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This paper is concernedwith a delayedmodel of mutual interactions between the economically active population and the economic
growth.Themain purpose is to investigate the direction and stability of the bifurcating branch resulting from the increase of delay.
By using a second order approximation of the centermanifold, we compute the first Lyapunov coefficient forHopf bifurcation points
and we show that the system under consideration can undergo a supercritical or subcritical Hopf bifurcation and the bifurcating
periodic solution is stable or unstable in a neighborhood of some bifurcation points, depending on the choice of parameters.

1. Introduction

The term “economic growth” is, generally, employed to
describe the increase in the potential level of real output
produced by an economy over a period of time. It is con-
ventionally measured as the percent rate of increase in real
gross domestic product (GDP). Several studies have analyzed
national income and capital stock to explain an economy’s
growth rate in terms of the level of labor force, saving, and
productivity of capital. After the pioneering works of Harrod
(1939) [1], Domar (1946) [2], Cassel (1924) (see Kelley (1967,
[3]), and Solow (1956) [4], the literature on the modeling of
mutual interactions between the economically active popu-
lation and economic growth has increased considerably in
recent years (see, for example, [5–9] and references cited in
these publications). The original model of economic growth
put forward by Solow (1956), based on anordinary differential
equation, was employed to describe the evolution of capital
stock and, consequently, to explain an economy’s growth rate
in terms of the labor force, the level of saving, and pro-
ductivity of capital [4]. The aforementioned models play an
important role in explaining phenomena related to economic

growth, namely, development, population growth, unem-
ployment, and savings and they have been developed and
investigated in-depth in terms of the stability, bifurcations,
oscillations, and chaotic behavior of solutions [5, 10–13].

Recently, researchers in applied mathematics have pro-
posed systems of differential equations to analytically study
the relationship between economic growth and the pop-
ulation concerned [14–18]. They have proved the birth of
branches of bifurcated periodic solutions from a positive
equilibrium when the delay, namely, the time needed to build,
plan, and install new equipment, increases and crosses some
critical values [9, 15, 16].

In [9], 2016, we divided the labor force population
(the economically active population) into two subgroups:
the unemployed and the employed persons. The national
economy creates jobs to deal with persons who enter the job
market every year (increasing of the number of unemployed
persons). This creation reduces the unemployment rate that
is calculated as follows:

𝑝 = 𝑈 (𝑡)𝑈 (𝑡) + 𝐿 (𝑡)100, (1)
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where𝑈(𝑡) is the number of unemployed persons and 𝐿(𝑡) is
the number of employed persons.

Empirical studies highlight that economic growth has
particularly positive impact on job creation; see, for example,
the literature review by Basnett and Sen [19]. To study this
impact, we proposed the following model of the mutual
interactions between the economically active population and
the economic growth:

𝑑𝐾𝑑𝑡 = 𝑠𝑓 (𝐾, 𝐿) − 𝛿𝐾,
𝑑𝐿𝑑𝑡 = 𝛾 [1 − 𝐿𝜏𝑔 (𝐾𝜏)] 𝐿,

(2)

where𝐾 is the capital stock, 𝑠denotes the constant saving rate,𝛿 is the depreciation rate of capital stock, 𝑓 is the production
function, 𝑔 is the effective labor demand, 𝜏 is the time delay
of the recruitment process that is the average time needed
for expressing each identifying the jobs vacancy, analyzing
the job requirements, reviewing applications, and screening
and selecting the right candidate, and 𝛾 = (𝑟.𝑝)/(1 − 𝑝) with𝑟 being the employment rate and 𝑝 being the unemployed
rate. A significant part of our contribution focused on the
existence of the Hopf bifurcation phenomenon around the
positive equilibrium of the system (2), when the delay 𝜏
passes through a critical value. Yet we have not discussed the
direction of Hopf bifurcation and the stability of the resulting
periodic solutions of this system.

In this work, we investigate the direction and stability of
the resulting bifurcating branch of the system (2) by using
a second order approximation of the center manifold and
computing the first Lyapunov coefficient for Hopf bifurcation
points [20]. The results show that the system under investi-
gation can undergo a supercritical Hopf bifurcation and the
bifurcating periodic solution is stable in a neighborhood of
some bifurcation points.

The remainder of this paper is structured as follows. In
Section 2 we recall previous results. In Section 3 we prove
our new result concerning the direction of Hopf bifurcation,
that is, to ensure whether the bifurcating branch of periodic
solution exists locally and to determine the properties of these
bifurcating periodic solutions. Finally, in Section 4wepresent
our conclusions, some open problems, and future work.

