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We present an integer valued degree theory for locally compact perturbations of Fred-
holm maps of index zero between (open sets in) Banach spaces (quasi-Fredholm maps,
for short). The construction is based on the Brouwer degree theory and on the notion of
orientation for nonlinear Fredholm maps given by the authors in some previous papers.
The theory includes in a natural way the celebrated Leray-Schauder degree.
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1. Introduction

In [1] we gave a new definition of oriented degree for (nonlinear) Fredholm maps of
index zero between real Banach manifolds. Our approach, based on the simple algebraic
idea of giving an orientation to Fredholm linear operators of index zero, extends and
simplifies the well known Elworthy-Tromba construction (see [5, 6]). Analogously to the
degree theory developed by Fitzpatrick, Pejsachowicz and Rabier in [7, 8], in our method
we introduce a concept of orientation for Fredholm maps of index zero, avoiding, in this
way, the use of any Fredholm structure and any related concept of infinite-dimensional
orientation on manifolds; notions that are needed in the Elworthy-Tromba theory. (A
comparison between our approach and that of Fitzpatrick, Pejsachowicz and Rabier can
be found in [1, 2].)

Our degree in [1], which is merely based on the Brouwer degree for maps between
finite-dimensional differentiable manifolds, extends the celebrated Leray-Schauder de-
gree theory in the C1 case (Fredholm maps are C1, by assumption). In order to give a full
extension of the Leray-Schauder construction, in this paper we develop a degree theory
for locally compact perturbations of Fredholm maps of index zero between (open sets in)
Banach spaces (quasi-Fredholm maps, for short). For this purpose we will extend to the
quasi-Fredholm maps the notion of orientation introduced in [1] for Fredholm maps of
index zero.
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2 Degree for compact perturbations of Fredholm maps

As in [1], our construction will be mainly based on the existing finite-dimensional
degree theory (as can be found, e.g., in [16]).

We point out that a degree theory for locally compact perturbations of Fredholm maps
has already been developed by Zvyagin and Ratiner in [18]. However, our approach differs
from that in [18] since it is not based on the Elworthy-Tromba theory.

2. Preliminaries

These preliminaries are devoted to a review of those properties of the Brouwer degree
that will be useful for the construction of our degree.

The version of the Brouwer degree we consider here is a slight extension of that ex-
posed by Nirenberg in [16]. In his approach, the degree is an integer assigned to any
triple ( f ,U , y), where f , U and y are as follows. Given two oriented C∞ real manifolds
M and N of the same (finite) dimension, U is an open subset of M, f : M →N is a con-
tinuous map that is proper on the closure U of U , and y is an element of N such that
y /∈ f (∂U). We point out that Nirenberg’s approach is still valid if the manifolds M and
N are supposed to be C1, which is the case we consider in this paper.

We find worthwhile to stress that the construction of Nirenberg includes the two
classical approaches to the finite-dimensional degree: one regarding maps defined on
the closure of bounded open subsets of Rn and the other concerning maps between
compact manifolds (for extensive expositions of the Brouwer degree theory we refer to
[4, 10, 13, 14, 16]).

The assumptions required by Nirenberg can be easily weakened. In fact, given two
oriented C1 real manifolds M and N of the same dimension and a continuous map f :
M→N , the degree can be defined for any triple ( f ,U , y) withU open inM and f −1(y)∩
U compact. More precisely, given an open subset W of U such that ( f −1(y)∩U) ⊆W
and W ⊆U , if f |W is proper, the degree of ( f ,U , y) is defined as

deg( f ,U , y)= deg( f ,W , y). (2.1)

The excision property implies that deg( f ,U , y) is well-defined, in the sense that the right-
hand side of the above equality does not depend on W .

The classical properties of the Brouwer degree still hold in this extended version. The
proof can be easily obtained by a straightforward generalization of the same properties
given in [16].

To help the reader we recall here the excision and the homotopy invariance properties,
since they will be explicitly used for our construction.

Lemma 2.1 (excision). Let M and N be two oriented C1 real manifolds of the same finite
dimension and let f :M→N be continuous. Consider an element y ∈N and an open subset
U ofM such that f −1(y)∩U is compact. IfV is an open subset ofU containing f −1(y)∩U ,
then

deg( f ,V , y)= deg( f ,U , y). (2.2)
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Lemma 2.2 (homotopy invariance). Let H : M × [0,1] → N be a continuous homotopy.
Consider an element y ∈ N and an open subset U of M such that H−1(y)∩ (U × [0,1]) is
compact. Then deg(H(·,λ),U , y) is independent of λ∈ [0,1].

The above classical version of the homotopy invariance property can be generalized as
in Lemma 2.3 below. We obtain a particular extension of Lemma 2.2 that will be used in
Section 5.

Lemma 2.3 (extended homotopy invariance). Let E be a real Banach space and Z an ori-
ented (n+ 1)-dimensional submanifold of E× [0,1] with boundary. Assume that the bound-
ary of Z is

(
Z0×{0}

)∪ (Z1×{1}
)
, (2.3)

where Z0 and Z1 are (boundaryless n-dimensional) oriented manifolds. Suppose also that
the orientation of Z at any point (x, i), i = 0,1, is the product of the orientation of Zi at x
and the canonical orientation of R. Let N be an oriented n-dimensional manifold and let
H : Z →N be continuous. If y ∈N is such that H−1(y) is compact, then

deg
(
H(·,0),Z0, y

)= deg
(
H(·,1),Z1, y

)
. (2.4)

This version of the homotopy invariance property is not standard since the domain
of H is not a product manifold. Nevertheless, the proof can be given as in its classical
version.

Another property of the Brouwer degree that we will need is a reduction property
(Proposition 2.5 below). Let us recall first some facts regarding the notions of orienta-
tion and transversality. Consider a (real) manifold M, a (real) vector space F of the same
finite dimension and a C1 map g : M → F. Let F1 be a subspace of F, transverse to g.
Thus M1 = g−1(F1) is a submanifold of M of the same dimension as F1. Assume now
that M and F are oriented. One can prove that any orientation of F1 induces an orienta-
tion on M1. Let us sketch how this can be done. Suppose F1 oriented and let x ∈M1 be
given. By the transversality assumption, the tangent space to M1 at x, denoted by TxM1,
coincides with (g′(x))−1(F1). Let E0 be any direct complement of TxM1 in TxM and let
F0 = g′(x)(E0). Observe that g′(x) maps isomorphically E0 onto F0 and that F = F0⊕F1.
Let F0 be endowed with the orientation such that a positively oriented basis of F0 and a
positively oriented basis of F1, in this order, form a positively oriented basis of F. Then,
orient E0 in such a way that g′(x)|E0 : E0 → F0 is orientation preserving. Finally, orient
TxM1 in such a way that a positively oriented basis of E0 and a positively oriented basis
of TxM1, in this order, form a positively oriented basis of TxM. One can prove that this
pointwise choice induces a (global) orientation on M1 (see, e.g., [9, pages 100–101] for
the details).

