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In this paper, an initial value method for solving a class of linear second-order singularly perturbed differential difference equation
containing mixed shifts is proposed. In doing so, first, the given problem is modified in to an equivalent singularly perturbed
problem by approximating the term containing the delay and advance parameters using Taylor series expansion. From the
modified problem, two explicit initial value problems which are independent of the perturbation parameter are produced; namely,
the reduced problem and the boundary layer correction problem.(ese problems are then solved analytically and/or numerically,
and those solutions are combined to give an approximate solution to the original problem. An error estimate for this method is
derived using maximum norm. Several test problems are considered to illustrate the theoretical results. It is observed that the
present method approximates the exact solution very well.

1. Introduction

Singularly perturbed differential equations (SPDEs) refer to
the study of classes of differential equations containing small
parameter(s) multiplying the highest derivative(s). A well-
known fact is that the solutions of such problems have a
multiscale character, i.e., there are thin transition layer(s)
where the solution varies very rapidly, while away from the
layer(s), the solution behaves regularly and varies slowly.
(is leads to boundary and/or interior layer(s) in the so-
lution of the problems [1]. Due to the presence of the layer
regions, it has been shown that the classical numerical
methods fails to produce good approximations for SPDEs. In
fact, some numerical techniques employed for solving sin-
gularly perturbed boundary value problems (SPBVPs) are
based on the idea of replacing these problems by suitable
initial value problems (IVPs).(e reason for this is that the
numerical treatment of a boundary value problem is much
more demanding than the treatment of the corresponding
IVPs. (ere are different initial value methods in the

literature of SPDEs developed for solving SPBVPs; for the
detailed discussions of suchmethods, one can refer [1, 2] and
the references therein.

Modeling automatic engines or physiological systems
often involve the idea of control because feedback is used in
order to maintain a stable state. However, much of this
feedback require a finite time to sense information and react
to it. A popular way to describe this process is to formulate
delay differential equations or differential difference equa-
tions (DDEs) where the evolution of a dependent variable is
a function of time which depends on not only current time
but also earlier time [3]. A singularly perturbed differential
difference equation is a differential equation in which the
highest derivative is multiplied by a small parameter and
which involves at least one shift term. Such type of equations
arise frequently in the mathematical modeling of various
practical phenomena, such as in optical bistable devices [4],
in variational problems in control theory [5, 6], in the hy-
drodynamics of liquid helium [7], in description of the
human pupil-light reflex [8], in microscale heat transfer [9],
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and in a variety of models for physiological processes or
diseases [10, 11].

Singularly perturbed differential difference equations
(SPDDEs) have not been satisfactorily discussed in the lit-
erature up to now; however, in the past few decades, there
has been a growing interest in the numerical and/or as-
ymptotic study of such problems. Lange and Miura initiate
the study of boundary value problems for SPDDEs in a series
of papers [12–14] and discuss the case of small as well as large
shift parameters. Tain [15] extended the concept of singular
perturbation theory for ordinary differential equations
to delay differential equations, applying O’Malley–
Hoppensteadt technique to obtain approximate solutions.
Kadalbajoo and Sharma [16] constructed an ε-uniform fitted
mesh method for solving singularly perturbed differential-
difference equations with mixed type of shifts. Kadalbajoo
and Sharma [17] described a numerical approach based on
finite differences to solve a mathematical model arising from
neuronal variability. Patidar and Sharma [18] approximated
the term containing delay by Taylor series expansion and
then applied an ε-uniformly convergent nonstandard finite
difference methods to SPDDEs with small delay. Kumar and
Sharma [19] presented a numerical technique to approxi-
mate the solution of SPDDEs with delays as well as advances.
In recent years, different scholars further developed nu-
merical schemes for ordinary differential-difference equa-
tions with mixed shifts, to mention few [20–24].

In this paper, we consider linear second-order singularly
perturbed differential difference equation containing mixed
shifts (i.e., both delay and advance parameters) on the re-
action terms and propose an asymptotic numerical method,
namely, initial value technique.(is initial value method was
first introduced by EL-Zahar and EL-Kabier [2]. In fact, they
applied this method for solving singularly perturbed dif-
ferential equations without shift parameters. In [25] this
method was extended for singularly perturbed delay dif-
ferential equations having a negative shift on the convection
term. (e proposed method here is similar in some respect
to the methods in [2, 25] but differs in detail, and the model
problem considered is completely different.

