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The nonlocal boundary value problem for hyperbolic-elliptic equation d2u(t)/dt2 +Au(t)
= f (t), (0≤ t ≤ 1), −d2u(t)/dt2 +Au(t) = g(t), (−1≤ t ≤ 0), u(0)= ϕ, u(1)= u(−1) in
a Hilbert space H is considered. The second order of accuracy difference schemes for ap-
proximate solutions of this boundary value problem are presented. The stability estimates
for the solution of these difference schemes are established.
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1. Introduction

It is known (see [14, 15, 19, 20]) that various boundary value problems for the hyperbolic-
elliptic equations can be reduced to the nonlocal boundary value problem

d2u(t)
dt2

+Au(t)= f (t) (0≤ t ≤ 1),

−d2u(t)
dt2

+Au(t)= g(t) (−1≤ t ≤ 0),

u(0)= ϕ, u(1)= u(−1)

(1.1)

for differential equation in a Hilbert space H , with the self-adjoint positive definite oper-
ator A.

A function u(t) is called a solution of problem (1.1) if the following conditions are
satisfied.

(i) u(t) is twice continuously differentiable in the region [−1,0)
⋃

(0,1] and contin-
uously differentiable on the segment [−1,1]. The derivative at the endpoints of
the segment are understood as the appropriate unilateral derivatives.

(ii) The element u(t) belongs to D(A) for all t ∈ [−1,1], and the function Au(t) is
continuous on [−1,1].

(iii) u(t) satisfies the equation and boundary value conditions (1.1).
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Theorem 1.1 [13]. Suppose that ϕ∈D(A), and let f (t) be continuously differentiable on
[0,1] and g(t) be continuously differentiable on [−1,0] functions. Then there is a unique
solution of the problem (1.1) and the stability inequalities

max
−1≤t≤1

∥
∥u(t)

∥
∥
H ≤M

[

‖ϕ‖H + max
−1≤t≤0

∥
∥A−1/2g(t)

∥
∥
H + max

0≤t≤1

∥
∥A−1/2 f (t)

∥
∥
H

]

,

max
−1≤t≤1

∥
∥
∥
∥
du

dt

∥
∥
∥
∥
H

+ max
−1≤t≤1

∥
∥A1/2u(t)

∥
∥
H

≤M
[
∥
∥A1/2ϕ

∥
∥
H +

∫ 0

−1

∥
∥g(t)

∥
∥
Hdt+

∫ 1

0

∥
∥ f (t)

∥
∥
Hdt

]

,

max
−1≤t≤1

∥
∥
∥
∥
d2u

dt2

∥
∥
∥
∥
H

+ max
−1≤t≤1

∥
∥Au(t)

∥
∥
H

≤M
[
∥
∥Aϕ

∥
∥
H +

∥
∥g(0)

∥
∥
H +

∥
∥ f (0)

∥
∥
H +

∫ 0

−1

∥
∥g′(t)

∥
∥
Hdt+

∫ 1

0

∥
∥ f ′(t)

∥
∥
Hdt

]

,

(1.2)

hold, where M does not depend on f (t), t ∈ [0,1], g(t), t ∈ [−1,0] and ϕ.

In the paper [13] the first order of accuracy difference scheme for approximately solv-
ing the boundary value problem (1.1)

uk+1− 2uk +uk−1

τ2
+Auk+1 = fk, fk = f (tk+1), tk+1 = (k+ 1)τ, 1≤ k ≤N − 1, Nτ = 1,

−uk+1− 2uk +uk−1

τ2
+Auk = gk, gk = g(tk), tk = kτ, −N + 1≤ k ≤−1,

u0 = ϕ, uN = u−N , u1−u0 = u0−u−1

(1.3)
was investigated.

Theorem 1.2 [6]. Let ϕ∈D(A). Then for the solution of the difference scheme (1.3) obey
the stability inequalities

max
−N≤k≤N

∥
∥uk

∥
∥
H ≤M

[
∥
∥ϕ
∥
∥
H + max

−N+1≤k≤−1

∥
∥A−1/2gk

∥
∥
H + max

1≤k≤N−1

∥
∥A−1/2 fk

∥
∥
H

]

,

max
−N+1≤k≤N

∥
∥
∥
∥
uk −uk−1

τ

∥
∥
∥
∥
H

+ max
−N≤k≤N

∥
∥A1/2uk

∥
∥
H

≤M

[
∥
∥A1/2ϕ

∥
∥
H +

−1∑

k=−N+1

τ
∥
∥gk
∥
∥
H +

N−1∑

k=1

τ
∥
∥ fk
∥
∥
H

]