2. Previous Results

In this section, we recall the basic results on the local asymp-
totic stability and the local existence of periodic solutions
(Hopf bifurcation) of the positive steady state (𝐾∗, 𝐿∗) of the
system (2).

As in [9], we assume that the function 𝑔 is continuously
differentiable, satisfying the following hypotheses:

(𝐻1): 𝑔(0) > 0
(𝐻2): 𝑔 is a strictly monotone increasing and concave
function

(𝐻3): lim𝐾󳨀→+∞𝑔(𝐾) = 𝐿𝑒

where 𝐿𝑒 is the maximal effective labor demand [5]. More-
over, as in the Solow model [4], we consider a Cobb-Douglas
function [21]:

𝑓 (𝐾, 𝐿) = 𝐴𝐾𝛼𝐿1−𝛼, (3)

where 𝐴 is a positive constant that reflects the level of the
technology and 𝛼 ∈ (0, 1) and 1 − 𝛼 are the output elasticities
of capital and labor, respectively.

Proposition 1 (see [9]). System (2) always has two equilibria𝑃0 = (0, 0) and 𝑃1 = (0, 𝑔(0)) which exist for all parameter
values. On the other hand, if hypotheses (𝐻1), (𝐻2), and (𝐻3)
hold, then system (2) also admits a unique positive equilibrium(𝐾∗, 𝐿∗), where 𝐾∗ is the unique positive solution of

𝑔 (𝐾) = ( 𝛿𝑠𝐴)1/(1−𝛼)𝐾, (4)

and 𝐿∗ is determined by

𝐿∗ = ( 𝛿𝑠𝐴)1/(1−𝛼)𝐾∗. (5)

Theorem 2 (see [9]). If 𝑀 < 1, then there exists 𝜏0 > 0 such
that,

(i): for 𝜏 ∈ [0, 𝜏0), the steady state (𝐾∗, 𝐿∗) is locally
asymptotically stable
(ii): for 𝜏 > 𝜏0, (𝐾∗, 𝐿∗) is unstable
(iii): for 𝜏 = 𝜏0, a Hopf bifurcation of periodic solutions
of system (2) occurs at (𝐾∗, 𝐿∗) when 𝜏 = 𝜏0

with

𝜔20 = 12 {(𝛾2 − ((1 − 𝛼) 𝛿)2) + [(𝛾2 − ((1 − 𝛼) 𝛿)2)2

− 4𝛿2𝛾2 (1 − 𝛼)2 (1 − 𝑀)2]1/2} ,
(6)

and

𝜏0 = 1𝜔0 arccos
𝜔20𝛿 (𝛼 − 1)𝑀

𝛾(𝜔20 + (𝛿 (1 − 𝛼) (1 −𝑀))2 , (7)

and

𝑀 = 𝐾∗𝐿−1∗ 𝑔󸀠 (𝐾∗) . (8)

3. Direction and Stability of
the Hopf Bifurcation

In Theorem 2, we obtained a condition under which system
(2) undergoes Hopf bifurcation at 𝜏0; that is, a family of
periodic solutions bifurcate from the positive steady state
point (𝐾∗, 𝐿∗) at the critical value 𝜏0. One interesting ques-
tion here is to determine the direction of Hopf bifurcation,
that is, to ensure whether the bifurcating branch of periodic
solution exists locally for 𝜏 > 𝜏0 or 𝜏 < 𝜏0 and to
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determine the properties of bifurcating periodic solutions,
for example, stability on the center manifold. In this section
we use a second order approximation of the center manifold
and we compute the first Lyapunov coefficient for Hopf
bifurcation points to formulate an explicit algorithm about
the direction and the stability of the bifurcating branch of
periodic solutions of (2) (see [20]).

Normalizing the delay 𝜏 by scaling 𝑡 󳨀→ 𝑡/𝜏 and effecting
the change 𝑥(𝑡) = 𝐾(𝜏𝑡)−𝐾∗,𝑦(𝑡) = 𝐿(𝜏𝑡)−𝐿∗ and 𝜏 = 𝜏0+𝜇,
where 𝜇 ∈ R.Then the system (2) is transformed into

𝑑𝑥𝑑𝑡 = (𝜏0 + 𝜇) [𝑎1𝑥 + 𝑎2𝑦 + 𝑎11𝑥𝑦 + 𝑎20𝑥2 + 𝑎02𝑦2
+ 𝑎12𝑥𝑦2 + 𝑎21𝑥2𝑦 + 𝑎30𝑥3 + 𝑎03𝑦3] ,

𝑑𝑦𝑑𝑡 = (𝜏0 + 𝜇) [𝑏1𝑥1 + 𝑏2𝑦1 + 𝑏11𝑥1 [𝑦1 + 𝑦] + 𝑏20𝑥21
+ 𝑏21𝑥21 [𝑦1 + 𝑥] + 𝑏30𝑦31] ,

