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In this article, an analytical reliable treatment based on the concept of residual error functions is employed to address the series
solution of the differential logistic system in the fractional sense. )e proposed technique is a combination of the generalized
Taylor series and minimizing the residual error function. )e solution methodology depends on the generation of a fractional
expansion in an effective convergence formula, as well as on the optimization of truncated errors, Resj

q(t), through the use of
repeated Caputo derivatives without any restrictive assumptions of system nature. To achieve this, some logistic patterns are tested
to demonstrate the reliability and applicability of the suggested approach. Numerical comparison depicts that the proposed
technique has high accuracy and less computational effect and is more efficient.

1. Introduction

Scientists were interested in studying differential equations
in the fractional sense as flexible mathematical frameworks
for modeling, measuring, and describing genetic structures,
memory and material transfer, and multiple processes that
have recently become an increasingly stimulating area of
engineering and science applications, including but not
limited to viscosity, fluid mechanics, optimal control, os-
cillation, signal processing, anomalous diffusion, electro-
magnetic, and fractal geometry [1–6]. When comparing with
the integer order issues, the memory and hereditary prop-
erties of several substances are well and fully described by
noninteger order issues. Anyhow, numerous attempts to
provide numerical solutions to such equations exist in the
literature, often due to the difficulty in finding analytical
solutions accurately. )erefore, different numerical and
approximation methods were introduced to handle those
fractional systems [7–10].

In this research direction, the application of fractional
residual power series method is employed based on residual

error concept to find the analytic-numeric solutions of the
fractional logistic model:

D
α
0q(t) � λ q(t) (1 − q(t)), t≥ 0, 0< α≤ 1, (1)

along with the initial condition

D
α
0q(0) � p0, p0 > 0, (2)

where λ> 0, Dα
0 indicates Caputo fractional derivatives,

while q(t) indicates smooth solution to be obtained. In this
regard, suppose that the logistic models (1) and (2) have a
unique analytical solution for t≥ 0. However, when α � 1,
the differential equation (1) will be called the standard lo-
gistic model in the following form dq(t)/dt � λ q(t)

(1 − q(t)), which has the exact solution q(t) � (p0e
λt)/((1 −

p0) + p0e
λt). Further, P.-F. Verhulst was the first who pre-

sented the standard logistic model. Indeed, there are two
basic kinds of the logistic models: continuous and discrete
models. )e continuous cases are explained by ordinary
differential equations of the first order that are called
“standard logistic,” while the discrete case representing a
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simple recurrence formula detects the properties of chaotic
in specific domains. Furthermore, logistic solutions provide
a consistent classification of the rates of population growth
and their rapid and startling development, which does not
include reducing food supplies, basic needs, or disease
outbreaks. For solution behavior, the logistic system curve
increases exponentially starting from the factor of multi-
plication up to the limit of saturation, that is, the maximum
carrying capacity. Consequently, dQ/dt � λQ(1 − (Q/K)),

where Q represents the size of population growth in terms of
t, λ indicates the maximum population growth rate, while K

indicates carrying capacity. On the other hand, the con-
tinuous logistic system has a steady population growth rate
in the form of Q(t) � p0e

λt with initial population data p0.
In addition, the theory of existence and uniqueness of the
continuous logistic system in a fractional sense has been
presented in the literature; for more details, see [11–15].

In this research work, a reliable numerical treatment, the
fractional residual power series method (FRPSM), is sug-
gested for solving a sort of fractional logistic system. )e
FRPSM is an easy and reliable tool to obtain the values of
unknown coefficients of desired fractional series solution for
different types of linear and nonlinear FDEs without dis-
cretization, perturbation, and linearization by solving se-
quence of algebraic system [16–23]. )e FRPS technique is
primarily applied using the residual error concept and the
repetition of Caputo derivatives to obtain the appropriate
series solution by choosing a fit initial data, whereas the
gained series solution and all fractional derivatives are valid
for all mesh points of the domain of interest. To view the
characteristics and advantages of numerical methods de-
veloped in dealing with various physical and engineering
phenomena in the fractional sense, we refer to [24–31].

)e rest of the current study is outlined in five sections.
Characterization and primary results of the theory of
fractional calculus are given as well as representation of
fractional series solution is also provided in Section 2. In
Section 3, the main procedures of the proposed algorithm
are discussed to construct the required series solution. In
Section 4, several applications are considered to confirm the
performance and reliability of the present FRPSM. )e
conclusion is briefly presented finally.

2. Primary Mathematical Concepts

)is section is devoted to concepts and results concerning
the Caputo fractional derivatives and generalized power
series representations. )roughout this research, the order α
of fractional derivatives is a nonnegative real constant.