(e rest part of this paper is organized as follows. In
Section 2, the problem under consideration is stated. Section
3 is devoted on the analytic properties of the exact solution.
(e proposed method is described in Section 4, and the error
analysis for the method is derived in Section 5. Several
numerical examples are given in Section 6. Finally, dis-
cussions on the numerical results and conclusions are in-
cluded in Section 7.

2. Statement of the Problem

Consider the following second-order linear SPDDE with a
delay and advance term:

εy″(x) + a(x)y′(x) + α(x)y(x − δ) + ω(x)y(x)

+ β(x)y(x + η) � f(x),
(1)

∀x ∈ Ω � (0, 1), under the following interval conditions:

y(x) � ϕ(x), on − δ ≤ x≤ 0, (2)

y(x) � c(x), on 1≤x≤ 1 + η, (3)

where a(x), α(x), β(x), ω(x), f(x), ϕ(x), and c(x) are
bounded and continuously differentiable functions on
Ω � (0, 1), 0< ε≪ 1 is the singular perturbation parameter,
and 0< δ≪ 1 and 0< η≪ 1 are the delay and advance pa-
rameters, respectively.

When the shifts are zero (i.e., δ � 0, η � 0), the solution
of the resulting problem exhibits layer behavior or turning
point behavior depending on the coefficient of the con-
vection term, i.e., whether a(x) does not change sign or
changes sign on the interval Ω. (e layer behavior of the
problem under consideration is maintained for δ ≠ 0 and
η≠ 0 but only if they are sufficiently small. In general, the
solution of problem (1)–(3) exhibits boundary layer behavior
at one end of the intervalΩ � [0, 1] depending on the sign of
a(x) − δα(x) + ηβ(x) [16].

By using Taylor series expansion on the terms y(x − δ)

and y(x + η) in (1), we have

y(x − δ) � y(x) − δy′(x) + O δ2􏼐 􏼑, (4)

y(x + η) � y(x) + ηy′(x) + O η2􏼐 􏼑. (5)

Using (4) and (5) in (1), we obtain

εy″(x) + A(x)y′(x) + B(x)y(x) ≈ f(x),

y(0) ≈ ϕ(0),

y(1) ≈ c(1),

(6)

where

A(x) � a(x) − δα(x) + ηβ(x), (7)

B(x) � α(x) + ω(x) + β(x). (8)

Since (6) is an approximate version of (1)–(3), it is good
to use different notation (say u(x)) for the solution of this
approximate differential equation.(us, (6) can be rewritten
as

Lu ≡ εu″(x) + A(x)u′(x) + B(x)u(x) � f(x),

u(0) � ϕ(0) � ϕ0, u(1) � c(1) � c1.
(9)

which differs from the original problem (1)–(3) by O(δ2u″,
η2u″) terms.

(e approximation of (1)–(3) by (9) is acceptable, be-
cause of the condition that 0< δ≪ 1 and 0< η≪ 1 are
sufficiently small. (is replacement is significant from the
computational point of view. Further details on the validity
of this transition can be found in Els’golts and Norkin [26].
(us, the solution of (9) will provide a good approximation
to the solution of (1)–(3). Further, we assume that

A(x) � a(x) − δα(x) + ηβ(x)≥M> 0,

B(x) � α(x) + ω(x) + β(x)≤ − θ < 0,
(10)
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throughout the interval Ω � [0, 1], whereM and θ are some
positive constants. Under these assumptions, (9) has a
unique solution u(x) which exhibits a boundary layer of
width O(ε) on the left side (x � 0) of the underlying interval
[24].

Remark 1. In this paper, we consider only the case where
there is one boundary layer at the left end of the interval.(e
case when the layer occurs at right end can be analyzed
similarly. However, we present some test problems for the
latter case.

3. Some a Priori Estimates

(roughout this paper, C (sometimes subscripted) denote
generic positive constants independent of the singular
perturbation parameter ε and in the case of discrete
problems, also independent of the mesh parameter N. (e
maximum norm is used for studying the convergence of
the approximate solution to the exact solution of the
problem:

‖f‖ � max
x∈Ω

|f(x)|. (11)

Now, we give the required bounds on the solution u of
(9) that will be used to establish the error estimate. First, we
consider the following property of the operator L.