Definition 2.4. The submanifold M1, oriented as above, is called the oriented g-preimage
of F1.

Let now f :M→ F be continuous and let y ∈ F be such that f −1(y) is compact. Con-
sider a C1 map g :M→ F and a subspace F1 of F such that
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(a) F1 contains y and ( f − g)(M),
(b) g is transverse to F1.

Now observe that assumption (a) implies that the compact set f −1(y) coincides with
f −1
1 (y), where f1 stands for the restriction f |M1 :M1 → F1. Therefore, the Brouwer degree

of the triple ( f1,M1, y) is well defined.
We can now state the following reduction property of the degree. The proof of this re-

sult can be obtained following the outline of the analogous result given for maps between
Euclidean spaces, where the rôle of g is played by the identity ofRn (see, e.g., [13, Lemma
4.2.3]).

Proposition 2.5 (reduction). Let M be an oriented manifold and F an oriented vector
space of the same finite dimension as M. Let f : M → F be continuous and y ∈ F such that
f −1(y) is compact. Consider an oriented subspace F1 of F and a C1 map g : M → F such
that

(1) F1 contains y and ( f − g)(M),
(2) g is transverse to F1.

Let M1 denote the oriented g-preimage of F1. Then

deg( f ,M, y)= deg
(
f1,M1, y

)
, (2.5)

where f1 is the restriction of f to M1 as domain and to F1 as codomain.

3. Orientability for Fredholm maps

In [1, 2] we introduced a notion of orientability for (nonlinear) Fredholm maps of index
zero between Banach manifolds. This section deals with a summary of this notion in the
particular context of Fredholm maps between Banach spaces. For the details we refer to
[1, 2].

3.1. Orientability for Fredholm linear operators. The starting point for the definition
of our notion of orientability for Fredholm maps is a preliminary concept of orientation
for Fredholm linear operators of index zero between real vector spaces (at this level no
topological structure is needed). Given two real vector spaces E and F, a linear opera-
tor L : E→ F is said to be (algebraic) Fredholm if KerL and coKerL = F/ ImL are finite-
dimensional. The index of L is

indL= dimKerL−dimcoKerL. (3.1)

Of course, if E and F have finite dimension, then indL= dimE−dimF.
A linear operator A : E→ F is a corrector of L provided its image has finite dimension

and L+A is an isomorphism. We denote by �(L) the (nonempty) set of correctors of L.
In �(L) an equivalence relation can be defined as follows. Given A,B ∈ �(L), consider
the following automorphism of E:

T = (L+B)−1(L+A)= I − (L+B)−1(B−A). (3.2)
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Clearly, K = (L+B)−1(B−A) has finite-dimensional image. Hence, given any finite-
dimensional subspace E0 of E containing the image of K , the restriction of T to E0 is an
automorphism of E0. Therefore, its determinant is well defined and nonzero. It is easy to
check that such a value does not depend on E0 (see [1]). Thus, the number

det
(
(L+B)−1(L+A)

)
(3.3)

is well defined as the determinant of the restriction of (L + B)−1(L +A) to any finite-
dimensional subspace of E containing the image of (L+B)−1(B−A).

We say that A is equivalent to B or, more precisely, A is L-equivalent to B, if det((L+
B)−1(L+A)) > 0. In [1, Section 2] it is shown that this is actually an equivalence relation
on �(L) with two equivalence classes. This relation allows us to introduce the following
concept of orientation for a Fredholm linear operator of index zero.

Definition 3.1. Let L be a Fredholm linear operator of index zero between two real vector
spaces. An orientation of L is the choice of one of the two equivalence classes of �(L). We
say that L is oriented when an orientation is chosen.

Given an oriented operator L, the elements of its orientation will be called the positive
correctors of L.

According to Definition 3.1, an oriented operator is actually a pair (L,α), where L is
a nonoriented operator and α is an orientation of L. However, to simplify the notation,
we will not use different symbols to distinguish between an oriented operator and its
nonoriented part.

Definition 3.2. An oriented isomorphism L is said to be naturally oriented if the trivial
operator is a positive corrector, and this orientation is called the natural orientation of L.

If E and F are of the same finite dimension, an orientation of L : E→ F induces a pair of
orientations on E and F, up to an inversion of both of them. Indeed, let L be oriented and
A a positive corrector. Orient E and F in such a way that L+A is orientation preserving.
Clearly, the orientations of E and F are defined up to an inversion of both of them. It is
easy to see that any other corrector B of L is positive if and only if L+ B is orientation
preserving.

The converse of the above assertion holds, that is, two orientations of E and F induce
an orientation on any linear operator between E and F.

In the case when L : E→ F acts between two infinite-dimensional spaces, given a finite-
dimensional subspace F1 of F which is transverse to L, an orientation of L induces a pair
of orientations on E1 = L−1(F1) and on F1, up to an inversion of both of them. To prove
this, let E0 be a direct complement of E1 in E and observe that F = L(E0)⊕ F1. Consider
a corrector A of L with image contained in F1. It follows that (L+A)|E1 : E1 → F1 is an
isomorphism. Therefore, it is possible to orient E1 and F1 in such a way that (L+A)|E1 :
E1 → F1 is orientation preserving.

Assume now that L is oriented and A is a positive corrector. Let us check that the pair
of orientations induced on E1 and on F1 (up to an inversion of both of them) does not
depend on the choice ofA, but just on the orientation of L. Let B be a positive corrector of
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Lwith image contained in F1. From the definition of the orientation of L it follows that the
determinant of (L+B)−1(L+A)|E1 : E1 → E1 is positive (i.e., A and B are L-equivalent). If
we now choose two bases of E1 and of F1 in such a way that the determinant of (L+A)|E1 :
E1 → F1 is positive, it turns out that the determinant of (L+B)−1|F1 : F1 → E1 is positive
as well. Hence the determinant of its inverse (L+B)|E1 : E1 → F1 is positive.

In conclusion, given two correctors A and B of L with images contained in F1, if we
orient E1 and F1 in such a way that (L+A)|E1 : E1 → F1 preserves the orientations, then
(L+B)|E1 : E1 → F1 preserves the orientations if and only if B is equivalent to A.