Definition 1 [2]. )e Riemann–Liouville fractional integral
operator Jα0 with order α≥ 0 is given by

J
α
0q(t) �

1
Γ(α)

􏽚
t

0
q(τ)(t − τ)

1− α
dτ, 0≤ ε< t, α> 0,

q(t), α � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

Definition 2 [2]. )e operator of fractional derivative Dα
0

with order α≥ 0 for q(t) is given by

D
α
0q(t) �

1
Γ(n − α)

􏽚
t

0

q(n)(τ)

(t − τ)α− n+1 dτ, 0< n − 1< α< n, n ∈ N,

dn

dtn
q(t), α � n,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

which is called the Caputo fractional operator.
)e operator Dα

0 satisfies the following properties:

(i) Dα
0c � 0, c ∈ R

(ii) Dα
0tc � (Γ(c + 1)/Γ(c + 1 − α))tc− α, n − 1< α< n,

c> n − 1, and is equal to zero otherwise
(iii) Dα

0(Aq(t) + Bp(t)) � ADα
0q(t) + BDα

0p(t) for
A, B ∈ R, that is, Dα

0 is linear operator

Moreover, (Jα0Dα
0q)(t) � q(t) − 􏽐

n− 1
k�0q

(k)(τ+)((t − τ)kτ/
Γ(k + 1)) for 0≤ τ < t, q ∈ Cn[a, b] , and n − 1< α≤ n, n ∈ N,
as well as for α≥ 0, we have Dα

0Jα0q(t) � q(t).

Remark 1 [19]. For an arbitrary function q(t), 0≤ τ < t, the
Caputo fractional derivative can be computed by the fol-
lowing formula:

D
α
0q(t) � 􏽘

∞

n�0

q(n)(τ)

Γ(n + 1 − α)
(t − τ)

nα
. (5)

It is worth mentioning that the fractional calculus has a
nonlocal property, so solving fractional differential equa-
tions is a challenge, especially for numerical calculations.
)is property indeed is the main reason why fractional
calculus is more popular and good tool for modeling reality.
However, Taylor expansion in the fractional sense does not
give an approximation of the function at a point because of
nonlocality. Anyhow, the local fractional Taylor formula has
been successfully generalized and applied in science and
engineering problems based on the theory of fractal ge-
ometry; for more details, we refer to [32–34].

Definition 3 [20]. )e fractional power series “FPS” about
t � t0 for n − 1< α≤ n is given by

􏽘

∞

i�0
ai t − t0( 􏼁

iα
� a0 + a1 t − t0( 􏼁

α
+ a1 t − t0( 􏼁

2α
+ . . . . (6)

Theorem 1 [20]. According to the FPS 􏽐
∞
i�0ai(t − t0)

iα, there
are the following possibilities:

(1) 5e series converges only for t � t0 whenever R is
equal to zero

(2) 5e series converges ∀t≥ t0 whenever R is equal to
infinity

(3) 5e series converges at t ∈ [t0, t0 + R) for R> 0 and
diverges for t> t0 + R
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where R indicates the radius of convergence of the power
series.

Lemma 1. Assume that q(t) ∈ C[t0, t0 + R), R> 0, Diα
0

q(t) ∈ C(t0, t0 + R), and 0< α≤ 1. 5en,

J
iα
0 D

iα
0􏼐 􏼑q(t) − J

(i+1)α
0 D

(i+1)α
0􏼐 􏼑q(t) �

Diα
t0

q t0( 􏼁

Γ(iα + 1)
t − t0( 􏼁

iα
.

(7)

Proof. From the properties of Caputo fractional operator,
one can deduce that

J
iα
0 D

iα
0􏼐 􏼑q(t) − J

(i+1)α
0 D

(i+1)α
0􏼐 􏼑q(t) � J

iα
0 D

iα
0􏼐 􏼑q(t)

− J
α
0J

iα
0 D

iα
0 D

α
0􏼐 􏼑q(t)

� J
iα
0 D

iα
0􏼐 􏼑q(t)

− J
α
0 J

iα
0 D

iα
0􏼐 􏼑D

α
0􏼐 􏼑q(t)

� J
iα
0 􏼂(D

iα
0 )q(t)

− J
iα
0 D

iα
0􏼐 􏼑 D

α
0( 􏼁q(t)􏼃.