(9)

where

𝑥1 = 𝑥 (𝑡 − 1) ;
𝑦1 = 𝑦 (𝑡 − 1) ;
𝑎1 = (𝛼 − 1) 𝛿;
𝑎2 = (1 − 𝛼) 𝛿𝐾∗𝐿−1∗ ;
𝑏1 = 𝛾𝑔󸀠 (𝐾∗) ;
𝑏2 = −𝛾;
𝑎20 = 12𝛼 (𝛼 − 1) 𝛿𝐾−1∗ ;
𝑎02 = 12𝛼 (𝛼 − 1) 𝛿𝐾∗𝐿−2∗ ;
𝑎11 = 𝛼 (1 − 𝛼) 𝛿𝐿−1∗ ;
𝑎12 = 12𝛼2 (𝛼 − 1) 𝛿𝐿−1∗ ;
𝑎21 = −12 𝛼 (𝛼 − 1)2 𝛿𝐾−1∗ 𝐿−1∗ ;
𝑏11 = 𝛾𝑔󸀠 (𝐾∗) 𝐿−1∗ ;
𝑏20 = 12𝛾 [𝑔󸀠󸀠 (𝐾∗) − 2 (𝑔󸀠 (𝐾∗))2 𝐿−1∗ ] ;

(10)

and

𝑏21 = 12𝛾 [𝑔󸀠󸀠 (𝐾∗) 𝐿−1∗ − 2𝑔󸀠 (𝐾∗) 𝐿−2∗ ] ;
𝑏30 = 𝛾6 [𝑔󸀠󸀠󸀠 (𝐾∗) 𝐿−3∗

− 3𝑔󸀠 (𝐾∗) 𝑔󸀠󸀠 (𝐾∗) 𝐿−1∗ (𝐿−3∗ + 1) − 6𝑔󸀠 (𝐾∗)3 𝐿−2∗ ] .
(11)

Hence, system (9) becomes a functional differential equation
in 𝐶 fl 𝐶([−1, 0],R2) as

𝑢̇ (𝑡) = 𝐿𝜇 (𝑢𝑡) + 𝑓 (𝜇, 𝑢𝑡) , (12)

where 𝑢 = (𝑥, 𝑦)𝑇 ∈ R2, 𝐿𝜇 : 𝐶 󳨀→ R2 is the linear operator
and 𝑓 : R × 𝐶 󳨀→ R2 is the nonlinear part which are given,
respectively, by

𝐿𝜇 (𝜑) = (𝜏0 + 𝜇)
⋅ [((𝛼 − 1) 𝛿 (1 − 𝛼) 𝛿𝐿−1∗ 𝐾∗0 0 )(𝜑1 (0)𝜑2 (0))

+ ( 0 0
𝛾𝑔󸀠 (𝐾∗) −𝛾)(𝜑1 (−1)𝜑2 (−1))] ,

(13)

and

𝑓 (𝜇, 𝜑) = (𝜏0 + 𝜇)(𝑄1𝑄2) , (14)

where

𝑄1 = 𝑎11𝜑1 (0) 𝜑2 (0) + 𝑎20𝜑21 (0) + 𝑎02𝜑22 (0)
+ 𝑎12𝜑1 (0) 𝜑22 (0) + 𝑎21𝜑21 (0) 𝜑2 (0) + 𝑎30𝜑31 (0)
+ 𝑎03𝜑32 (0) ,

(15)

and

𝑄2 = 𝑏11𝜑1 (−1) [𝜑2 (−1) + 𝜑2 (0)] + 𝑏20𝜑21 (−1)
+ 𝑏21𝜑21 (−1) [𝜑2 (−1) + 𝜑1 (0)] + 𝑏30𝜑1 (−1) . (16)

Let

𝐿 fl 𝐿𝜇 : 𝐶 ([−1, 0] ,R2) 󳨀→ R
2. (17)

Using the Riesz representation theorem (see [22]), we obtain

𝐿 (𝜑) = ∫0
−1

𝑑𝜂 (𝜃) 𝜑 (𝜃) , (18)

where

𝜂 (𝜃, 𝜇) = (𝜏0 + 𝜇)
⋅ ( (𝛼 − 1) 𝛿𝛿 (𝜃) (1 − 𝛼) 𝛿𝐿−1∗ 𝐾∗𝛿 (𝜃)