,
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max
−N+1≤k≤N−1

∥
∥
∥
∥
uk+1− 2uk +uk−1

τ2

∥
∥
∥
∥
H

+ max
−N≤k≤N

∥
∥Auk

∥
∥
H

≤M

[
∥
∥Aϕ

∥
∥
H +

∥
∥g−1

∥
∥
H +

∥
∥ f1
∥
∥
H +

−1∑

k=−N+1

∥
∥gk − gk−1

∥
∥
H +

N−1∑

k=2

∥
∥ fk − fk−1

∥
∥
H

]

,

(1.4)

where M does not depend on τ, ϕ, and fk, 1≤ k ≤N − 1, gk, −N + 1≤ k ≤−1.

Methods for numerical solutions of the nonlocal boundary value problems for partial
differential equations have been studied extensively by many researches (see [1, 2, 5, 3, 4,
7–9, 11, 12, 16–18, 21, 22] and the references therein).

In present paper the second order of accuracy difference schemes approximately solv-
ing the boundary-value problem (1.1) are presented. The stability estimates for the solu-
tion of these difference schemes are established.

2. The second order of accuracy difference schemes

Applying the second order of accuracy difference schemes of paper [10] for hyperbolic
equations and the second order of accuracy difference scheme for elliptic equations we
will construct the following second order of accuracy difference schemes for approxi-
mately solving the boundary value problem (1.1):

uk+1− 2uk +uk−1

τ2
+Auk +

τ2

4
A2uk+1 = fk, fk = f (tk), tk = kτ, 1≤ k ≤N − 1, Nτ = 1,

−uk+1− 2uk +uk−1

τ2
+Auk = gk, gk = g(tk), tk = kτ, −N + 1≤ k ≤−1,

u0 = ϕ, uN = u−N , u1−u0− τ2

2

(
f0−Au0

)= u0−u−1− τ2

2
(g0−Au0),

g0 = g(0), f0 = f (0),
(2.1)

uk+1− 2uk +uk−1

τ2
+

1
2
Auk +

1
4

(
Auk+1 +Auk−1

)= fk,

fk = f (tk), tk = kτ, 1≤ k ≤N − 1, Nτ = 1,

−uk+1− 2uk +uk−1

τ2
+Auk = gk, gk = g(tk), tk = kτ, −N + 1≤ k ≤−1, u0 = ϕ,

uN = u−N ,
(

I +
τ2A

4

)

(u1−u0)− τ2

2

(
f0−Au0

)= u0−u−1− τ2

2

(
g0−Au0

)
,

g0 = g(0), f0 = f (0).
(2.2)
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Theorem 2.1. Let ϕ∈ D(A). Then for the solution of the difference scheme (2.1) obey the
stability inequalities

max
−N≤k≤N

∥
∥uk

∥
∥
H ≤M

[
∥
∥ϕ
∥
∥
H + max

−N+1≤k≤0

∥
∥A−1/2gk

∥
∥
H + max

0≤k≤N−1

∥
∥A−1/2 fk

∥
∥
H

]

,

max
−N+1≤k≤N

∥
∥
∥
∥
uk −uk−1

τ

∥
∥
∥
∥
H

+ max
−N≤k≤N

∥
∥A1/2uk

∥
∥
H

≤M

[
∥
∥A1/2ϕ

∥
∥
H +

0∑

k=−N+1

τ
∥
∥gk
∥
∥
H +

N−1∑

k=0

τ
∥
∥ fk
∥
∥
H

]

,

max
−N+1≤k≤N−1

∥
∥
∥
∥
uk+1− 2uk +uk−1

τ2

∥
∥
∥
∥
H

+ max
−N≤k≤N

∥
∥Auk

∥
∥
H

≤M

[
∥
∥Aϕ

∥
∥
H +

∥
∥g0
∥
∥
H +

∥
∥ f0
∥
∥
H +

0∑

k=−N+1

∥
∥gk − gk−1

∥
∥
H +

N−1∑

k=1

∥
∥ fk − fk−1

∥
∥
H

]

,

(2.3)

where M does not depend on τ, ϕ, and fk, 0≤ k ≤N − 1, gk, −N + 1≤ k ≤ 0.