(8)

On the other hand, for (Jiα
0 Diα

0 )(Dα
0)q(t), we infer that

J
iα
0 D

iα
0􏼐 􏼑q(t) − J

(i+1)α
0 D

(i+1)α
0􏼐 􏼑q(t) � J

iα
0 􏼂(D

iα
0 )q(t) − D

iα
0􏼐 􏼑

· q(t) + D
iα
0 q t0( 􏼁􏼃

� J
iα
0 D

iα
0 q t0( 􏼁􏽨 􏽩

�
Diα

0 q t0( 􏼁

Γ(iα + 1)
t − t0( 􏼁

iα
,

with ai � D
iα
0 q t0( 􏼁.

(9)
□

Theorem 2 [19]. Assuming that q(t) has the following power
series expansion about t � t0:

q(t) � 􏽘
∞

i�0
ai t − t0( 􏼁

iα
. (10)

If q(t) ∈ C[t0, t0 + R) and Diαq(t) ∈ C(t0, t0 + R),
i � 0, 1, 2, . . ., then coefficient ai is given by ai � (Diα

0
q(t0))/(Γ(iα + 1)), where Diα � Dα · Dα . . .Dα (i-times).

3. The FRPS Approach

)is section is dedicated to presenting the procedures
needed to implement the FRPS algorithm to solve the
continuous logistic equation in the fractional sense by
expanding FPS and utilizing repeated fractional differenti-
ation of the truncated residual functions. To perform this,
suppose that the fractional logistic equations (1) and (2) have
the solution form about t � 0:

q(t) � 􏽘
∞

n�0
an

tnα

Γ(nα + 1)
. (11)

)is analysis aims at extending the application of frac-
tional Taylor series framework to get an accurate analytic
series solution of fractional systems (1) and (2). )us, if we
use the initial data given by (2), Dα

0q(0) � p0, as initial
truncated series of q(t), so the FPS solution of equation (1)
can be written by

q(t) � p0 + 􏽘
∞

n�1
an

tnα

Γ(nα + 1)
. (12)

)erefore, the j-th truncated series solution of q(t) is
given by

qj(t) � p0 + 􏽘

j

n�1
an

tnα

Γ(nα + 1)
. (13)

According the FRPS approach, we define the j-th re-
sidual function, Resj

q(t), for the proposed logistic model as
follows:

Resj
q(t) � D

α
0qj(t) − λ qj(t) 1 − qj(t)􏼐 􏼑, j � 1, 2, 3, . . . ,

(14)

whereas the residual function, Resq(t), can be defined by

Resq(t) � lim
j⟶∞

Resj
q(t) � D

α
0q(t) − λ q(t) (1 − q(t)), 0≤ t<R.

(15)

In this point, we noted that Resq(t) � 0 for all t≥ 0,
which leads to Dkα

0 Resq(0) � Dkα
0 Resj

q(0) � 0, for all
k � 1, 2, . . . , j. Consequently, the following fractional re-
lations assist us to determine the unknown coefficients, an,
n � 1, 2, . . . , j, of equation (13):

D
(j− 1)α
0 Res

j
q(0) � 0, j � 1, 2, 3, . . . . (16)

To show the iteration concept of the FRPS technique to
find out a1, put q1(t) � p0 + q1(tα/Γ(α + 1)) in j-th residual
function of equation (14) at j � 1 to get that

Res1q(t) � D
α
0q1(t) − λ q1(t) 1 − q1(t)( 􏼁

� a1 − λ p0 + a1
tα

Γ(α + 1)
􏼠 􏼡 1 − p0 − a1

tα

Γ(α + 1)
􏼠 􏼡

� λ p0 − 1( 􏼁p0 + a1 1 +
λ 2p0 − 1( 􏼁

Γ(α + 1)
t
α

􏼠 􏼡

+
λa2

1
Γ2(α + 1)

t
2α

.

(17)

)us, by using the fact that Res1q(0) � 0, it yields

a1 � λp0 1 − p0( 􏼁. (18)

)erefore, the first FRPS approximation for equations
(1) and (2) will be
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q1(t) � p0 1 +
λ 1 − p0( 􏼁

Γ(α + 1)
t
α

􏼠 􏼡. (19)
In the same way, to find out a2, put the second truncated

series q2(t) � p0(1 +((λ(1 − p0))/(Γ(α +1)))tα) + a2((t2α)/
(Γ(2α + 1))) in Res2q(t) such that