𝛾𝑔󸀠 (𝐾∗) 𝛿 (𝜃 + 1) −𝛾𝛿 (𝜃 + 1) ) , (19)

with 𝛿(⋅) being the Dirac function. For 𝜑 = (𝜑1, 𝜑2) ∈ 𝐶,
define

𝐴 (𝜇) 𝜑 (𝜃) =
{{{{{{{

𝑑𝜑𝑑𝜃 (𝜃) for 𝜃 ∈ [−1, 0) ,
∫0
−1

𝑑𝜂 (𝜃, 𝜇) 𝜑 (𝜃) for 𝜃 = 0, (20)
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and

𝑅 (𝜇) 𝜑 = {{{
0 for 𝜃 ∈ [−1, 0) ,
𝑓 (𝜇, 𝜑) for 𝜃 = 0. (21)

Thus, the system (9) can be transformed into the following
functional differential equation:

𝑢̇𝑡 = 𝐴 (𝜇) 𝑢𝑡 + 𝑅 (𝜇) 𝑢𝑡, (22)

where 𝑢𝑡(𝜃) = 𝑢(𝑡 + 𝜃), 𝜃 ∈ [−1, 0].
Now, for 𝜓 = (𝜓1, 𝜓2) ∈ 𝐶([0, 1],R2∗), let us consider the

operator

𝐴∗ : 𝐶 ([0, 1] ,R2) 󳨀→ R
2, (23)

defined by

𝐴∗𝜓 (𝑠) =
{{{{{{{
−𝑑𝜓𝑑𝑠 (𝑠) , for 𝑠 ∈ (0, 1]
−∫0
−1

𝜓 (−𝑠) 𝑑𝜂 (𝑠) , for 𝑠 = 0, (24)

and for 𝜑 ∈ 𝐶([−1, 0],R2) and 𝜓 ∈ 𝐶([0, 1],R2∗) we
define a bilinear inner product:

⟨𝜓, 𝜑⟩ = 𝜓 (0) 𝜑 (0)
− ∫0
−1

∫𝜃
0
𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜑 (𝜉) 𝑑𝜉, (25)

where 𝜂(𝜃) = 𝜂(𝜃, 0), and then 𝐴(0) and 𝐴∗ are adjoint
operators.

Suppose that 𝑞(𝜃) and 𝑞∗(𝑠) are eigenvectors of 𝐴(0) and𝐴∗ corresponding to 𝑖𝜔0𝜏0 and −𝑖𝜔0𝜏0, respectively. By a
simple computation, we have

𝑞 (𝜃) = (1, 𝑞1)𝑇 𝑒𝑖𝜃𝜔0𝜏0 , (26)

and

𝑞∗ (𝑠) = 𝜅 (𝑞2, 1)𝑇 𝑒𝑖𝜃𝜔0𝜏0 , (27)

where 𝑞1 = (𝑖𝜔0 − (𝛼 − 1)𝛿)/(1 − 𝛼)𝛿𝐿−1∗ 𝐾∗, and 𝑞2 = (𝑖𝜔0 +𝛾)/(1 − 𝛼)𝛿𝐿−1∗ 𝐾∗.
Using the normalization condition, i.e., ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1,

we get

𝜅 = − (1 − 𝛼) 𝛿𝐿−1∗ 𝐾∗2𝑖𝜔0 − 𝛾 + (𝛼 − 1) 𝛿 − 𝛾𝜏0𝑒𝑖𝜔0𝜏0 [(1 − 𝛼) 𝛿𝐿−1∗ 𝐾∗𝑔󸀠 (𝐾∗) + (𝛼 − 1) 𝛿 + 𝑖𝜔0] . (28)

It is easy to check that ⟨𝑞∗, 𝑞⟩ = 0.
Let

𝑧 (𝑡) = ⟨𝑞∗, 𝑢𝑡⟩ ,
𝑊 (𝑧, 𝑧, 𝜃) = 𝑢𝑡 (𝜃) − Re 𝑧 (𝑡) 𝑞 (𝜃) ,
𝑊 (𝑧, 𝑧) = 𝑊 (𝑧, 𝑧, 𝜃) ,

(29)

and
𝑓0 (𝑧, 𝑧) = 𝑓(0,𝑊 (𝑧, 𝑧) + Re (𝑧 (𝑡) 𝑞 (𝜃)) , (30)

where 𝑢𝑡 is the solution of Eq. (22).
Next, we compute the coordinates describing center

manifold 𝐶0 at 𝜇 = 0.
On the center manifold 𝐶0, we have

𝑧̇ (𝑡) = ⟨𝑞∗, 𝑢̇𝑡⟩ = ⟨𝑞∗, 𝐴 (0) 𝑢𝑡 + 𝑅 (0) 𝑢𝑡⟩
= ⟨𝐴∗ (0) 𝑞∗, 𝑢𝑡⟩ + ⟨𝑞∗, 𝑅 (0) 𝑢𝑡⟩
= 𝑖𝜔0𝜏0𝑧 (𝑡) + 𝑞∗ (0) 𝑓0 (𝑧, 𝑧) ,