The proof of Theorem 2.1 follows the scheme of the proof of Theorem 1.2 is based on
the formulas

uk =
(
D
(
τA1/2)−D

(− τA1/2))−1

× [(D(− τA1/2)− I
)
Dk−1(τA1/2)+

(
I −D

(
τA1/2))Dk−1(− τA1/2)]u0

+
(
D
(
τA1/2)−D

(− τA1/2))−1(
Dk
(
τA1/2)−Dk

(− τA1/2))(u0−u−1
)

+
τ2

2

(
D
(
τA1/2)−D

(− τA1/2))−1(
Dk
(
τA1/2)−Dk

(− τA1/2))( f0− g0
)

−
k−1∑

s=1

τ

2i
A−1/2[Dk−s(τA1/2)−Dk−s(− τA1/2)] fs,

1≤ k ≤N − 1, D
(± τA1/2)=

(

1± iτA1/2− τ2A

2

)−1

,

uk = R−ku0 +
(
I −R2N)−1(

RN−k −RN+k)[RNu0−u−N
]

+
(
I −R2N)−1(

RN−k −RN+k)
−1∑

s=−N+1

B−1[RN−s−RN+s]R−1(2 + τB)−1gsτ

+
−1∑

s=−N+1

B−1(R−(k+s)−R|s−k|
)
(2 + τB)−1R−1gsτ,

−N + 1≤ k ≤−1, R= (1 + τB)−1, B = Aτ +A1/2
√
τ2A+ 4

2
,
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u−N = T
{
(
D
(
τA1/2)−D

(− τA1/2))−1

× [(D(− τA1/2)− I
)
DN−1(τA1/2)+

(
I −D

(
τA1/2))DN−1(− τA1/2)]u0

+
(
D
(
τA1/2)−D

(− τA1/2))−1(
DN
(
τA1/2)−DN

(− τA1/2))u0

− (D(τA1/2)−D
(− τA1/2))−1

(
DN
(
τA1/2)−DN

(− τA1/2))

×
{

Ru0 +
(
I −R2N)−1(

RN+1−RN−1)RNu0 +
(
I −R2N)−1(

RN+1−RN−1)

×
−1∑

s=−N+1

B−1[RN−s−RN+s]R−1(2 + τB
)−1

gsτ

+
−1∑

s=−N+1

B−1(R1−s−R1+s)(2 + τB
)−1

R−1gsτ
}

+
τ2

2

(
D
(
τA1/2)−D

(− τA1/2))−1(
Dk
(
τA1/2)−Dk

(− τA1/2))( f0− g0
)

−
N−1∑

s=1

τ

2i
A−1/2[DN−s(τA1/2)−DN−s(− τA1/2)] fs

}

,

T=(I−(I−R2N)−1(
RN+1−RN−1)(D

(
τA1/2)−D(−τA1/2))−1(

DN
(
τA1/2)−DN

(−τA1/2)))−1

(2.4)

and on the estimates

∥
∥D(±τA1/2)

∥
∥
H→H ≤ 1, τ

∥
∥A1/2D(±τA1/2)

∥
∥
H→H ≤ 2, (2.5)

∥
∥(kτB)αRk

∥
∥
H→H ≤M(1 + δτ)−k, k ≥ 1, 0≤ α≤ 1, δ > 0, M > 0, (2.6)

and on the following lemmas.

Lemma 2.2. The estimate holds:

∥
∥
∥
[
DN (±τA1/2)− exp

{∓ iA1/2}]A−1
∥
∥
∥
H→H

≤ τ

2
. (2.7)

Proof. We use the identity

DN
(± τA1/2)− exp

{∓ iA1/2}=
∫ 1

0
Ψ′(sτA1/2)ds, (2.8)
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where

Ψ(sτA1/2)=DN
(± sτA1/2)exp

{∓ i(1− s)A1/2}. (2.9)

The derivative Ψ′(sτA1/2) is given by

Ψ′
(
sτA1/2)=DN+1(∓ sτA1/2)

(

∓ i
τ2s2A3/2

2

)

exp
{∓ i(1− s)A1/2}. (2.10)

Thus,

DN
(± τA1/2)− exp

{∓ iA1/2}

=∓
∫ 1

0
DN+1(± sτA1/2)(iA3/2)1

2
τ2s2 exp

{∓ i(1− s)A1/2}ds.
(2.11)

Using the last identity and estimates (2.6) and

∥
∥exp

{∓ i(1− s)A1/2}∥∥≤ 1, (2.12)

we obtain

∥
∥
∥
[
DN
(± τA1/2)− exp

{∓ iA1/2}]A−1
∥
∥
∥
H→H

≤ 1
2

∫ 1

0

∥
∥
∥DN

(± sτA1/2)
∥
∥
∥
H→H

τs
∥
∥τsA1/2D

(± sτA1/2)∥∥
H→H

×∥∥exp
{∓ i(1− s)A1/2}∥∥

H→Hds

≤ τ
∫ 1

0
sds= τ

2
.