Res2q(t) � D
α
0q2(t) − λ q2(t) 1 − q2(t)( 􏼁 � 􏼠λp0 1 − p0( 􏼁

+ a2
tα

Γ(α + 1)
􏼡 − λ p0 1 +

λ 1 − p0( 􏼁

Γ(α + 1)
t
α

􏼠 􏼡 + a2
t2α

Γ(2α + 1)
􏼠 􏼡

· 1 − p0 1 +
λ 1 − p0( 􏼁

Γ(α + 1)
t
α

􏼠 􏼡 − a2
t2α

Γ(2α + 1)
􏼠 􏼡

� λp0 1 − p0( 􏼁 1 + 1 +
λ 2p0 − 1( 􏼁

Γ(α + 1)
t
α

+ a2
2λ

Γ(α + 1)Γ(2α + 1)
t
3α

􏼠 􏼡􏼠 􏼡

+
λ2p2

0 1 − p0( 􏼁
2

Γ2(α + 1)
t
2α

+ a2
1
Γ(α + 1)

t
α

+
λ 2p0 − 1( 􏼁

Γ(2α + 1)
t
2α

􏼠 􏼡 + a
2
2

λ
Γ2(2α + 1)

t
4α

.

(20)

According to the fact on equation (16) at j � 2, by ap-
plying the operator Dα

0 on both sides of equation (20), it
follows that

D
α
0Res

2
q(t) � D

α
0
⎛⎝λp0 1 − p0( 􏼁 1 + 1 +

λ 2p0 − 1( 􏼁

Γ(α + 1)
t
α

+ a2
2λ

Γ(α + 1)Γ(2α + 1)
t
3α

􏼠 􏼡􏼠 􏼡 +
λ2p2

0 1 − p0( 􏼁
2

Γ2(α + 1)
t
2α

+ a2
1
Γ(α + 1)

t
α

+
λ 2p0( − 1􏼁

Γ(2α + 1)
t
2α

􏼠 􏼡 + a
2
2

λ
Γ2(2α + 1)

t
4α⎞⎠

�
λ3Γ(2α + 1)p2

0 1 − p0( 􏼁
2

Γ3(α + 1)
t
α

+ λ2p0 1 − p0( 􏼁 2p0 − 1( 􏼁 + a2
2Γ(3α + 1)

Γ(α + 1)Γ2(2α + 1)
t
2α

􏼠 􏼡

+ a2 1 +
λ 2p0( − 1􏼁

Γ(α + 1)
t
α

+
λΓ(4α + 1)a2

Γ2(2α + 1)Γ(3α + 1)
t
3α

􏼠 􏼡.

(21)

Consequently, by applying the fact Dα
0Res

2
q(0) � 0 in

equation (21), one can get a2 � − λ2 p0(1 − p0)(2p0 − 1).)e
second FRPS approximation is

q2(t) � p0 1 − λ
p0 − 1( 􏼁

Γ(α + 1)
t
α

+ λ2
p0 − 1( 􏼁 2p0 − 1( 􏼁

Γ(2α + 1)
t
2α

􏼠 􏼡.

(22)

Similarly, substituting q3(t) � p0 + 􏽐
3
n�1an((tnα)/Γ(nα +

1)) into the residual function Res3q(t) such that Res3q
(t) � Dα

0q3(t) − λ q3(t) (1 − q3(t)), calculating the frac-
tional derivative D2α

0 of Res3q(t), and finally solving the
following obtained result by D2α

0 Res3q(t)|t�0 � 0, the third
coefficient a3 is determined such that

a3 � λ3
p0 1 − p0( 􏼁 Γ2(α + 1) − p0 1 − p0( 􏼁 4Γ2(α + 1) + Γ(2α + 1)( 􏼁( 􏼁

Γ2(α + 1)
. (23)
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So, the third FRPS approximation is given by

q3(t) � p0(1 − λ)
p0 − 1( 􏼁

Γ(α + 1)
t
α

+ λ2
p0 − 1( 􏼁 2p0 − 1( 􏼁

Γ(2α + 1)
t
2α

− λ3
p0 − 1( 􏼁 Γ2(α + 1) + p0 p0 − 1( 􏼁 4Γ2(α + 1) + Γ(2α + 1)( 􏼁( 􏼁

Γ2(α + 1)Γ(3α + 1)
t
3α

.

(24)

Further, when the same routine is repeated as above up
to the arbitrary order k, the coefficients an, n � 4, 5, 6, . . . , k,
can be obtained.

Theorem 3. Assuming that q(t) satisfies the conditions of
(11) with R> 0 such that q(t) ∈ C[t0, t0 + R), Diα

0 q

(t) ∈ C(t0, t0 + R), i � 0, 1, 2, . . . , N + 1. 5en,

q(t) � qN(t) + RN(ζ), (25)

where qN(t) � 􏽐
N
i�0(Diα

0 q(t0)/Γ(iα + 1))(t − t0)
iα and RN

(ζ) � ((D
(N+1)α
0 q(ζ))/(Γ((N + 1)α + 1)))(t − t0)

(N+1)α, for
some ζ ∈ (t0, t). Here, qN(t) is the N-term truncation of q(t)

and RN(ζ) is the remainder error function.