3.2. Orientability for Fredholm maps. We now extend the notion of orientation in the
framework of Banach spaces. From now on E and F denote two real Banach spaces,
L(E,F) is the Banach space of bounded linear operators from E into F, and Φn(E,F)
is the open subset of L(E,F) of the Fredholm operators of index n. Given L ∈Φ0(E,F),
the symbol �(L) now denotes, with an abuse of notation, the set of bounded correctors
of L, which is still nonempty.

Of course, the definition of orientation of L ∈Φ0(E,F) can be given as the choice of
one of the two equivalence classes of bounded correctors of L, according to the equiva-
lence relation previously defined.

In the context of Banach spaces, an orientation of a Fredholm linear operator of in-
dex zero induces, by a sort of stability, an orientation to any sufficiently close operator.
Precisely, consider L∈Φ0(E,F) and a corrector A of L. Since the set of the isomorphisms
from E into F is open in L(E,F), A is a corrector of every T in a suitable neighborhood U
of L. If, in addition, L is oriented and A is a positive corrector of L, then any T in U can
be oriented taking A as a positive corrector. This fact leads us to the following notion of
orientation for a continuous map with values in Φ0(E,F).

Definition 3.3. Let X be a topological space and h : X →Φ0(E,F) be continuous. An ori-
entation of h is a continuous choice of an orientation α(x) of h(x) for each x ∈ X , where
“continuous” means that for any x ∈ X there exists A ∈ α(x) which is a positive correc-
tor of h(x′) for any x′ in a neighborhood of x. A map is orientable when it admits an
orientation and oriented when an orientation is chosen.

Remark 3.4. It is possible to prove (see [2, Proposition 3.4]) that two equivalent correctors
A and B of a given L∈Φ0(E,F) remain T-equivalent for any T in a neighborhood of L.
This implies that the notion of “continuous choice of an orientation” in Definition 3.3 is
equivalent to the following one:

(i) for any x ∈ X and any A ∈ α(x), there exists a neighborhood U of x such that A ∈
α(x′) for all x′ ∈U .

As a straightforward consequence of Definition 3.3, if h : X → Φ0(E,F) is orientable
and g : Y → X is any continuous map, then the composition h ◦ g is orientable as well.
In particular, if h is oriented, then h ◦ g inherits in a natural way an orientation from
the orientation of h. This holds, for example, for the restriction of h to any subset A
of X , since h|A is the composition of h with the inclusion A↩X . Moreover, if H : X ×
[0,1] → Φ0(E,F) is an oriented homotopy and λ ∈ [0,1], the partial map Hλ = H ◦ iλ,
where iλ(x)= (x,λ), inherits an orientation from H .
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The following proposition shows an important property of the notion of orientabil-
ity for continuous maps in Φ0(E,F), which is, roughly speaking, a sort of continuous
transport of an orientation along a homotopy (see [2, Theorem 3.14]).

Proposition 3.5. Consider a homotopy H : X × [0,1]→Φ0(E,F). If, for some λ ∈ [0,1],
the partial map Hλ = H(·,λ) is oriented, then there exists a unique orientation of H such
that the orientation of Hλ is inherited from that of H .

Definition 3.3 and Remark 3.4 allow us to define a notion of orientability for Fredholm
maps of index zero between Banach spaces. Recall that, given an open subset Ω of E, a
map g : Ω→ F is a Fredholm map if it is C1 and its Fréchet derivative, g′(x), is a Fredholm
operator for all x ∈Ω. The index of g at x is the index of g′(x) and g is said to be of index
n if it is of index n at any point of its domain.

Definition 3.6. An orientation of a Fredholm map of index zero g : Ω→ F is an orientation
of the continuous map g′ : x �→ g′(x), and g is orientable, or oriented, if so is g′ according
to Definition 3.3.

The notion of orientability of Fredholm maps of index zero is mainly discussed in
[1, 2], where the reader can find examples of orientable and nonorientable maps. It is
worthwhile for the sequel to recall the following sufficient condition for the orientability
of a Fredholm map (see [1]).

Proposition 3.7. A Fredholm map of index zero g : Ω→ F is orientable if Ω is simply
connected.

Let us now recall a property (Theorem 3.9 below) which is the analogue for Fred-
holm maps of the continuous transport of an orientation along a homotopy, as seen in
Proposition 3.5. We need first the following definition.

Definition 3.8. Let H : Ω× [0,1]→ F be a C1 homotopy. Assume that any partial map Hλ

is Fredholm of index zero. An orientation of H is an orientation of the map

∂1H : Ω× [0,1]−→Φ0(E,F), (x,λ) �−→ (Hλ
)′

(x), (3.4)

and H is orientable, or oriented, if so is ∂1H according to Definition 3.3.

From the above definition it follows immediately that if H oriented, an orientation of
any partial map Hλ is inherited from H .

The proof of Theorem 3.9 below is a straightforward consequence of Proposition 3.5.

Theorem 3.9. Let H : Ω× [0,1]→ F be C1 and assume that any Hλ is a Fredholm map of
index zero. If a given Hλ is orientable, then H is orientable. If, in addition, Hλ is oriented,
there exists and is unique an orientation of H such that the orientation of Hλ is inherited
from that of H .

We conclude this section with a generalization in infinite dimension of the concept of
oriented preimage seen in Section 2.

Let g : Ω→ F be an oriented map and Z a finite-dimensional subspace of F, transverse
to g. By classical transversality results,M = g−1(Z) is a differentiable manifold of the same
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dimension as Z. In addition, M is orientable (see [1, Remark 2.5 and Lemma 3.1]). Here
we just need to show how an orientation at any point of M is induced by the orientation
of g and by a chosen orientation of Z.

Let Z be oriented. Consider x ∈M and a positive corrector A of g′(x) with image
contained in Z (the existence of such a corrector is ensured by the transversality of Z to
g). Then, orient the tangent space TxM in such a way that the isomorphism

(
g′(x) +A

)|TxM : TxM −→ Z (3.5)

is orientation preserving. By the argument seen at the end of Section 3.1, the orientation
of TxM does not depend on the choice of the positive corrector A, but just on the orien-
tation of Z and g′(x). With this orientation, we call M the oriented Fredholm g-preimage
of Z.

The reader can immediately notice the similarity between the above notion of oriented
Fredholm preimage and that of oriented preimage given in Section 2. In both cases we
assign an orientation to a finite-dimensional manifold obtained as preimage of a suitable
finite-dimensional oriented vector space. However, in the notion of oriented preimage
given in Section 2 the starting point is a map between two oriented finite-dimensional
manifolds, while for the above notion of oriented Fredholm preimage we start from an
oriented map (according to Definition 3.6).