(2.13)

�

Lemma 2.3. The following estimate holds:

∥
∥T
∥
∥
H→H ≤M, (2.14)

where M does not depend on τ.
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Proof. Since

T = (I −R2N)(I −R2N +
(
RN+1−RN−1)

× (D(τA1/2)−D
(− τA1/2))−1(

DN
(
τA1/2)−DN

(− τA1/2)))−1
,

(2.15)

T̃ − {I − exp
{− 2A1/2}+ 2A1/2s(1)exp

{−A1/2}}−1

= T̃
{
I − exp

{− 2A1/2}+ 2A1/2s(1)exp
{−A1/2}}−1

× {R2N − exp
{− 2A1/2}+ 2A1/2s(1)exp

{−A1/2}− (RN+1−RN−1)

× (D(τA1/2)−D
(− τA1/2))−1(

DN
(
τA1/2)−DN

(− τA1/2))},

(2.16)

∥
∥
{
I − exp

{− 2A1/2}+ 2A1/2s(1)exp
{−A1/2}}−1∥∥

H→H ≤M, (2.17)

to prove (2.14) it suffices to establish the estimate

∥
∥
∥R2N − exp

{− 2A1/2}+ 2A1/2s(1)exp
{−A1/2}− (RN+1−RN−1)

× (D(τA1/2)−D
(− τA1/2))−1(

DN
(
τA1/2)−DN

(− τA1/2))
∥
∥
∥
H→H

≤Mτ.
(2.18)

Here

T̃ = (I −R2N +
(
RN+1−RN−1)

× (D(τA1/2)−D
(− τA1/2))−1(

DN
(
τA1/2)−DN

(− τA1/2)))−1
,

s(1)= A−1/2 e
iA1/2 − e−iA1/2

2i
.

(2.19)

The estimate (2.17) was proved in [19]. Finally, using the identity

R2N − exp
{− 2A1/2}+ 2A1/2s(1)exp

{−A1/2}− (RN+1−RN−1)

× (D(τA1/2)−D
(− τA1/2))−1(

DN
(
τA1/2)−DN

(− τA1/2))

= R2N − exp
{− 2A1/2}

+
[

2A1/2s(1)− 1
i

(
DN
(
τA1/2)−DN

(− τA1/2))
]

exp
{−A1/2}

+
1
i

(
DN
(
τA1/2)−DN

(− τA1/2))[exp
{−A1/2}−RN

]

+
1
i

(
DN
(
τA1/2)−DN

(− τA1/2))

× [RN − (RN+1−RN−1)(D
(
τA1/2)−D

(− τA1/2))−1]

(2.20)

and the estimates (2.5), (2.6), and (2.7), we obtain the estimate (2.18). �
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Theorem 2.4. Let ϕ∈D(A3/2).Then for the solution of the difference scheme (2.2) obey the
stability inequalities

max
−N≤k≤N

∥
∥uk

∥
∥
H ≤M

[∥
∥
∥
∥

(

I ± 1
2
iτA1/2

)

ϕ
∥
∥
∥
∥
H

+ max
−N+1≤k≤0

∥
∥A−1/2gk

∥
∥
H + max

0≤k≤N−1

∥
∥A−1/2 fk

∥
∥
H

]

,

max
−N+1≤k≤N

∥
∥
∥
∥
uk −uk−1

τ

∥
∥
∥
∥
H

+ max
−N≤k≤N

∥
∥A1/2uk

∥
∥
H

≤M

[∥
∥
∥
∥A

1/2
(

I ± 1
2
iτA1/2

)

ϕ
∥
∥
∥
∥
H

+
0∑

k=−N+1

τ
∥
∥gk
∥
∥
H +

N−1∑

k=0

τ
∥
∥ fk
∥
∥
H

]