Proof. Clearly,

q(t) − J
(N+1)α
0 D

(N+1)α
0􏼐 􏼑q(t) � 􏽘

N

i�0
􏼔 J

iα
0 D

iα
0􏼐 􏼑q(t) − J

(i+1)α
0 D

(i+1)α
0􏼐 􏼑q(t)􏼕. (26)

Using Lemma 1, it is obvious that

q(t) − J
(N+1)α
0 D

(N+1)α
0􏼐 􏼑q(t) � 􏽘

N

i�0

Di
0q t0( 􏼁

Γ(iα + 1)
􏼠 􏼡 t − t0( 􏼁

iα
.

(27)

)is, in turn, implies that

q(t) � 􏽘
N

i�0

Diα
0 q t0( 􏼁

Γ(iα + 1)
t − t0( 􏼁

iα
+ J

(N+1)α
0 D

(N+1)α
0􏼐 􏼑q(t).

(28)

On the other hand, we get that

J
(N+1)α
0 D

(N+1)α
0􏼐 􏼑q(t) � J

(N+1)α
0 D

(N+1)α
0􏼐 􏼑q(t)

�
1

Γ((N + 1)α)
􏽚

t

t0

D
(N+1)α
0 q(τ)(t − τ)

(N+1)α− 1
dτ

�
D

(N+1)α
0 q(ζ)

Γ((N + 1)α)
􏽚

t

t0

(t − τ)
(N+1)α− 1

dτ(bymean − value theorem for integrals)

�
D

(N+1)α
0 q(ζ)

Γ((N + 1)α)

t − t0( 􏼁
(N+1)α

(N + 1)α

�
D

(N+1)α
0 q(ζ)

Γ((N + 1)α + 1)
t − t0( 􏼁

(N+1)α
.

(29)

Hence, one can deduce the stated result. □

Remark 2. If |D
(N+1)α
0 u(ζ)|<M on [t0, t0 + R), then the

upper bound of RN(ζ) can be obtained by

RN(ζ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ Supt∈ t0 ,t0+R[ ]
M t − t0( 􏼁

(N+1)α

Γ((N + 1)α + 1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (30)

4. Illustrative Examples

In this section, numerical applications of the fractional lo-
gistic differential equations are presented and quantified at
some mesh points. Numerical outcomes highlight the
globality of the proposed algorithm in obtaining string
solutions consistently and also show that the approximate
values are highly acceptable in terms of stability and
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accuracy. In the calculation, all symbolic and digital cal-
culations are performed using Mathematica software
package.

Example 1. Consider the fractional logistic differential
equation

D
α
0q(t) �

1
2

q(t) (1 − q(t)), t> 0, (31)

with the initial condition

D
α
0q(0) �

1
2
, 0< α≤ 1. (32)

)e exact solution of IVP (31) and (32) at α � 1 is given
by

q(t) �
e(1/2)t

1 + e(1/2)t
. (33)

According the FRPS algorithm, the FPS solution to (31)
has the form

q(t) �
1
2

+ 􏽘
∞

n�1
an

tnα

Γ(nα + 1)
. (34)

Now, define the residual error for equation (31) by

Resq(t) � D
α
0q(t) −

1
2

q(t) (1 − q(t)), (35)

and the j-th residual function Resj
q(t) by

Resj
q(t) � D

α
0qj(t) −

1
2

qj(t) 1 − qj(t)􏼐 􏼑, j � 1, 2, 3, . . . .

(36)

Following the FRPS algorithm to find out the coefficients
an, n � 1, 2, 3, . . . , j, of equation (34). Let the first truncated
PS approximation has the form

q1(t) �
1
2

+
a1

Γ(1 + α)
t
α
. (37)

From equation (36) at j � 1, we have

Res1q(t) � D
α
0

1
2

+
a1

Γ(1 + α)
t
α

􏼠 􏼡 −
1
2

1
2

+
a1

Γ(1 + α)
t
α

􏼠 􏼡

· 1 −
1
2

+
a1

Γ(1 + α)
t
α

􏼠 􏼡􏼠 􏼡

� a1 −
1
2

1
4

−
a2
1

Γ2(1 + α)
t
2α

􏼠 􏼡,

(38)

and depending on the fact on equation (16), Res1q(0) � 0, we
have a1 � (1/8). So, the first approximation is

q1(t) �
1
8

4 +
1
Γ(1 + α)

t
α

􏼠 􏼡. (39)

