;JVJ{ Y2,n Y JC(0,T;H-1(G)) (3_52)

+[y2n (- w;)) _yZ(ij)HZC(O,T;H*I(G))
1192 @5) = 920,00 75811y | AP < Ce.
Thus,
Y» —y1  in L*(Ki,s4,P;C(0, T;L*(G))) X L* (K, 4, P;C(0, T;H'(G)))  (3.53)
and the lemma is proved. O
Let & be the nonlinear mapping of % into
L*(Q,94,P;C(0, T;L*(G))) x L2(Q,94,P;C(0, T;H(G))) (3.54)
defined by
£y =y, (3.55)
where y is the unique solution of (3.25) given by Lemma 3.6.

Lemma 3.8. The mapping & takes B into R.

Proof. It is an immediate consequence of the estimates of Lemma 3.6 and of the Gronwall
lemma. O

We will consider & as a subset of
L*(Ki, d,P;C(0, T;L*(G)) ) x L2 (K, 4, P;C(0, T; HH(G))). (3.56)
LemMa 3.9. Let &£ be as in (3.70), then & is continuous from
L* (K, 4,P;C(0, T;L*(G))) x L* (K, 54, P;C(0, T; H™(G))) (3.57)

into itself.

Proof. (1) Lety, € B and let £(y,) =y, with y, being a solution of (3.25). Let Z, be the
solution of (3.5) with y replaced by y,.
Suppose that

{s\rm)'n} - {§,Y} (3.58)
in

{12 (Ki, 54, P;C(0, T; L2 (G)) ) x L* (K, s, P;C(0, T; H™(G))) . (3.59)
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We now show that £(y) = y. With y,, € 9B, it follows from the estimates of Lemmas

3.2, 3.5 that

E<||zl,n||ZC(o,T;L2(G))) +E(||22,n||é(0,T;H*1(G)))
+E(||;n||iZ(o,T;L2(r1))) +E(||z,1,n||L2(0,T;H*1(G))> =C
(2) A proof as done in Lemma 3.7 gives
Zin — 21 in L*(0,T;H Y(G)), a.s. in Ky,
and {Z1,4,Z2,0,Vn} — {21,22,V} in

(L2(Q, 4, P; L™ (0, T5LA(G))) ) euer X (L2(Q, 54, P;L% (0, T;HY(G))))
x (L*(Q, 4, P;L* (0, T;L?(T))))

weak ™

weak*

(3) An application of Lemma 2.3 gives

{f(Zuat Y1n)s8(H 20+ Y1)t — {f (HZi+51),8(5 21+ 1) }

weakly in (L2(0, T;L*(G)))?, a.s. in K.
(4) We have to show that {v,z} = ns§(0). It is easy to check that

S5, =S5
Thus, S; is a closed convex subset of
12(0, T;L*(T1)) x L2(0, T;L*(G)) x L2(0, T; H1(G)).

We have

1 {w.2} || = liminf ||| {vs,z,} [[|
< |[[{vwzatl], V{szn}esfanzno

<llmall, vinzes;.

Therefore {v,z} = 75,(0).
(5) Since y, is in %, it is clear that y € %B. It is now trivial to check that

£@y) =y
and the lemma is proved.
LemMA 3.10. The mapping £ has a fixed point in 9RB.

Proof. The mapping & is defined on all of the space

X = L*(Kg, 1, P;C(0, T;L*(G)) ) X L* (K, 4, P;C(0, T; H'(G)))

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

and takes 9B, considered as a subset of X, into . Since & is continuous from X into X, it
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follows from the Schauder fixed point theorem that there exists y € % such that

2y w) =y(-,w) inK;. (3.69)

Proof of Theorem 3.1. From Lemma 3.9, we have
dz, =Z,dt in Qa.s.in K},
dz, —AZ;dt =0 in Qa.s. in Ky,
Z1=0 onTyx(0,T)a.s.in K, (3.70)
zZi=v onTl;x(0,T)a.s. in Ky,
z(-,0) = a, z(+,T)=B-y(-,T) in Ga.s.in Ky
with
dy, =%dt inQas.in K,
dy, — Ayrdt = {f(t,z1+ 1) - f(t,21) }dw
+{g(tzi+y1) —g(t,z1)}dt inQ as.in Ky, (3.71)
%1 =0 onodGx(0,T)a.s.in K,
v1(-,0) =0 in Ga.s. in K,

and {v,z} = 715‘7(0). Let

V(- w) = {z,(-,w), 1;2 Z 2:’ (3.72)
The same applies for zx. Since P(U; Ki) = 1, we get
Ve —79V, as.inQ (3.73)
with values in C(0, T;L*(G)) x C(0, T;H~'(G)). The same applies for Z. Let
) = {é(.’;l(-’w)+zl(.’w))’ if‘[;)efwli(:;. (3.74)

The ka are measurable functions from Q to L2(0, T;L3(G)) and since P(UKx) = 1, we
deduce that

fk — (> +71) as.inQ (3.75)

with values in L?(0, T;L?(G)). The same applies for g.
Set

t t
u= _I f(sle)dS—J g(s,z1)ds,
0 0
L7t =h+z21, hh+2,

(3.76)
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then {u,7,y} is a solution of (1.1)—(1.4). The estimates of the theorem are now immediate
consequences of those of Lemmas 3.5, 3.8. O
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