,

max
−N+1≤k≤N−1

∥
∥
∥
∥
uk+1− 2uk +uk−1

τ2

∥
∥
∥
∥
H

+ max
−N≤k≤N

∥
∥Auk

∥
∥
H

≤M

[∥
∥
∥
∥A
(

I±1
2
iτA1/2

)

ϕ
∥
∥
∥
∥
H

+
∥
∥g0
∥
∥
H+
∥
∥ f0
∥
∥
H +

0∑

k=−N+1

∥
∥gk−gk−1

∥
∥
H +

N−1∑

k=1

∥
∥ fk− fk−1

∥
∥
H

]

,

(2.21)

where M does not depend on τ, ϕ, and fk, 0≤ k ≤N − 1, gk, −N + 1≤ k ≤ 0.

The proof of Theorem 2.4 follows the scheme of the proof of Theorem 1.2 is based on
the formulas

uk =
(
D
(
τA1/2)−D

(− τA1/2))−1

× [(I −D
(− τA1/2))Dk−1(− τA1/2)+

(
D
(
τA1/2)− I

)
Dk−1(τA1/2)]u0

+
(
D
(
τA1/2)−D

(− τA1/2))−1(
Dk
(
τA1/2)−Dk

(− τA1/2))
(

I +
τ2A

4

)−1(
u0−u−1

)

+
τ2

2

(
D
(
τA1/2)−D(− τA1/2))−1(

Dk
(
τA1/2)−Dk

(− τA1/2))
(

I +
τ2A

4

)−1(
f0− g0

)

+
k−1∑

s=1

(

I +
τ2A

4

)−1(
D
(
τA1/2)−D

(− τA1/2))−1[
Dk−s(τA1/2)−Dk−s(− τA1/2)] fs,

1≤ k ≤N − 1, D
(± τA1/2)=

(

1∓ iτA1/2

2

)(

I ± iτA1/2

2

)−1

,
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uk = R−ku0 +
(
I −R2N)−1(

RN−k −RN+k)[RNu0−u−N
]

+
(
I −R2N)−1(

RN−k −RN+k)
−1∑

s=−N+1

B−1[RN−s−RN+s]R−1(2 + τB
)−1

gsτ

+
−1∑

s=−N+1

B−1(R−(k+s)−R|s−k|
)
(2 + τB)−1R−1gsτ,

−N + 1≤ k ≤−1, R= (1 + τB)−1, B = Aτ +A1/2
√
τ2A+ 4

2
,

u−N = T
{
(
D
(
τA1/2)−D

(− τA1/2))−1

× [(I −D
(− τA1/2))DN−1(− τA1/2)+

(
D
(
τA1/2)− I

)
DN−1(τA1/2)]u0

+
(
D
(
τA1/2)−D

(− τA1/2))−1(
DN
(
τA1/2)−DN

(− τA1/2))
(

I +
τ2A

4

)−1

u0

− (D(τA1/2)−D
(− τA1/2))−1(

DN
(
τA1/2)−DN

(− τA1/2))

×
{

Ru0 +
(
I −R2N)−1(

RN+1−RN−1)RNu0 +
(
I −R2N)−1(

RN+1−RN−1)

×
−1∑

s=−N+1

B−1[RN−s−RN+s]R−1(2 + τB)−1gsτ

+
−1∑

s=−N+1

B−1(R1−s−R1+s)(2 + τB)−1R−1gsτ
}

+
τ2

2

(
D
(
τA1/2)−D

(− τA1/2))−1(
Dk
(
τA1/2)−Dk

(− τA1/2))

×
(

I +
τ2A

4

)−1(
f0− g0

)−
N−1∑

s=1

τ

2i
A−1/2[DN−s(τA1/2)−DN−s(− τA1/2)] fs

}

,

T =
(

I − (I −R2N)−1(
RN+1−RN−1)

× (D(τA1/2)−D
(− τA1/2))−1(

DN
(
τA1/2)−DN

(− τA1/2))
(

I +
τ2A

4

)−1
)−1

(2.22)
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and on the estimates (2.6) and

∥
∥D
(± τA1/2)∥∥

H→H ≤ 1, τ

∥
∥
∥
∥
∥
A1/2

(

I ± iτA1/2

2

)−1
∥
∥
∥
∥
∥
H→H

≤ 2, (2.23)

and on the following lemmas.