For j � 2, the second truncated PS approximation has
the form

q2(t) �
1
8

4 +
1
Γ(1 + α)

t
α

􏼠 􏼡 +
a2

Γ(1 + 2α)
t
2α

, (40)

and the second residual function is

Res2q(t) � D
α
0

1
8

4 +
1
Γ(1 + α)

t
α

􏼠 􏼡 +
a2

Γ(1 + 2α)
t
2α

􏼠 􏼡

−
1
2

1
8

4 +
1
Γ(1 + α)

t
α

􏼠 􏼡 +
a2

Γ(1 + 2α)
t
2α

􏼠 􏼡

· 1 −
1
8

4 +
1
Γ(1 + α)

t
α

􏼠 􏼡 +
a2

Γ(1 + 2α)
t
2α

􏼠 􏼡􏼠 􏼡

�
a2

Γ(1 + α)
t
α

+
1
2

1
82Γ2(1 + α)

t
2α

􏼠 􏼡

+
a2

8Γ(1 + α)Γ(1 + 2α)
t
3α

+
a2
2

2Γ2(1 + 2α)
t
4α

.

(41)

Now, applying Dα
0 on both sides of equation (41) such

that

D
α
0Res

2
q(t) � D

α
0

1
8

+ a2
1
Γ(1 + α)

t
α

􏼠 􏼡

−
1
2

D
α
0􏼠

1
8

4 +
1
Γ(1 + α)

t
α

􏼠 􏼡 +
a2

Γ(1 + 2α)
t
2α

􏼠 􏼡

·
1
2

−
1

8Γ(1 + α)
t
α

−
a2

Γ(1 + 2α)
t
2α

􏼠 􏼡􏼡

� a2 +
αΓ(2α)

82Γ3(1 + α)
t
α

+ a2
Γ(1 + 3α)

8Γ(1 + α)Γ2(1 + 2α)
t
2α

+ a
2
2

2αΓ(4α)

Γ2(1 + 2α)Γ(1 + 3α)
t
3α

.

(42)

Using the results of equation (16) at j � 2, Res2q(0) � 0,
we have a2 � 0. So, the second approximation is

q2(t) �
1
8

4 +
1
Γ(1 + α)

t
α

􏼠 􏼡. (43)

For j � 3, the third truncated PS approximation has the
form

q3(t) �
1
8

4 +
1
Γ(1 + α)

t
α

􏼠 􏼡 +
a3

Γ(1 + 3α)
t
3α

, (44)

and the third residual function is
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Res3q(t) � D
α
0

1
8

4 +
1
Γ(1 + α)

t
α

􏼠 􏼡 +
a3

Γ(1 + 3α)
t
3α

􏼠 􏼡

−
1
2

1
8

4 +
1
Γ(1 + α)

t
α

􏼠 􏼡 +
a3

Γ(1 + 3α)
t
3α

􏼠 􏼡

· 1 −
1
8

4 +
1
Γ(1 + α)

t
α

􏼠 􏼡 +
a3

Γ(1 + 3α)
t
3α

􏼠 􏼡􏼠 􏼡.

(45)

Now, applying D2α
0 on both sides of (46) such that

D
2α
0 Res3q(t) � D

2α
0 􏼠D

α
0

1
8

4 +
1
Γ(1 + α)

t
α

􏼠 􏼡 +
a3

Γ(1 + 3α)
t
3α

􏼠 􏼡

−
1
2

1
8

4 +
1
Γ(1 + α)

t
α

􏼠 􏼡 +
a3

Γ(1 + 3α)
t
3α

􏼠 􏼡

· 1 −
1
8

4 +
1
Γ(1 + α)

t
α

􏼠 􏼡 +
a3

Γ(1 + 3α)
t
3α

􏼠 􏼡􏼠 􏼡􏼡

�
αΓ(2α)

64Γ2(1 + α)
+ a3

+ a3
Γ(1 + α)Γ(1 + 4α)

8Γ2(1 + α)Γ(1 + 2α)Γ(1 + 3α)
t
2α

+ a
2
3

3αΓ(6α)

Γ2(1 + 3α)Γ(1 + 4α)
t
4α

.