Lemma 1 (continuous minimum principle)
Assume that π(x) is any sufficiently smooth function

satisfying π(0)≥ 0 and π(1)≥ 0. .en, Lπ(x)≤ 0 for all
x ∈ (0, 1) implies that π(x)≥ 0 for all x ∈ [0, 1].

Proof. Let x∗ be an arbitrary point in (0, 1) such that
π(x∗ ) � minx∈[0,1] π(x){ } and assume that π(x∗ )< 0.
Clearly x∗ ∉ 0, 1{ }; therefore, π′(x∗ ) � 0 and π″(x∗ )≥ 0.
Moreover,

Lπ x
∗

( 􏼁 � επ″ x
∗

( 􏼁 + A x
∗

( 􏼁π′ x
∗

( 􏼁 + B x
∗

( 􏼁π x
∗

( 􏼁≥ 0,

(12)

which is a contradiction. It follows that our assumption
π(x∗ )< 0 is wrong. So, π(x∗ )≥ 0. Since x∗ is an arbitrary
point, π(x)≥ 0, ∀x ∈ [0, 1]. □

Lemma 2 (stability result)
Let u(x) be the solution of the problem (9). .en

||u||≤ θ− 1
f + max |ϕ|0, c1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑. (13)

Proof. First we construct two barrier functions φ± defined
by

φ±(x) � θ− 1
||f|| + max ϕ0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, c1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 ± u(x), (14)

(en

φ±(0) � θ− 1
||f|| + max ϕ0|, |c1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 ± u(0)

� θ− 1
||f|| + max ϕ0|, |c1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 ± ϕ0 ≥ 0,

φ±(1) � θ− 1
||f|| + max ϕ0|, |c1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 ± u(1)

� θ− 1
‖f‖ + max ϕ0|, |c1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 ± c1 ≥ 0,

Lφ±(x) � ε φ±(x)( 􏼁″ + A(x) φ±(x)( 􏼁′ + B(x)φ±(x)

� B(x) θ− 1
f + max ϕ0|, |c1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼐 􏼑 ± Lu(x),

� B(x) θ− 1
||f|| + max ϕ0|, |c1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼐 􏼑 ± f(x)

≤ − (||f||∓f(x)) − θmax ϕ0|, |c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑≤ 0.

(15)

(erefore, from Lemma 1, we obtain φ±(x)≥ 0 for all
x ∈ [0, 1], which gives the required estimate.

Lemma 1 implies that the solution is unique and since
the problem under consideration is linear, the existence of
the solution is implied by its uniqueness. Furthermore,
Lemma 2 gives the boundedness of the solution. □

Lemma 3. .e derivatives of the solution u(x) of the
boundary value problem (9) satisfy the following estimates for
k � 1, 2, 3:

u
k

�����

�����≤C(ε)− k
. (16)

Proof. For the proof of this lemma, the reader can refer to
[17].

Lemma 4. (e solution u(x) of (9) admits the following
decomposition:

u(x) ≔ ur(x) + us(x), (17)

where the regular (smooth) component ur(x) satisfies

ur(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C 1 + e
− Mx/ε

􏽨 􏽩,

u
k
r(x)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤C 1 +(ε)2− k
e

− Mx/ε
􏽨 􏽩, ∀k≥ 1,

(18)

and the singular component us(x) satisfies

u
k
s (x)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤C(ε)− k
e

− Mx/ε
, ∀k≥ 0. (19)

□

Proof. For the proof of this theorem, the reader can refer to
[16]. □

4. Description of the Method

Here, we extend the initial value method proposed and used
in the articles [2, 25] to approximate the solution u(x) of (9),
when the solution of this problem exhibits a boundary layer
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near the left end (i.e., near at x � 0). However, the procedure
we follow here is somehow different.

First, we rewrite (9) equivalently as

ε
d2u
dx2 +

d
dx

(A(x)u(x)) � F(x, u), x ∈ [0, 1], (20)

where

F(x, u) � f(x) + A′(x)u(x) − B(x)u(x). (21)

Let u0(x) be the solution of the reduced problem (i.e.,
the problem which is obtained from (9) when ε � 0). So, (9)
is reduced to an initial value problem of the following form:

A(x)u0′(x) + B(x)u0(x) � f(x), u0(1) � c1. (22)

If this problem is separable, then it can be integrated
easily to give an exact solution, and if not, any initial value
solver like fourth-order Runge–Kutta method can be used to
approximate the solution. For the exact solution of the
reduced problem, the following theorem gives an error
bound.