Lemma 2.5. The estimate holds:
∥
∥
∥
[
DN
(± τA1/2)− exp

{∓ iA1/2}
]
A−1

∥
∥
∥
H→H

≤ τ

4
. (2.24)

Proof. We use the identity

DN
(± τA1/2)− exp

{∓ iA1/2}=
∫ 1

0
Ψ′
(
sτA1/2)ds, (2.25)

where

Ψ
(
sτA1/2)=DN

(± sτA1/2)exp
{∓ i(1− s)A1/2}. (2.26)

The derivative Ψ′(sτA1/2) is given by

Ψ′
(
sτA1/2)=DN−1(± sτA1/2)(± iA1/2)

×
(

− 1
4
τ2s2A

)(

I ± 1
2
iτA1/2

)−2

exp
{∓ i(1− s)A1/2}.

(2.27)

Thus,

DN
(± τA1/2)− exp

{∓ iA1/2}

=∓
∫ 1

0
DN−1(± sτA1/2)(iA3/2)1

4
τ2s2

(

I ± 1
2
iτA1/2

)−2

exp
{∓ i(1− s)A1/2}ds.

(2.28)

Using the last identity and the estimates (2.23) and (2.12), we obtain

∥
∥
∥
[
DN
(± τA1/2)− exp

{∓ iA1/2}]A−1
∥
∥
∥
H→H

≤ τ

2

∫ 1

0

∥
∥
∥DN−1(± sτA1/2)

∥
∥
∥
H→H

s

×
∥
∥
∥
∥isA

1/2 1
2
τ
(

I ± 1
2
iτA1/2

)−2∥∥
∥
∥
H→H

×
∥
∥
∥exp

{∓ i(1− s)A1/2}
∥
∥
∥
H→H

ds

≤ τ

2

∫ 1

0
sds= τ

4
.

(2.29)

�
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Lemma 2.6. The following estimate holds:

∥
∥T
∥
∥
H→H ≤M, (2.30)

where M does not depend on τ.

Proof. Since

T = (I −R2N)
(

I −R2N +
(
RN+1−RN−1)(D

(
τA1/2)−D

(− τA1/2))−1

× (DN
(
τA1/2)−DN

(− τA1/2))
(

I +
τ2A

4

)−1
)−1

,

T̃ − {I − exp
{− 2A1/2}+ 2A1/2s(1)exp

{−A1/2}}−1

= T̃
{
I − exp

{− 2A1/2}+ 2A1/2s(1)exp
{−A1/2}}−1

×
{

R2N − exp
{− 2A1/2}+ 2A1/2s(1)exp

{−A1/2}− (RN+1−RN−1)

× (D(τA1/2)−D
(− τA1/2))−1(

DN
(
τA1/2)−DN

(− τA1/2))
(

I +
τ2A

4

)−1
}

(2.31)

and (2.17) to prove (2.30) it suffices to establish the estimate

∥
∥
∥
∥
∥
R2N − exp

{− 2A1/2}+ 2A1/2s(1)exp
{−A1/2}− (RN+1−RN−1)

× (D(τA1/2)−D(− τA1/2))−1(
DN
(
τA1/2)−DN

(− τA1/2))
(

I +
τ2A

4

)−1
∥
∥
∥
∥
∥
H→H

≤M
√
τ.

(2.32)

Here

T̃ =
(

I −R2N +
(
RN+1−RN−1)(D(τA1/2)−D

(− τA1/2))−1

× (DN
(
τA1/2)−DN

(− τA1/2))
(

I +
τ2A

4

)−1
)−1

.

(2.33)
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Finally, using the identity

R2N − exp
{− 2A1/2}+ 2A1/2s(1)exp

{−A1/2}− (RN+1−RN−1)

× (D(τA1/2)−D
(− τA1/2))−1(

DN
(
τA1/2)−DN

(− τA1/2))
(

I +
τ2A

4

)−1

= R2N − exp
{− 2A1/2}+

[
2A1/2s(1)− 1

i

(
DN
(
τA1/2)−DN

(− τA1/2))
]

exp
{−A1/2}

+
1
i

(
DN
(
τA1/2)−DN

(− τA1/2))[exp
{−A1/2}−RN

]

+
1
i

(
DN
(
τA1/2)−DN

(− τA1/2))

×
[

RN − (RN+1−RN−1)(D(τA1/2)−D
(− τA1/2))−1

(

I +
τ2A

4

)−1
]

(2.34)

and the estimates (2.6), (2.23), and (2.24), we obtain the estimate (2.32). �
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