(46)

Using D2α
0 Res3q(0) � 0, and then continuing in this

process, one can get that

a3 � −
αΓ(2α)

64Γ2(1 + α)
,

a4 � 0,

a5 �
αΓ(2α)Γ(4α)

128Γ(α)Γ2(1 + α)Γ(1 + 3α)
,

(47)

and so on.
Consequently, few terms of RPS solution are

q3(t) �
1
64

32 +
8
Γ(1 + α)

t
α

−
αΓ(2α)

Γ2(1 + α)Γ(1 + 3α)
t
3α

􏼠 􏼡,

q4(t) �
1
64

32 +
8
Γ(1 + α)

t
α

−
αΓ(2α)

Γ2(1 + α)Γ(1 + 3α)
t
3α

􏼠 􏼡,

q5(t) �
1
128

􏼠64 +
16
Γ(1 + α)

t
α

−
2αΓ(2α)

Γ2(1 + α)Γ(1 + 3α)
t
3α

+
αΓ(2α)Γ(4α)

Γ(α)Γ2(1 + α)Γ(1 + 3α)Γ(1 + 5α)
t
5α

􏼡.

(48)

)e numerical results of the 5th FRP solution are
given in Table 1 with α � 1 in the interval (0, 1) with step
size h � 0.1. Figure 1 shows a comparison between the
behavior of the exact solution and the approximate so-
lution at α � 1, while in Table 2, numerical comparison is
given between the proposed method and the optimal
homotopy asymptotic method (OHAM) [15] at α � 1.
In Figure 2, the behavior of the 5th FPRS approxima-
tion is presented with different values of α, where
α ∈ 1.0, 0.9, 0.75, 0.5, 0.25{ } and with step size of 0.2,
whereas in Table 3, we review the numerical comparison
between the FRPS solutions and the OHAM [15] when
α � 1 with step size of 0.3. Anyhow, Table 4 shows the
representation of the 6th approximate solution with
different values of α such that α ∈ 1.0, 0.75, 0.5, 0.25{ }.
From these results, it can be observed that the behavior of
the approximate solutions for different values of α is in
good agreement with each other that depends on the
fractional order α.

Example 2. Consider the fractional logistic differential
equation

D
α
0q(t) �

1
4

q(t) (1 − q(t)), t> 0, 0< α≤ 1, (49)

with the initial condition

D
α
0q(0) �

1
3
. (50)

)e exact solution of IVP (49) and (50) at α � 1 is given
by

q(t) �
e(1/4)t

2 + e(1/4)t
. (51)

According to the FRPS algorithm, the FPS solution of
(49) has the form

q(t) �
1
3

+ 􏽘

∞

n�1
an

tnα

Γ(nα + 1)
. (52)

Now, the residual error of equation (49) can be defined
by

Resq(t) � D
α
0q(t) −

1
4

q(t) (1 − q(t)), (53)

and the j-th residual function Resj
q(t) by

Resj
q(t) � D

α
0qj(t) −

1
4

qj(t) 1 − qj(t)􏼐 􏼑,

j � 1, 2, 3, . . . .

(54)

In view of the FRPS algorithm, few terms
an, n � 1, 2, 3, 4, of equation (52) are given by
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Figure 2: FRPS solution plots of Example 1 for different values of α.
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Figure 1: )e behavior of FRPS solution at α � 1 for Example 1.

Table 1: Numerical results of 5th FRPS at α � 1 for Example 1.

t Exact solution Approximations Absolute error Relative error
0.1 0.5124973965 0.5124973965 0 0
0.2 0.5249791875 0.5249791875 0 0
0.3 0.5374298453 0.5374298457 3.59375 × 10− 10 6.68692 × 10− 10

0.4 0.5498339973 0.5498340000 2.68752 × 10− 9 4.88787 × 10− 9

0.5 0.5621765009 0.5621765137 1.27861 × 10− 8 2.27438 × 10− 8

0.6 0.5744425168 0.5744425625 4.56883 × 10− 8 7.95351 × 10− 8

0.7 0.5866175789 0.5866177129 1.33973 × 10− 7 2.28382 × 10− 7

0.8 0.5986876601 0.5986880000 3.39887 × 10− 7 5.67721 × 10− 7

0.9 0.6106392339 0.6106400059 7.71910 × 10− 7 1.26410 × 10− 6

Table 2: Comparison between the FRPS solutions and the OHAM [15] at α � 1 for Example 1.

t Exact
Approximations Absolute error

FRPSM OHAM FRPSM OHAM
0.0 0.5 0.5 0.5 0.00 0.00
0.3 0.5374298453 0.5374298457 0.5374288935 3.59375 × 10− 10 9.52 × 10− 7

0.6 0.5744425168 0.5744425625 0.5744461429 4.56883 × 10− 8 3.63 × 10− 6

0.9 0.6106392339 0.6106400059 0.6106416979 7.71910 × 10− 7 2.46 × 10− 6
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a1 �
1
18

,

a2 �
1
216

,

a3 �
1

2592
−
Γ(1 + 2α)

1296Γ2(1 + α)
,

a4 �
1

31104
−
Γ2(1 + 2α) + 2Γ(1 + α)Γ(1 + 3α)( 􏼁

15552Γ2(1 + α)Γ(1 + 2α)
.