(31)

and this last equation is written as follows:
𝑧̇ (𝑡) = 𝑖𝜔0𝜏0𝑧 (𝑡) + 𝑔 (𝑧, 𝑧) , (32)

where
𝑔 (𝑧, 𝑧) = 𝑞∗ (0) 𝑓0 (𝑧, 𝑧)

= 𝑔20 𝑧22 + 𝑔11𝑧𝑧 + 𝑔02 𝑧22 + ⋅ ⋅ ⋅ , (33)

and

𝑊(𝑧, 𝑧) = 𝑊20 (𝜃) 𝑧22 +𝑊11 (𝜃) 𝑧𝑧 +𝑊02 (𝜃) 𝑧22
+ ⋅ ⋅ ⋅ ,

(34)

where 𝑧 and 𝑧 are local coordinates for center manifold 𝐶0 in
the direction of 𝑞 and 𝑞∗.

Note that 𝑊 is real if 𝑢𝑡 is real.
Thus, from (22) we have

𝑊̇ = 𝑢̇𝑡 − 𝑞𝑧̇ − 𝑞 𝑧̇, (35)

which leads to

𝑊̇ = 𝐴 (0)𝑊 +𝐻 (𝑧, 𝑧, 𝜃) , (36)

with

𝐻(𝑧, 𝑧, 𝜃) = 𝐻20 (𝜃) 𝑧22 + 𝐻11 (𝜃) 𝑧𝑧2 + 𝐻02 (𝜃) 𝑧22
+ ⋅ ⋅ ⋅ ,

(37)

where

𝐻20 = − (𝐴 (0) − 2𝑖𝜔0𝜏0)𝑊20 (𝜃) ;
𝐻11 = −𝐴 (0)𝑊11 (𝜃) ;
𝐻02 = − (𝐴 (0) + 2𝑖𝜔0𝜏0)𝑊02 (𝜃) .

(38)
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By 𝑢𝑡 = (𝑥, 𝑦)𝑇 = 𝑊(𝑧, 𝑧) + 𝑧𝑞(𝜃) + 𝑧 𝑞(𝜃) and 𝑞(𝜃) =(1, 𝑞1)𝑇𝑒𝑖𝜃𝜔0𝜏0 , we get
𝑥 (𝑡) = 𝑧 + 𝑧 + 12𝑊20 (0) 𝑧2 +𝑊11 (0) 𝑧𝑧

+ 12𝑊02 (0) 𝑧2 + ⋅ ⋅ ⋅ ,
𝑥 (𝑡 − 1) = 𝑧𝑒−𝑖𝜃𝜔0𝜏0 + 𝑧𝑒𝑖𝜃𝜔0𝜏0 + 12𝑊20 (−1) 𝑧2

+𝑊11 (−1) 𝑧𝑧 + 12𝑊02 (0) 𝑧2 + ⋅ ⋅ ⋅ ,
𝑦 (𝑡) = 𝑞1𝑧 + 𝑞1𝑧 + 12𝑊20 (0) 𝑧2 +𝑊11 (0) 𝑧𝑧

+ 12𝑊02 (0) 𝑧2 + ⋅ ⋅ ⋅ ,

(39)

and

𝑦 (𝑡 − 1) = 𝑞1𝑧𝑒−𝑖𝜃𝜔0𝜏0 + 𝑞1𝑧𝑒𝑖𝜃𝜔0𝜏0 + 12𝑊20 (−1) 𝑧2
+ 12𝑊11 (−1) 𝑧𝑧 + 12𝑊02 (−1) 𝑧2 + ⋅ ⋅ ⋅

(40)

It follows from (19) and (30) that

𝑔 (𝑧, 𝑧) = 𝑞∗𝑓0 (𝑧, 𝑧) = 𝑞∗𝑓0 (0, 𝑢𝑡) . (41)

The coefficients in (33) are

𝑔20 = 2𝜏0𝜅 (𝑞2 (𝑎02𝑞21 + 𝑎11𝑞1 + 𝑎20)
+ 𝑏11𝑒𝑖𝜏0𝜔0𝑞1 (𝑒𝑖𝜏0𝜔0 + 1) + 𝑏20𝑒𝑖2𝜏0𝜔0) ,

𝑔02 = 2𝜏0𝜅 (𝑞2 (𝑎02𝑞21 + 𝑎11𝑞1 + 𝑎20)
+ 𝑏11𝑒−𝑖𝜏0𝜔0𝑞1 (𝑒−𝑖𝜏0𝜔0 + 1) + 𝑏20𝑒−𝑖2𝜏0𝜔0) ,