These two definitions are formally different but strictly related, as the following lemma
shows. This will be crucial for the construction of the degree of locally compact pertur-
bations of Fredholm maps of index zero.

Lemma 3.10. Let g : Ω→ F be an oriented map and let F1 and F2 be two oriented finite-
dimensional subspaces of F, both transverse to g. Suppose that F2 contains F1. Let M2 be the
oriented Fredholm g-preimage of F2 and put

M1 =
(
g|M2

)−1(
F1
)= g−1(F1

)
. (3.6)

Then, M1 is the oriented g|M2 -preimage of F1 if and only if it is the oriented Fredholm g-
preimage of F1.

Proof. Let x ∈M1 be given and let A : E→ F be a positive corrector of g′(x) having image
contained in F1. Since M2 is the oriented Fredholm g-preimage of F2, the linear operator

(
g′(x) +A

)|TxM2 : TxM2 −→ F2 (3.7)

is orientation preserving. Consider the splittings

TxM2 = E0⊕TxM1,

F2 = F0⊕F1,
(3.8)

where E0 is any direct complement of TxM1 in TxM2 and F0 = g′(x)(E0). By this decom-
position, (g′(x) +A)|TxM2 can be represented in a block matrix form as

(
g′(x)11 0(

g′(x) +A
)

21

(
g′(x) +A

)|TxM1

)

. (3.9)
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Observe that g′(x)11 is an isomorphism. Now, orient F0 in such a way that its posi-
tively oriented basis and a positively oriented basis of F1, in this order, form a positively
oriented basis of F2. Then, orient E0 in such a way that g′(x)11 is orientation preserving.
By the notion of oriented preimage given in Section 2, M1 is the oriented g|M2 -preimage
of F1 if and only if a positively oriented basis of E0 and a positively oriented basis of
TxM1, in this order, form a positively oriented basis of TxM2. On the other hand, M1

is the oriented Fredholm g-preimage of F1 if and only if (g′(x) +A)|TxM1 : TxM1 → F1 is
orientation preserving.

Now, by the block matrix decomposition, it is not difficult to check that, as g′(x)11

and (g′(x) +A)|TxM2 : TxM2 → F2 are orientation preserving, an assigned orientation to
TxM1 implies that (g′(x) +A)|TxM1 : TxM1 → F1 is orientation preserving if and only if a
positively oriented basis of E0 and a positively oriented basis of TxM1, in this order, form
a positively oriented basis of TxM2, and this completes the proof. �

4. Orientability for quasi-Fredholm maps

In this section we introduce a concept of orientation for locally compact perturbations
of Fredholm maps of index zero, in the sequel called quasi-Fredholm maps (for short, we
omit the phrase “of index zero”).

We recall that a map between two topological spaces is called locally compact if any
point in its domain has a neighborhood whose image has compact closure. A map is
compact if its image is contained in a compact set.

Definition 4.1. Let E and F be two real Banach spaces and Ω an open subset of E. Let
g : Ω→ F be a Fredholm map of index zero and k : Ω→ F a locally compact map. The
map f : Ω→ F, defined by f = g − k, is called a quasi-Fredholm map and g is a smoothing
map of f .

Definition 4.2. A quasi-Fredholm map f : Ω → F is orientable if it has an orientable
smoothing map.

If f is an orientable quasi-Fredholm map, any smoothing map of f is orientable. In-
deed, given two smoothing maps g0 and g1 of f , consider the homotopy H : Ω× [0,1]→
F, defined by

H(x,λ)= (1− λ)g0(x) + λg1(x). (4.1)

Notice that any Hλ is Fredholm of index zero, since it differs from g0 by a C1 locally
compact map. By Theorem 3.9, if g0 is orientable, then g1 is orientable as well.

Let f : Ω→ F be an orientable quasi-Fredholm map. To define a notion of orientation
of f , consider the set �( f ) of the oriented smoothing maps of f . We introduce in �( f )
the following equivalence relation. Given g0, g1 in �( f ), consider, as in formula (4.1),
the straight-line homotopy H joining g0 and g1. We say that g0 is equivalent to g1 if their
orientations are inherited from the same orientation of H , whose existence is ensured by
Theorem 3.9. It is immediate to verify that this is an equivalence relation. If the domain
of f is connected, any smoothing map has two orientations and, hence, �( f ) has exactly
two equivalence classes.
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Definition 4.3. Let f : Ω→ F be an orientable quasi-Fredholm map. An orientation of f
is the choice of an equivalence class in �( f ).

By the above construction, given an orientable quasi-Fredholm map f and a smooth-
ing map g, an orientation of g determines uniquely an orientation of f . Therefore, in
the sequel, if f is oriented, we will refer to a positively oriented smoothing map of f as an
element in the chosen class of �( f ).

As for Fredholm maps of index zero, the orientation of quasi-Fredholm maps enjoys
a homotopy invariance property, as shown in Theorem 4.6 below. We need first some
definitions.

Definition 4.4. Let H : Ω× [0,1]→ F be a map of the form

H(x,λ)=G(x,λ)−K(x,λ), (4.2)

where G is C1, any Gλ is Fredholm of index zero and K is locally compact. We call H a
homotopy of quasi-Fredholm maps and G a smoothing homotopy of H .

We need a concept of orientability for homotopies of quasi-Fredholm maps. The def-
inition is analogous to that given for quasi-Fredholm maps. Let H : Ω× [0,1]→ F be a
homotopy of quasi-Fredholm maps. Let �(H) be the set of oriented smoothing homo-
topies ofH . Assume that �(H) is nonempty and define on this set an equivalence relation
as follows. Given G0 and G1 in �(H), consider the map

� : Ω× [0,1]× [0,1]−→ F, (4.3)

defined as

�(x,λ,s)= (1− s)G0(x,λ) + sG1(x,λ). (4.4)

We say that G0 is equivalent to G1 if their orientations are inherited from an orientation
of the map

(x,λ,s) �−→ ∂1�(x,λ,s). (4.5)

The reader can easily verify that this is actually an equivalence relation on �(H).

Definition 4.5. A homotopy of quasi-Fredholm maps H : Ω× [0,1]→ F is said to be ori-
entable if �(H) is nonempty. An orientation of H is the choice of an equivalence class of
�(H).

The following homotopy invariance property of the orientation of quasi-Fredholm
maps is the analogue of Theorem 3.9. The proof is a straightforward consequence of
Proposition 3.5.