Theorem 1. Let u(x) be the solution of (9) and u0(x) be its
reduced problem solution defined by (22). .en

u(x) − u0(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C ε + e
− Mx/ε

􏼐 􏼑, ∀x ∈ [0, 1]. (23)

Proof. First consider the following two barrier functions φ±
defined by

φ±(x) � C ε + e
− Mx/ε

􏼐 􏼑 ± u(x) − u0(x)( 􏼁. (24)

(en

φ±(0) � C(ε + 1) ± u(0) − u0(0)( 􏼁

� Cε + C ± ϕ0 − u0(0)( 􏼁≥ 0, forC � ϕ0 − u0(0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

φ±(1) � C ε + e
− M/ε

􏼐 􏼑 ± u(1) − u0(1)( 􏼁

� C ε + e
− M/ε

􏼐 􏼑 ± c1 − c1( 􏼁

� C ε + e
− M/ε

􏼐 􏼑≥ 0,

Lφ±(x) � ε φ±(x)( 􏼁″ + A(x) φ±(x)( 􏼁′ + B(x)φ±(x)

� C M
2/ε − A(x)M/ε + B(x)􏼐 􏼑e

− Mx/ε
+ CεB(x)

± L u(x) − u0(x)( 􏼁

≤CεB(x) ± − εu″0(x)≤ − Cεθ

± − εC1, since u″0(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C1

� − ε Cθ ± C1( 􏼁≤ 0,

(25)

for an appropriate choice of C, i.e., C � θ− 1|C1|.
(erefore, from Lemma 1, we obtain φ±(x)≥ 0 for all

x ∈ [0, 1], which gives the required estimate. □

Remark 2. From the above theorem, it is clear that the
solution u of the boundary value problem (9) exhibits a
strong boundary layer at x � 0 and further away from the

boundary layer region and in particular on [βε, 1], where
β≥ − (ln ε/M), for sufficiently small values of ε, we have

u(x) − u0(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C ε + e
− Mx/ε

􏼐 􏼑≤Cε. (26)

From (eorem 1, it can be observed that the solution
u0(x) satisfies (9) onmost part of the interval [0, 1] and away
from x � 0.(us, by replacing the solution u(x) by u0(x) on
the right part of (20), we obtain an asymptotically equivalent
approximation as

ε
d2u
dx2 +

d
dx

(A(x)u(x)) � F x, u0( 􏼁 + O(ε), x ∈ [0, 1],

(27)

where

F x, u0( 􏼁 � f(x) + A′(x)u0(x) − B(x)u0(x). (28)

Integrating both sides of (27) with respect to x gives

ε
du

dx
+ A(x)u(x) � 􏽚 F x, u0( 􏼁dx + O(ε), x ∈ [0, 1],

(29)

where

􏽚 F x, u0( 􏼁dx � 􏽚 f(x) + A′(x)u0(x) − B(x)u0(x)( 􏼁dx.

(30)

Using (22) in the above integral yields

􏽚 F x, u0( 􏼁dx � 􏽚 f(x) + A′(x)u0(x) − B(x)u0(x)( 􏼁dx

� 􏽚 f(x) + A′(x)u0(x) − f(x) + A(x)u0′(x)( 􏼁dx

� 􏽚
d
dx

A(x)u0(x)( 􏼁dx � A(x)u0(x) + k.

(31)

(en, substituting this in to (29) gives us

ε
du

dx
+ A(x)u(x) � A(x)u0(x) + k + O(ε), (32)

where k is an integration constant. In order to determine k,
we introduce the condition that the reduced equation of (31)
should satisfy the boundary condition at x � 1. (us, we get
k � 0.

Hence, by substituting k � 0 in (31), a first-order initial
value problem which is asymptotically equivalent to the
second-order boundary value problem (9) is obtained and
written as follows:

ε
dv

dx
+ A(x)v(x) � A(x)u0(x),

with an initial condition, v(0) � ϕ0.

(33)

Over most of the domain [0, 1], the solution u0(x) of the
reduced problem (22) behaves like the solution of (9). But, in
the neighborhood of x � 0, there is a region in which
this solution varies greatly from the solution of (9). To
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compensate the solution over this region (inner layer), a new
inner variable is introduced by stretching the spatial co-
ordinate x as

t �
x

ε
⟹x � εt,

dt

dx
�
1
ε
.