𝑔11 = 𝜏0𝜅(𝑞2 (2𝑎02𝑞1𝑞1 + 𝑎11𝑞1 + 𝑎11𝑞1 + 2𝑎20)
+ 𝑏11 (𝑞1 + 𝑞1 + 𝑞1𝑒𝑖𝜏0𝜔0 + 𝑞1𝑒−𝑖𝜏0𝜔0 + 2𝑏20) ,

(42)

and

𝑔21 = 2𝜏0𝜅(𝑞2 (𝑎02 (𝑞1𝑊220 (0) + 2𝑞1𝑊211 (0))
+ 𝑎11 (12𝑊220 (0) + 𝑊111 (0) 𝑞1 +𝑊211 (0)
+ 12𝑊120 (0) 𝑞1 + 𝑎12 (2𝑞1𝑞1 + 𝑞21)
+ 𝑎20 (𝑊120 + 2𝑊111) + 𝑎02 (𝑞1𝑊220 + 2𝑞1𝑊211)
+ 𝑎21 (𝑞1 + 2𝑞1)) + 𝑏11 (12𝑒−𝑖𝜏0𝜔0𝑊220 (−1)
+ 𝑊111 (−1) 𝑞1𝑒𝑖𝜏0𝜔0 + 𝑒𝑖𝜏0𝜔0𝑊211 (−1)

+ 12𝑊120 (−1) 𝑞1𝑒−𝑖𝜏0𝜔0 + 12𝑒−𝑖𝜏0𝜔0𝑊220 (0)
+ 𝑒𝑖𝜏0𝜔0𝑊211 (0) + 𝑊111 (−1) 𝑞1 + 12𝑊120 (−1) 𝑞1)
+ 𝑏20 (2𝑒𝑖𝜏0𝜔0𝑊111 (−1) + 𝑒−𝑖𝜏0𝜔0𝑊120 (−1)
+ 𝑏21 (2𝑞1 + 𝑒2𝑖𝜏0𝜔0𝑞1 + 2𝑒𝑖𝜏0𝜔0𝑞1 + 𝑒𝑖𝜏0𝜔0𝑞1)
+ 3𝑏30𝑒𝑖𝜏0𝜔0)) .

(43)

In order to compute 𝑔21, we need to compute𝑊11(𝜃) and𝑊20(𝜃).
For 𝜃 ∈ [−1, 0), we have
𝐻(𝑧, 𝑧, 𝜃) = 𝑞∗ (0) 𝑓0𝑞 (0) − 𝑞∗ (0) 𝑓0𝑞 (0)

= −𝑔 (𝑧, 𝑧) 𝑞 (𝜃) − 𝑔 (𝑧, 𝑧) 𝑞 (𝜃)
= − (𝑔20𝑞 (𝜃) + 𝑔02𝑞 (𝜃)) 𝑧22

− (𝑔11𝑞 (𝜃) + 𝑔11𝑞 (𝜃)) 𝑧𝑧 + ⋅ ⋅ ⋅ ,

(44)

which on comparing the coefficients with (37) gives

𝐻20 (𝜃) = − (𝑔20𝑞 (𝜃) + 𝑔02𝑞 (𝜃)) ,
𝐻11 (𝜃) = − (𝑔11𝑞 (𝜃) + 𝑔11𝑞 (𝜃)) . (45)

From (38) and (45) and the definition of 𝐴, we get
𝑊̇20 = 2𝑖𝜏0𝜔0𝑊20 (𝜃) + 𝑔20𝑞 (𝜃) + 𝑔02𝑞 (𝜃) . (46)

Since 𝑞(𝜃) = 𝑞(0)𝑒𝑖𝜃𝜏0𝜔0 , we have

𝑊20 = 𝑖𝑔20𝑒𝑖𝜏0𝜔0𝜃𝜏0𝜔0 𝑞 (0) + 𝑖𝑔02𝑒−𝑖𝜏0𝜔0𝜃3𝜏0𝜔0 𝑞 (0)
+ 𝐸1𝑒2𝑖𝜏0𝜔0𝜃,

(47)

and

𝑊11 = −𝑖𝑔11𝑒𝑖𝜏0𝜔0𝜃𝜏0𝜔0 𝑞 (0) + 𝑖𝑔11𝑒−𝑖𝜏0𝜔0𝜃𝜏0𝜔0 𝑞 (0) + 𝐸2, (48)

where 𝐸𝑘 = (𝐸𝑘1 , 𝐸𝑘2))𝑇 ∈ R2, for 𝑘 = 1 and 𝑘 = 2, are two
vectors given by
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(d) Capital stock evolution for 𝜏 = 1.572

Figure 1: For𝛼 = 0.5, an unstable periodic solution bifurcates from the positive equilibrium: (a and b) for 1.5718 < 𝜏0, existence of bifurcating
periodic solution and (c and d), for 1.572 > 𝜏0, absence of bifurcating periodic solution (seeTheorem 3).