Theorem 4.6. Let H : Ω× [0,1]→ F be a homotopy of quasi-Fredholm maps. If a partial
map Hλ is oriented, then there exists a unique orientation of H such that the orientation of
Hλ is inherited from that of H .

We conclude the section by showing an example of a homotopy of quasi-Fredholm
maps.
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Example 4.7. Let φ : [0,T]×Rn ×Rn → Rn and ψ : [0,T]×Rn → Rn be of class C1 and
continuous, respectively. Denote by �1 and �0 the Banach spaces C1([0,T],Rn) and
C([0,T],Rn), and let

G̃ : �1×R−→�0, G̃(x,λ)(t)= x′(t) + λφ
(
t,x(t),x′(t)

)
,

K̃ : �1×R−→�0, K̃(x,λ)(t)= λψ(t,x(t)
)
.

(4.6)

The map G̃ is C1 (since so is φ) and the Fréchet derivative G̃′λ(x) : �1 → �0 of any
partial map G̃λ at any x ∈ C1 is given by

(
G̃′λ(x)q

)
(t)= q′(t) + λ∂2φ

(
t,x(t),x′(t)

)
q(t) + λ∂3φ

(
t,x(t),x′(t)

)
q′(t), (4.7)

where ∂2φ and ∂3φ denote the jacobian matrices of φ with respect to the second and third
variable. Formula (4.7) can be rewritten as

(
G̃′λ(x)q

)
(t)= (I + λMx(t)

)
q′(t) + λNx(t)q(t), (4.8)

where I is the n× n identity matrix and, given x ∈�1, Mx and Nx are n× n matrices of
continuous real functions defined in [0,T]. Clearly, if x and λ are such that

det
(
I + λMx(t)

) �= 0, ∀t ∈ [0,T], (4.9)

then G̃′λ(x) : �1 → �0 is a first order linear differential operator and, consequently, it is
onto with n-dimensional kernel.

Consider now the boundary operator

B : �1 −→Rn, B(x)= x(T)− x(0). (4.10)

Set E = KerB and F =�0, and let G,K : E×R→ F denote the restrictions of G̃ and K̃ to
the space E×R. Observe that, as B is surjective, E is a closed subspace of �1 of codimen-
sion n and thus, for each x ∈ E and λ∈R such that (4.9) is verified, G′λ(x) is Fredholm of
index zero. In fact, G′λ(x) is the composition of the inclusion E↩�1 (which is Fredholm
of index −n) with G̃′λ(x).

Since the inclusion �1↩�0 is compact, the map K is locally compact (it is actually
completely continuous). Thus, if condition (4.9) is satisfied for any x ∈ E and λ≥ 0, then

H : E× [0,+∞)−→ F, H(x,λ)=G(x,λ) +K(x,λ), (4.11)

is a homotopy of quasi-Fredholm maps (which is orientable since E× [0,+∞) is simply
connected). This is the case if (and only if) for every

(t,a,b)∈ [0,T]×Rn×Rn, (4.12)

the jacobian matrix ∂3φ(t,a,b) has no negative eigenvalues.
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5. Degree for quasi-Fredholm maps

This section is devoted to the construction of a topological degree for oriented quasi-
Fredholm maps. In the sequel E and F are real Banach spaces,Ω⊆ E is open and f : Ω→ F
is a quasi-Fredholm map.

Definition 5.1. Let f : Ω→ F be an oriented quasi-Fredholm map and U an open subset
of Ω. The triple ( f ,U ,0) is said to be admissible provided that f −1(0)∩U is compact.

We define the degree as a map from the set of all admissible triples into Z. The con-
struction is divided in two steps. In the first one we consider triples ( f ,U ,0) such that f
has a smoothing map g with ( f − g)(U) contained in a finite-dimensional subspace of F.
In the second step we remove this assumption, defining the degree for general admissible
triples. In the case when f is a locally compact vector field, choosing the identity as a
smoothing map, our construction is similar to that of Leray-Schauder.

Step 1. Let ( f ,U ,0) be an admissible triple and let g be a positively oriented smoothing
map of f such that ( f − g)(U) is contained in a finite-dimensional subspace of F. As
f −1(0) is compact, there exist a finite-dimensional subspace Z of F and an open neigh-
borhood W of f −1(0) in U , such that g is transverse to Z in W . We may assume that
Z contains ( f − g)(U). Let M = g−1(Z)∩W . As seen in Section 3, M is an orientable
C1 manifold of the same dimension as Z. Then, let Z be oriented and orient M in such
a way that it is the oriented Fredholm g|W -preimage of Z. One can easily verify that
( f |M)−1(0) = f −1(0)∩U . Thus ( f |M)−1(0) is compact, and the Brouwer degree of the
triple ( f |M ,M,0) turns out to be well defined.

Definition 5.2. Let ( f ,U ,0) be an admissible triple and let g be a positively oriented
smoothing map of f such that ( f − g)(U) is contained in a finite-dimensional subspace
of F. Let Z be a finite-dimensional subspace of F andW an open neighborhood of f −1(0)
in U such that

(1) Z contains ( f − g)(U),
(2) g is transverse to Z in W .

Assume Z oriented and let M be the oriented Fredholm g|W -preimage of Z. Then, the
degree of ( f ,U ,0) is defined as

deg( f ,U ,0)= deg
(
f |M ,M,0

)
. (5.1)

In order to prove that the above degree is well-defined, we have to check that the right-
hand side of (5.1) is independent of the choice of the smoothing map g, the open set W
and the subspace Z.

First of all we show that, given a smoothing map g, the right-hand side of (5.1) is inde-
pendent ofW and Z. Fix a positively oriented smoothing map g of f such that ( f − g)(U)
is contained in a finite-dimensional subspace of F. Once Z is assigned, the independence
of W is a straightforward consequence of the excision property of the Brouwer degree.

Let now Z1 and Z2 be two oriented finite-dimensional subspaces of F, both containing
( f − g)(U), and let W ⊆U be an open neighborhood of f −1(0) in which g is transverse



P. Benevieri and M. Furi 13

to Z1 and Z2. Without loss of generality, assume that Z2 contains Z1 (otherwise, Z2 can
be replaced by Z1 +Z2).

Let M2 be the oriented Fredholm g|W -preimage of Z2 and, by this orientation of M2,
let M1 be the oriented g|M2 -preimage of Z1. By the reduction property of the Brouwer
degree (Proposition 2.5) one has

deg
(
f |M1 ,M1,0

)= deg
(
f |M2 ,M2,0

)
. (5.2)

On the basis of Lemma 3.10, M1 is also the oriented Fredholm g|W -preimage of Z1.
Thus, once a smoothing map g is assigned, the independence on W and Z is proved.