(34)

Using this stretching transformation in to (33), we
obtain

dv

dt
+ A(εt)v � A(εt)u0(εt). (35)

In spite of this simplification, equation (34) remains a
first-order differential equation and also regularly perturbed.
For ε � 0, it becomes

dv

dt
+ A(0)v � A(0)u0(0). (36)

(is is a differential equation for the solution of the layer
region. Moreover, the solution of (36) is supposed to
counteract for the fact that the solution of the reduced
problem does not satisfy the boundary condition at x � 0
and that this solution satisfies

lim
t⟶∞

v(t) � 0. (37)

Further, using the substitution V(t) � v(t) − u0(0) in to
(36), we obtain the following boundary layer correction
problem:

dV

dt
+ A(0)V � 0, withV(0) � ϕ0 − u0(0). (38)

(is equation is a linear initial value problem with
constant coefficient, which can easily be solved analytically,
and gives

V
x

ε
􏼒 􏼓 � ϕ0 − u0(0)( 􏼁e

− A(0)x/ε
. (39)

Finally, from standard singular perturbation theory, it
follows that the solution of the IVP (33) admits the rep-
resentation in terms of the solutions of the reduced and
boundary layer correction problems, which approximates
the modified problem (9), that is,

uapp(x) � u0(x) + v(x) � u0(x) + V
x

ε
􏼒 􏼓,

uapp(x) � u0(x) + ϕ0 − u0(0)( 􏼁e
− A(0)x/ε

.

(40)

Theorem 2. Let uapp(x) be the approximate solution of (9)
given by (40), then it satisfies the following bound:

u(x) − uapp(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Cε, ∀x ∈ [0, 1], (41)

where u(x) is the exact solution of (9).

Proof. First consider the following two barrier functions φ±
defined by

φ±(x) � Cε ± u(x) − uapp(x)􏼐 􏼑. (42)

(en

φ±(0) � Cε ± u(0) − u0(0) − ϕ0 − u0(0)( 􏼁( 􏼁

� Cε≥ 0,

φ±(1) � Cε + ± u(1) − u0(1) − ϕ0 − u0(0)􏼁e
− A(0)/ε

􏼐 􏼑􏼐

� Cε ± c1 − c1 − ϕ0 − u0(0)( 􏼁e
− A(0)/ε

􏼐 􏼑,

≥ Cε∓ ϕ0 − u0(0)( 􏼁ε, since − e
− A(0)/ε ≥ − ε

� ε C∓ ϕ0 − u0(0)( 􏼁( 􏼁≥ 0,

(43)

for an appropriate choice of C, i.e., C � |ϕ0 − u0(0)|, and

Lφ±(x) � ε φ±(x)( 􏼁″ + A(x) φ±(x)( 􏼁′ + B(x)φ±(x)

� CεB(x) ± L u(x) − uapp(x)􏼐 􏼑 � CεB(x)

± L u(x) − u0(x) − v(x)( 􏼁

� CεB(x) ± L u(x) − u0(x) − Lv(x)( 􏼁

� CεB(x) ± − εu″0(x)≤ − Cεθ ± − εC1,

� − ε(Cθ ± C)1 ≤ 0,

(44)

for an appropriate choice of C, i.e., C � θ− 1|C1|.
(erefore, from Lemma 1, we obtain φ±(x)≥ 0 for all

x ∈ [0, 1], which gives the required estimate. □

5. Error Analysis

(e numerical error of the present method has three
sources: one from Taylor’s series approximation of the
original problem (1)–(3), the second from the asymptotic
approximation of the modified problem (9), and the last
from the numerical approximation of the reduced problem
(22). Let h be the mesh spacing of the domain of the
problem.