𝐸11 = ((1 − 𝛼) 𝛿𝐿−1∗ 𝐾∗ (𝑏110𝑒𝑖𝜏0𝜔0𝑞1 (𝑒𝑖𝜏0𝜔0 + 1) + 𝑏200𝑒2𝑖𝜏0𝜔0) + (𝛾𝑒−2𝑖𝜏0𝜔0 + 2𝑖𝜏0𝜔0) (𝑎02𝑞21 + 𝑎11𝑞1 + 𝑎20))− (𝛾𝑒−2𝑖𝜏0𝜔0 + 2𝑖𝜏0𝜔0) ((𝛼 − 1) 𝛿 − 2𝑖𝜏0𝜔0) − (1 − 𝛼) 𝛿𝛾𝐿−1∗ 𝐾∗𝑔󸀠 (𝐾∗) 𝑒−2𝑖𝜏0𝜔0 ,

𝐸12 = ((𝛼 − 1) 𝛿 − 2𝑖𝜏0𝜔0) (𝑏110𝑒𝑖𝜏0𝜔0𝑞1 (𝑒𝑖𝜏0𝜔0 + 1) + 𝑏200𝑒2𝑖𝜏0𝜔0) − 𝛾𝑔󸀠 (𝐾∗) 𝑒−2𝑖𝜏0𝜔0 (𝑎02𝑞21 + 𝑎11𝑞1 + 𝑎20)(1 − 𝛼) 𝛿𝛾𝐿−1∗ 𝐾∗𝑔󸀠 (𝐾∗) 𝑒−2𝑖𝜏0𝜔0 + (𝛼 − 1) 𝛿 − 2𝑖𝜏0𝜔0) (𝛾𝑒−2𝑖𝜏0𝜔0 + 2𝑖𝜏0𝜔0) ,

𝐸21 = (2𝑎02𝑞1𝑞1 + 𝑎11 (𝑞1 + 𝑞1) + 2𝑎20 + 𝐿−1∗ 𝐾∗(𝑏11 (𝑞1 + 𝑞1 + 𝑒𝑖𝜏0𝜔0𝑞1 + 𝑒−𝑖𝜏0𝜔0𝑞1 + 2𝑏20)𝛾 (1 − 𝐿−1∗ 𝐾∗𝑔󸀠 (𝐾∗)) ,

(49)

and

𝐸22 = 𝛾 (2𝑎02𝑞0𝑞1 + 𝑎11𝑞0 + 𝑎11𝑞1 + 22𝑎20) + (𝛼 − 1) 𝛿(𝑏11 (𝑞1 + 𝑞1 + 𝑒𝑖𝜏0𝜔0𝑞1 + 𝑒−𝑖𝜏0𝜔0𝑞1) + 2𝑎20𝛾𝛿 (1 − 𝛼) (1 − 𝐿−1∗ 𝐾∗) . (50)

Hence, the first Lyapunov coefficient is given by

𝑙1 (𝜏) = Re (𝑐1)𝜔𝜏 + 𝜎 Im (𝑐1)𝜔2𝜏2 , (51)

where 𝑐1 = 𝑔21/2 + |𝑔11|2/𝜆 + |𝑔02|2/2(2𝜆 − 𝜆) + 𝑔20𝑔11(2𝜆 +𝜆)/2|𝜆|2.
For 𝜏 = 𝜏0, we have 𝜔 = 𝜔0 and 𝜎 = 0. Thus, 𝑙1(𝜏0) =(1/2𝜔0𝜏0)[Re(𝑔21) − (1/𝜔0𝜏0) Im(𝑔20𝑔11)], and consequently,
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Figure 2: For 𝛼 = 0.5, an unstable periodic solution bifurcates from the positive equilibrium: (a and b) for 1.57176 > 𝜏0, existence of
bifurcating periodic solution and (c and d), for 1.570796 < 𝜏0, absence of bifurcating periodic solution (see Theorem 3).

we obtain the following result on the stability of limit cycle
bifurcating from the positive equilibrium.

Theorem 3. Assume that conditions of Theorem 2 hold. Then,
the following is considered.