It remains to show the independence of the smoothing map g. For this purpose, con-
sider two positively oriented smoothing maps g0 and g1 of f such that ( f − g0)(U) and
( f − g1)(U) are contained in a finite-dimensional subspace of F. Consider the homotopy
G : Ω× [0,1]→ F, defined by

G(x,λ)= (1− λ)g0(x) + λg1(x). (5.3)

By the compactness of f −1(0)∩U , there exist an open subsetW ofU , containing f −1(0)∩
U , and a finite-dimensional subspace Z of F, containing ( f − g0)(U) and ( f − g1)(U),
such that, for each λ ∈ [0,1], the partial map Gλ is transverse to Z in W . Hence, Z is
transverse to G in W × [0,1] and to the restriction of G to the boundary of W × [0,1].
Thus G−1(Z)∩ (W × [0,1]) is a C1 manifold with boundary of dimension equal to 1 +
dimZ.

Since ( f − g0)(U) and ( f − g1)(U) are contained in Z, we getG−1
λ (Z)∩W =G−1

s (Z)∩
W , for any λ,s ∈ [0,1]. Therefore G−1(Z)∩ (W × [0,1]) is actually a product manifold,
denoted by M× [0,1], where M =G−1

λ (Z)∩W , for any λ∈ [0,1].
Let now Z be oriented and, for any λ∈ [0,1], denote by Mλ the manifold M oriented

in such a way that it becomes the oriented FredholmGλ|W -preimage of Z. The reader can
imagine each Mλ as the set of pairs (x,α(x,λ)), where x ∈M and α(x,λ) is the orientation
of M at x induced by Gλ|W and Z.

We can prove that, for any s,λ ∈ [0,1], Ms =Mλ (in other words, we can prove that
the orientations of Ms and Mλ coincide). To see this, let λ0 ∈ [0,1] and (x,α(x,λ0)) ∈
Mλ0 be given. Since G is clearly oriented (with an orientation such that the orientations
of g0 and g1 are inherited from that of G), a positive corrector A of G′λ0

(x) remains a
positive corrector for G′λ(x), with λ in a suitable neighborhood of λ0. Then, recalling
the definition of oriented Fredholm preimage, α(x,λ0)= α(x,λ). By the connectedness of
[0,1], the claim follows. Therefore,

deg
(
f |M0 ,M0,0

)= deg
(
f |M1 ,M1,0

)
, (5.4)

and thus we can say that deg( f ,U , y) is indeed well-defined.

Step 2. Let us now extend the definition of degree to general admissible triples.

Definition 5.3 (general definition of degree). Let ( f ,U ,0) be an admissible triple. Con-
sider

(1) a positively oriented smoothing map g of f ;
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(2) an open neighborhood V of f −1(0) such that V ⊆ U , g is proper on V and ( f −
g)|V is compact;

(3) a continuous map ξ : V → F having bounded finite-dimensional image and such
that

∥
∥g(x)− f (x)− ξ(x)

∥
∥ < ρ, ∀x ∈ ∂V , (5.5)

where ρ is the distance in F between 0 and f (∂V).
Then,

deg( f ,U ,0)= deg(g − ξ,V ,0). (5.6)

First of all observe that the right-hand side of (5.6) is well defined since the triple
(g − ξ,V ,0) is admissible. Indeed, g − ξ is proper onV and thus (g − ξ)−1(0) is a compact
subset of V which is actually contained in V by assumption (3).

We have to prove that deg( f ,U ,0) is well-defined, in the sense that formula (5.6) does
not depend on g, ξ and V .

Consider two positively oriented smoothing maps g0 and g1. For i = 0,1, let Vi be an
open neighborhood of f −1(0) such thatVi ⊆U , gi is proper onVi and ( f − gi)|Vi

is com-
pact. Moreover, consider a continuous map ξi : Vi→ F with bounded finite-dimensional
image and such that

∥
∥gi(x)− f (x)− ξi(x)

∥
∥ < ρ, ∀x ∈ ∂Vi, (5.7)

where ρ is the distance in F between 0 and the closed set f ((V 0 ∪V 1)\(V0 ∩V1)). For
i= 0,1, the map fi :Vi→ F, defined by

fi(x)= gi(x)− ξi(x), (5.8)

is oriented having gi as positively oriented smoothing map. In addition, since gi is proper
on Vi, fi turns out to be proper as well. By (5.7), f −1

i (0) is a compact subset of V0∩V1.
In particular, ( f0,V0,0) and ( f1,V1,0) are admissible. We need to show that

deg
(
f0,V0,0

)= deg
(
f1,V1,0

)
. (5.9)

To see this, denoting V =V0∩V1, define H :V × [0,1]→ F by

H(x,λ)= (1− λ) f0(x) + λ f1(x), (5.10)

and G :V × [0,1]→ F by

G(x,λ)= (1− λ)g0(x) + λg1(x). (5.11)

The map H is proper, being a compact perturbation of g0. Hence, H−1(0) is compact
and, by (5.7), contained in V × [0,1]. Thus there exist an open subset W of V × [0,1]
containing H−1(0), and a subspace Z of F of finite dimension, say n, containing ξ0(V)
and ξ1(V) such that every partial map Gλ is transverse to Z on

Wλ =
{
x ∈V : (x,λ)∈W}. (5.12)
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Consequently, the set M = G−1(Z)∩W is an (n + 1)-manifold with boundary (M0 ×
{0})∪ (M1×{1}). In addition, the transversality of Gλ to Z implies that any section Mλ

is a boundaryless n-manifold.
Let Z be oriented and orient M in such a way that any Mλ is the oriented Fredholm

Gλ-preimage of Z. By Definition 5.2, one has

deg
(
f0,V0,0

)= deg
(
f0|M0 ,M0,0

)
,

deg
(
f1,V1,0

)= deg
(
f1|M1 ,M1,0

)
.

(5.13)

The homotopy invariance property of the Brouwer degree in the version of Lemma 2.2
implies

deg
(
f0|M0 ,M0,0

)= deg
(
f1|M1 ,M1,0

)
. (5.14)

Therefore,

deg
(
f0,V0,0

)= deg
(
f1,V1,0

)
, (5.15)

and we can conclude that deg( f ,U ,0) is well-defined by (5.6).