5.1. Error on the Nonboundary Layer Domain. Let u(x) be
the solution of the modified problem (9), u0(x) be the exact
solution of the reduced problem (22), and u0(x) be the
numerical solution of the reduced problem obtained from
the fourth-order Runge–Kutta method. On the non-
boundary layer domain, the error is

u0 − u0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � max
i�1,...,N− 1

u0 xi( 􏼁 − u0 xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯 � O h
4

􏼐 􏼑, (45)

By using (26), (45) and triangle inequality, we conclude

u − u0
����

����≤ u − u0
����

���� + u0 − u0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� O(ε) + O h
4

􏼐 􏼑.
(46)

Most of the time, the exact solution of the reduced
problem can be easily obtained and the second term of the
above error inequality is vanished.
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5.2. Error on the Boundary Layer Domain. On the boundary
layer domain, the asymptotic approximation error is
generated from the reduction of order method and the
numerical error from the numerical approximation of the
outer solution u0, since the initial condition of the
boundary layer correction problem (38) is affected by
u0(x).

Let v be the exact solution of the (37) and v be the
numerical solution of (37). On the boundary layer domain,
the error is

u − v + u0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ u − v + u0( 􏼁
����

���� + v + u0( 􏼁 − v + u0( 􏼁
����

����

� O(ε) + O h
4

􏼐 􏼑.

(47)

(e new method works well for singular perturbation
problems since the singular perturbation parameter ε is
extremely small.

6. Test Problems and Numerical Results

To demonstrate the applicability of the proposed
method, we have implemented it on four boundary value
problems of the form (1)–(3), exhibiting either right or
left boundary layer. (ree of them are constant co-
efficient problems, whereas the remaining one is of
variable coefficients.

In case exact solution of the test problem is available for
comparison, the pointwise error (ei

N) and maximum ab-
solute error (EN) are calculated by using the following
formula:

e
i
N � y xi( 􏼁 − uN xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

EN � max
i

e
i
N􏽮 􏽯,

(48)

where y(xi) is the exact solution of the given problem and
uN(xi) is the approximate solution obtained by using the
proposed method, evaluated at N equally spaced mesh
points.

In case the exact solution is not available, the pointwise
error (􏽢ei

N) and maximum absolute error (􏽢EN) are calculated
by using the double mesh principle given by

􏽢e
i
N � UN xi( 􏼁 − U2N x2i( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

􏽢EN � max
i

􏽢e
i
N􏽮 􏽯,

(49)

where UN(xi) and U2N(x2i) denote the ith and 2ith com-
ponents of the numerical solutions obtained by using N and
2N meshes points, respectively. In addition, the corre-
sponding rate of convergence is determined by

􏽢RN � log2
􏽢EN/􏽢E2N( 􏼁

. (50)

(e exact solution of the BVPs (1)–(3) having constant
coefficients (i.e., a(x) � a, α(x) � α, β(x) � β, ω(x) � ω,
f(x) � f, ϕ(x) � ϕ and c(x) � c), is given by

y(x) � c1e
m1x

+ c2e
m2x

+
f

B
, (51)

where

c1 �
− f + cB + em2(f − ϕB)

em1 − em2( )B
,

c2 �
f − cB + em2(− f + ϕB)

em1 − em2( )B
,

(52)

m1 �
− A +

��������
A2 − 4εB

√

2ε
,

m2 �
− A −

��������
A2 − 4εB

√

2ε
,

(53)

B � α + β + ω,

A � a − αδ + βη.
(54)

Since both the reduced problem (22) and the layer
correction problem (38) for constant coefficient BVPs are
separable IVPs which can easily be solved analytically, and
the proposed method gives the following formula for the
approximate solution:

u(x) �
f

B
−

f

B
− c􏼠 􏼡e

B(1− x)/A
+ ϕ −

f

B
+

f

B
− c􏼠 􏼡e

B/A
􏼢 􏼣e

− Ax/ε
.

(55)

Following a similar derivation like that of Section 4 for
constant coefficient problems exhibiting right boundary
layer, we obtain

u(x) �
f

B
−

f

B
− ϕ􏼠 􏼡e

− Bx/A
+ c −

f

B
+

f

B
− ϕ􏼠 􏼡e

− B/A
􏼢 􏼣e

A(1− x)/ε
.

(56)

Example 1. Consider the following BVP with left boundary
layer:

εy″(x) + y′(x) + 2y(x − δ) − 3y(x) � 0, (57)

with

y(x) � 1, − δ ≤x≤ 0, y(1) � 1. (58)

(e exact solution of this problem is given by (51)–(54)
and the approximate solution using (55) becomes

u(x) � e
− (1− x)/A

+ 1 − e
− 1/A

􏼐 􏼑e
− Ax/ε

+ O(ε), whereA � 1 − 2δ.