(55)

In Table 5, the numerical error of the 5th FRPS solution is
presented for α � 1 on [0, 1] with step size of 0.1. In Table 6,
the numerical results of the 5th FRPS solution are given for
different values of α on [0, 1] with step size of 0.2. )e exact
and approximate solutions for α � 1, t ∈ [0, 1] and n � 5 are
shown in Figure 3, while the behaviors of FRPS solutions are
plotted for different values of α in Figure 4. From these
results, it can be observed that the behavior of the ap-
proximate solutions for different values of α is in good

Table 3: )e 5th FRPS solution of Example 1 for several values t and α.

t α � 1 α � 0.9 α � 0.75 α � 0.5
0.0 0.5 0.5 0.5 0.5
0.2 0.5249791875 0.5304889353505724 0.5405474790276749 0.5624203934410724
0.4 0.5498340000 0.5566921519428415 0.5678024178207643 0.5873774649503688
0.6 0.5744425625 0.5812250955770806 0.5912278649203895 0.6059542706735661
0.8 0.5986880000 0.6266870034872078 0.6122323913149167 0.6211659591174139
1.0 0.6224609375 0.6266870034872078 0.6314223950369852 0.6341997586473209

Table 4: Representation of approximate solutions for different
values of α.

αi FPS approximate solution q6(t)

1/4 q6(t) � (1/2) + (1/(960
��
π

√
Γ3(5/4)))(

�
2

√
t +

10Γ2(5/4)(12
��
π

√
−

�
2

√
t1/2))t1/4

1/2 q6(t) � (1/2) + (1/32π)(8
��
π

√
− (16/45π3/2)((15π/4) −

t)t)t1/2

3/4 q6(t) � (1/2) + (1/(1800Γ2(7/4)))(225Γ(7/4) + ((15(t3 −

Γ(3/4)Γ(19/4)t3/2))/
���
2π

√
Γ(19/4)))t3/4

1 q6(t) � (1/2) + (1/8)t + (1/384)t3 + (1/15360)t5

Table 5: Numerical results of 5th FRPS at α � 1 for Example 2.

t Exact solution Approximations Absolute
error

Relative
error

0.1 0.3389118421 0.3389118421 0 0
0.2 0.3445354618 0.3445354618 1.00 × 10− 11 3.00 × 10− 11

0.3 0.3502029635 0.3502029634 1.00 × 10− 10 2.00 × 10− 10

0.4 0.3559130712 0.3559130706 5.60 × 10− 9 1.50 × 10− 9

0.5 0.3616644631 0.3616644609 2.15 × 10− 8 5.90 × 10− 9

0.6 0.3674557720 0.3674557656 6.40 × 10− 8 1.74 × 10− 8

0.7 0.3732855868 0.3732855706 1.61 × 10− 7 4.33 × 10− 8

0.8 0.3791524531 0.3791524170 3.60 × 10− 7 9.51 × 10− 8

0.9 0.3850548747 0.3850548016 7.31 × 10− 7 1.90 × 10− 7

Table 6:)e 5th FRPS solution of Example 2 for different values of t

and α.

t α � 1 α � 0.9 α � 0.75 α � 0.5
0.0 0.3333333333 0.33333333333 0.33333333333 0.33333333333
0.2 0.3445354618 0.34705266128 0.35171387863 0.36224905383
0.4 0.3559130706 0.35916526544 0.36457322181 0.37469934920
0.6 0.3674557656 0.37084329986 0.37604627351 0.38441631947
0.8 0.3791524170 0.38228876744 0.38673297588 0.39270737781
1.0 0.3909911774 0.39358561694 0.39688357406 0.40007972096
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Figure 4: RPS solution plots of Example 2 for different values of α.
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Figure 3: )e behavior of FRPS solution at α � 1 for Example 2.
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agreement with each other that depends on the fractional
order α.

5. Conclusions

)is study targets to implement the FRPS method for in-
vestigating the approximate solution of fractional logistic
system subject to fit initial condition. )e target has been
accomplished successfully through extending the FRPS al-
gorithm to handle such type of FDEs. )e present method
provides a solution in rapidly convergent FPS without
linearization, or any limitations. Some numerical applica-
tions are performed to show the efficiency and reliability of
the presented algorithm using Mathematica software
package. )e obtained results showed that the FRPSM is an
easy, efficient, and systematic algorithm to provide analytic
series solutions to various emerging systems of science.
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