Remark 5.4. Clearly, a Fredholm map of index zero is also quasi-Fredholm, and Definition
5.3 applies to an admissible triple ( f ,U ,0) with f of class C1. In this case a definition of
degree is given in [1] by a different approach. The reduction property proved in [1, Sec-
tion 3] shows that the two degrees coincide when both are defined (i.e., in the C1 case).

6. Properties of the degree

In this section we prove some classical properties of our concept of degree.

Theorem 6.1. The following properties of the degree hold.
(1) (Normalization). Let U be an open neighborhood of 0 in E and let the identity I of E

be naturally oriented. Then

deg(I ,U ,0)= 1. (6.1)

(2) (Additivity). Given an admissible triple ( f ,U ,0) and two disjoint open subsets U1,
U2 of U , such that f −1(0) ⊆ U1 ∪U2. Then ( f ,U1,0) and ( f ,U2,0) are admissible
and

deg( f ,U ,0)= deg
(
f ,U1,0

)
+ deg

(
f ,U2,0

)
. (6.2)

(3) (Homotopy invariance). Let H : U × [0,1]→ F be an oriented homotopy of quasi-
Fredholm maps. If H−1(0) is compact, then deg(Hλ,U ,0) is well defined and does not
depend on λ∈ [0,1].

Proof. (1) This property follows immediately when we apply Definition 5.2 and recall the
analogous normalization property of the Brouwer degree.
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(2) Consider
(i) a positively oriented smoothing map g of f ;

(ii) an open neighborhood V of f −1(0) such that V ⊆ U , g is proper on V and
( f − g)|V is compact;

(iii) a continuous map ξ : V → F having bounded finite-dimensional image and
such that

∥
∥g(x)− f (x)− ξ(x)

∥
∥ < ρ, ∀x ∈ ∂V , (6.3)

where ρ is the distance in F between 0 and f (∂V).
Then, by Definition 5.3,

deg( f ,U ,0)= deg(g − ξ,V ,0). (6.4)

In addition, we have

deg
(
f ,U1,0

)= deg
(
g − ξ,V ∩U1,0

)
,

deg
(
f ,U2,0

)= deg
(
g − ξ,V ∩U2,0

)
.

(6.5)

Let Z be a finite-dimensional subspace of F and W be an open neighborhood of f −1(0)
in V such that

(a) Z contains ξ(W),
(b) g is transverse to Z in W .

Assume Z oriented and let M be the oriented Fredholm g|W -preimage of Z. It follows
that

deg(g − ξ,W ,0)= deg
(
(g − ξ)|M ,M,0

)
, (6.6)

and, in addition,

deg
(
g − ξ,W ∩U1,0

)= deg
(
(g − ξ)|M∩U1 ,M∩U1,0

)
,

deg
(
g − ξ,W ∩U2,0

)= deg
(
(g − ξ)|M∩U2 ,M∩U2,0

)
.

(6.7)

The claim now follows from the additivity property of the Brouwer degree.
(3) Let H = G−K , where G is C1 and such that any partial map Gλ of G is Fredholm

of index zero and K is locally compact. Moreover, let any partial map of G be a positively
oriented smoothing map of Hλ. Since the projection S in E of H−1(0) is a compact subset
of U , there exists an open neighborhood V of S, with V ⊆U , such that G is proper and
K is compact on V × [0,1].

Let Ξ :V × [0,1]→ F be a continuous map having bounded finite-dimensional image
and such that ‖K(x,λ)−Ξ(x,λ)‖ < ρ, for each (x,λ)∈ ∂V × [0,1], where ρ is the distance
in F between 0 and H(∂V × [0,1]). By Definition 5.3, we have

deg
(
Hλ,U ,0

)= deg
(
Gλ−Ξλ,Vλ,0

)
, ∀λ∈ [0,1]. (6.8)

By the compactness of H−1(0), there exist an open subset W of V × [0,1] containing
H−1(0), and a subspace Z of F of finite dimension, say n, containing Ξ(V × [0,1]) such
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that every partial map Gλ is transverse to Z on Wλ. Consequently, the set M = G−1(Z)∩
W is an (n+ 1)-manifold with boundary (M0×{0})∪ (M1×{1}).

Let Z be oriented and orient M in such a way that any Mλ is the oriented Fredholm
Gλ-preimage of Z. By Definition 5.2, one has

deg
(
G0−Ξ0,W0,0

)= deg
(
G0−Ξ0,M0,0

)
,

deg
(
G1−Ξ1,W1,0

)= deg
(
G1−Ξ1,M1,0

)
.

(6.9)

The homotopy invariance property of the Brouwer degree in the version of Lemma 2.2
implies

deg
(
G0−Ξ0,M0,0

)= deg
(
G1−Ξ1,M1,0

)
, (6.10)

and the proof is complete. �

We observe that the degree can be immediately extended to triples of the form ( f ,U ,h),
where h is a locally compact map such that ( f − h,U ,0) is admissible according to
Definition 5.1. In this case we define

deg( f ,U ,h)= deg( f −h,U ,0). (6.11)

In particular, if y is a point of the target space F, we obtain

deg( f ,U , y)= deg( f − y,U ,0), (6.12)

provided that f −1(y)∩U is compact.
We conclude the section by providing an application of the degree to the following

boundary value problem depending on a parameter λ≥ 0:

x′(t) + λφ
(
t,x(t),x′(t)

)
+ λψ

(
t,x(t)

)= 0,

x(0)= x(T),
(6.13)

where φ : R×Rn ×Rn → Rn and ψ : R×Rn → Rn are as in Example 4.7. Notice that if
φ and ψ are T-periodic with respect to the first variable, any solution of (6.13) is a T-
periodic (Rn-valued) function.

For technical reasons define

L : E −→ F, Lx(t)= x′(t),

h : E −→ F, h(x)(t)= φ(t,x(t),x′(t)
)
,

k : E −→ F, k(x)(t)= ψ(t,x(t)
)
,

(6.14)

where the Banach spaces E and F are as in Example 4.7. Thus, problem (6.13) is equivalent
to the semilinear operator equation

Lx+ λ
(
h(x) + k(x)

)= 0 (6.15)
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in E× [0,+∞). We assume that, for any (t,a,b) ∈ [0,T]×Rn ×Rn, the jacobian matrix
∂3φ(t,a,b) has no negative eigenvalues; so that, as in Example 4.7,

H(x,λ)= Lx+ λ
(
h(x) + k(x)

)
(6.16)

is an orientable homotopy of quasi-Fredholm maps (with G : (x,λ) �→ Lx+ λh(x) of class
C1 and K : (x,λ) �→ λk(x) locally compact).