The direction of the Hopf bifurcation is determined by the
sign of 𝑙1(𝜏0):

(1) if 𝑙1(𝜏0) < 0, then it is a supercritical bifurcation and
the bifurcating periodic solutions existing for 𝜏 > 𝜏0 are
stable

(2) if 𝑙1(𝜏0) > 0, then it is a subcritical bifurcation and the
bifurcating periodic solutions existing for 𝜏 < 𝜏0 are
unstable.

4. Numerical Simulations

In this section, we study how the dynamics of the model (2)
change when the time delay and the output elasticities of

capital vary. Let us consider the following examples where
we suppose the parameters of the model take the following
values:

𝑠 = 0.3;
𝐴 = 1;
𝛿 = 0.2;
𝛾 = 1;

and 𝑔 (𝐾) = 300𝑒𝐾1 + 𝑒𝐾 .

(52)

Example 4. If 𝛼 = 0.5, then system (2) has a unique positive
equilibrium point 𝐸∗ = (675; 300), the critical value of
time delay 𝜏0 = 1.5719, and the first Lyapunov coefficient𝑙1|𝜏=𝜏0 = 0.0056151 > 0, and consequently an unstable
periodic solution bifurcates from the positive equilibrium
(see Figure 1).
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Example 5. If 𝛼 = 0.1, then system (2) has a unique positive
equilibrium point 𝐸∗ = (470, 73; 300). The critical value of
time delay is 𝜏0 = 1.57079 and the first Lyapunov coefficient
is 𝑙1|𝜏=𝜏0 = −0.026613 < 0. Thus a stable periodic solution
bifurcates from the positive equilibrium (see Figure 2).

5. Conclusion

In this paper, we considered the dynamic behavior of a
delayed model of mutual interactions between the eco-
nomically active population and the economic growth. The
direction of the Hopf bifurcation and the stability of the
bifurcated periodic solution of this model are informed by
a second order approximation of the center manifold [20].
From some numerical simulations we conclude that, for
some parameters, the Hopf bifurcation can appear and our
proposed model can undergo a supercritical or subcritical
Hopf bifurcation and the bifurcating periodic solution is
stable or unstable in a neighborhood of some bifurcation
points, depending on the choice of parameters. Our the-
oretical and experimental results would highlight that the
choice of time delay influences the dynamic behavior of the
economic system, which provides an effective way to control
the evolution of the active population and economic growth
of the system. These results could also help decision makers
to better understand the fluctuations in economic growth.

For further research, we suggest a study of the Bautin
bifurcation for the case when the first Lyapunov coefficient
equals zero.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest
regarding the publication of this paper.

References

[1] R. F. Harrod, “An essay in dynamic theory,” The Economic
Journal, vol. 49, no. 193, pp. 14–33, 1939.

[2] E. D. Domar, “Expansion and employment,” in The American
Economic Review, vol. 37, pp. 34–55, American Economic
Association, 1947.

[3] C. Gustav, “Capital and income in the money economy,” inThe
Theory of Social Economy, p. 5117, AugustusM.Kelley, NewYork,
NY, USA, 1967.

[4] R.M. Solow, “A contribution to the theory of economic growth,”
The Quarterly Journal of Economics, vol. 70, no. 1, pp. 65–94,
1956.

[5] S. Hallegatte, M. Ghil, P. Dumas, and J.-C. Hourcade, “Business
cycles, bifurcations and chaos in a neo-classical model with
investment dynamics,” Journal of Economic Behavior & Orga-
nization, vol. 67, no. 1, pp. 57–77, 2008.

[6] D. Cai, “Multiple equilibria and bifurcations in an economic
growth model with endogenous carrying capacity,” Interna-
tional Journal of Bifurcation and Chaos, vol. 20, no. 11, pp. 3461–
3472, 2010.

[7] D. Cai, “An economic growth model with endogenous carrying
capacity and demographic transition,”Mathematical and Com-
puter Modelling, vol. 55, no. 3-4, pp. 432–441, 2012.

[8] L. Guerrini and M. Sodini, “Nonlinear dynamics in the solow
modelwith boundedpopulation growth and time-to-build tech-
nology,” Abstract and Applied Analysis, vol. 2013, Article ID
836537, 6 pages, 2013.

[9] S. ElFadily, A. Kaddar, and K. Najib, “Dynamics of a delayed
solow model with effective labor demand,” Journal of Advances
in Applied Mathematics, vol. 1, no. 3, pp. 175–182, 2016.

[10] V. Jablanovic, “A chaotic economic growth model and the
agricultural share of an output,” Journal of Agricultural Sciences,
Belgrade, vol. 50, no. 2, pp. 207–216, 2005.
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