By a solution of (6.15) we mean a pair (x,λ)∈H−1(0) and we regard the distinguished
subset KerL×{0} ofH−1(0) as the set of trivial solutions of (6.15). An interesting problem
related to (6.15) is that of the existence of a atypical bifurcation point; that is, a point p
in KerL such that (p,0) lies in the closure of the set of nontrivial solutions (see [17]).
In a recent paper [3] a global bifurcation result for (6.15) is obtained in the absence of
the locally compact map k (a map associated to the continuous function ψ, which is
assumed identically zero in [3]). Theorem 6.2 below extends that result (by considering
ψ). The proof is omitted since can be carried out as in [3] just by replacing the degree
for Fredholm maps (introduced by the authors in [1, 2]) with the degree defined in this
paper. To avoid cumbersome notation, any point p ∈ Rn is identified with the constant
function t �→ p, so that Rn can be regarded as the set of trivial solutions of (6.15).

Theorem 6.2. Let v :Rn→Rn be the vector field defined by

v(p)= 1
T

∫ T

0

(
φ(t, p,0) +ψ(t, p)

)
dt. (6.17)

Let U be an open subset of E× [0,+∞) and let U0 = {p ∈Rn : (p,0)∈U}. Assume that the
Brouwer degree deg(v,U0,0) is defined and different from zero. ThenU contains a connected
set of nontrivial solutions of (6.15) whose closure in U is not compact and intersects KerL×
{0} ∼= Rn in the compact set v−1(0)∩U0. In particular U0 contains at least one atypical
bifurcation point.

7. Comparison with the Leray-Schauder degree

The purpose of this section is to show that our degree extends the Leray-Schauder degree
[12], and to clarify in what sense this extension must be interpreted.

Given a bounded open subset U of a Banach space E and a compact vector field I − k :
U → E, we recall that the Leray-Schauder degree is defined for the triple (I − k,U ,0) if
x �= k(x) for any x ∈ ∂U . We will call such a triple LS-admissible. Consider a continuous
map ξ :U → E with finite-dimensional image and such that

∥
∥k(x)− ξ(x)

∥
∥ < ρ, ∀x ∈ ∂U , (7.1)

where ρ is the distance between 0 and (I − k)(∂U). Let Z be a finite-dimensional subspace
of E, containing the image of ξ. The Leray-Schauder degree of (I − k,U ,0) is defined as

degLS(I − k,U ,0)= deg
(
(I − ξ)|U∩Z ,U ∩Z,0

)
, (7.2)

where the right-hand side is the Brouwer degree of the triple ((I − ξ)|U∩Z ,U ∩Z,0).
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The triple (I − k,U ,0) is clearly admissible for our degree provided that I − k is ori-
ented (Definition 4.3). If we assign the natural orientation to I , it follows immediately
that

deg(I − k,U ,0)= degLS(I − k,U ,0), (7.3)

where the left-hand side of the above equality is the degree defined in this paper. In other
words, the Leray-Schauder degree of a locally compact vector field coincides with our
degree if we orient I − k choosing the natural orientation of the identity.

Therefore, our extension must be interpreted in a broad sense and has the following
meaning: there exists a natural identification, say i, of the family LS of the LS-admissible
triples with a subfamily of our admissible triples such that deg

LS
= deg◦i. Namely, i is the

function that to any (I − k,U ,0) ∈ LS assigns the “same” triple, where the vector field
I − k receives the orientation induced by the natural orientation of the identity. In fact,
strictly speaking, the second triple is not the same as (I − k,U ,0)∈ LS, since an oriented
quasi-Fredholm map f should be considered as a pair ( f̃ ,α), where α is the orientation of
f and f̃ is its nonoriented part. However, to simplify the notation, we do not use different
symbols to distinguish between an oriented quasi-Fredholm map and its nonoriented
part.

As it is known, an extension of the Leray-Schauder degree to a family containing all
the triples (L,U ,0), where L is an invertible bounded linear operator, does not exist, if
the classical homotopy invariance property is required. To see this, let E be a real Banach
space having the set GL(E) of the automorphisms connected. (An interesting result of
Kuiper [11] shows that the set GL(	2) is contractible; see also [15].) In addition, consider
a pair of LS-admissible triples (I −K0,U ,0) and (I −K1,U ,0) with K0 and K1 linear, and
such that

degLS

(
I −K0,U ,0

)= 1, degLS

(
I −K1,U ,0

)=−1. (7.4)

Since there exists a continuous path in GL(E) joining I − K0 and I − K1, the classical
homotopy invariance property cannot hold.

The reader should notice that the above argument is not in contradiction with our
type of extension of the Leray-Schauder degree, since our homotopy invariance property
concerns just the family of the oriented homotopies. In other words, recalling the above
natural identification i, there is no oriented homotopy H : U × [0,1]→ E joining i(I −
K0,U ,0) to i(I −K1,U ,0) and such that H−1(0) is compact.
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no. 2, 131–148, dedicated to the memory of Gilles Fournier (Sherbrooke, PQ, 1997).

[2] , On the concept of orientability for Fredholm maps between real Banach manifolds, Topo-
logical Methods in Nonlinear Analysis 16 (2000), no. 2, 279–306.

[3] P. Benevieri, M. Furi, M. Martelli, and M. P. Pera, Atypical bifurcation without compactness,
Zeitschrift für Analysis und ihre Anwendungen 24 (2005), no. 1, 137–147.

[4] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.



20 Degree for compact perturbations of Fredholm maps

[5] K. D. Elworthy and A. J. Tromba, Degree theory on Banach manifolds, Nonlinear Functional Anal-
ysis (Proceedings of Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968) (F. E. Browder,
ed.), American Mathematical Society, Rhode Island, 1970, pp. 86–94.

[6] , Differential structures and Fredholm maps on Banach manifolds, Global Analysis (Pro-
ceedings of Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968) (S.-S. Chern and S. Smale, eds.),
American Mathematical Society, Rhode Island, 1970, pp. 45–94.

[7] P. M. Fitzpatrick, J. Pejsachowicz, and P. J. Rabier, The degree of proper C2 Fredholm mappings. I,
Journal für die Reine und Angewandte Mathematik 427 (1992), 1–33.

[8] P. M. Fitzpatrick, J. Pejsachowicz, and P. Rabier, Orientability of Fredholm families and topological
degree for orientable nonlinear Fredholm mappings, Journal of Functional Analysis 124 (1994),
no. 1, 1–39.

[9] V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall, New Jersey, 1974.
[10] M. W. Hirsch, Differential Topology, Springer, New York, 1976.
[11] N. H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 19–30.
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