(59)

(e maximum pointwise errors of Example 1 for dif-
ferent values of ε, δ, and N � 100 are given in Table 1. Plots

Table 1: Result for Example 1 (max. errors for N � 100).

ε↓ δ � 0.00∗ ε δ � 0.20∗ ε δ � 0.50∗ ε δ � 0.80∗ ε δ � 2.00∗ ε

10− 1 2.46E − 02 2.65E − 02 2.96E − 02 3.33E − 02 5.38E − 02
10− 2 3.60E − 03 3.63E − 03 3.68E − 03 3.72E − 03 3.91E − 03
10− 3 3.67E − 04 3.68E − 04 3.68E − 04 3.68E − 04 3.70E − 04
10− 4 3.68E − 05 3.68E − 05 3.68E − 05 3.68E − 05 3.68E − 05
10− 5 3.68E − 06 3.68E − 06 3.68E − 06 3.68E − 06 3.68E − 06
10− 6 3.68E − 07 3.68E − 07 3.68E − 07 3.68E − 07 3.68E − 07
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of the approximate solution for different values of δ with
fixed ε � 0.05 and N � 100 are displayed in Figure 1.

Example 2. Consider the following nonhomogeneous BVP
with left boundary layer:

εy″(x) + 0.5y′(x) − 3y(x − δ) − 2y(x) + 2y(x + η) � 1,

(60)

with

y(x) � 1, − δ ≤x≤ 0,

y(x) � 0, 1≤ x≤ 1 + η.
(61)

(e exact solution of this problem is given by (51)–(54)
and the approximate solution using (55) becomes

u(x) �
1
3

− 1 + e
− 3(1− x)/A

􏼐 􏼑 +
1
3

4 − e
− 3/A

􏼐 􏼑e
− Ax/ε

+ O(ε),

whereA � 0.5 + 3δ + 2η.

(62)

(e maximum pointwise errors of Example 2 for dif-
ferent values of ε, δ, and η with N � 100 are given in Table 2.

Plots of the approximate solution for different values of δ
with fixed ε � 0.025, η � 0, and N � 100 are displayed in
Figure 2. And, Figure 3 shows the plots of the approximate
solutions for δ � 0, ε � 0.025, and N � 100 with different
values of η.

Example 3. Consider the following BVP with right end
boundary layer:

εy″(x) − y′(x) − 2y(x − δ) + y(x) − 2y(x + η) � 0,

(63)
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Figure 1: Approximate solution of Example 1 for different values
of δ.

Table 2: Result for Example 2 (max. errors for N � 100).

ε↓
δ � 0.0∗ ε δ � 0.2∗ ε δ � 0.5∗ ε δ � 0.8∗ ε δ � 2.0∗ ε
η � 0.0∗ ε η � 0.2∗ ε η � 0.5∗ ε η � 0.8∗ ε η � 2.0∗ ε

0.25 3.56E − 01 2.38E − 01 1.43E − 01 9.30E − 02 2.73E − 02
10− 1 2.46E − 01 1.98E − 01 1.46E − 01 1.11E − 01 4.59E − 02
10− 2 4.98E − 02 4.80E − 02 4.55E − 02 4.31E − 02 3.48E − 02
10− 3 1.45E − 03 1.44E − 03 1.43E − 03 1.42E − 03 1.39E − 03
10− 4 1.47E − 04 1.47E − 04 1.47E − 04 1.47E − 04 1.46E − 04
10− 5 1.47E − 05 1.47E − 05 1.47E − 05 1.47E − 05 1.47E − 05
10− 6 1.47E − 06 1.47E − 06 1.47E − 06 1.47E − 06 1.47E − 06
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Figure 2: Approximate solution of Example 2 for different values
of δ.
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Figure 3: Approximate solution of Example 2 for different values
of η.
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with

y(x) � 1, − δ ≤ x≤ 0,

y(x) � − 1, 1≤x≤ 1 + η.
(64)

(e exact solution of this problem is given by (51)–(54)
and the approximate solution using (56) becomes

u(x) � e
− 3x/A

− 1 + e
− 3/A

􏼐 􏼑e
− A(1− x)/ε

+ O(ε),

whereA � 1 − 2δ + 2η.
(65)

(e maximum pointwise errors of Example 3 for dif-
ferent values of ε, δ, and η with N � 100 are given in Table 3.
Plots of the approximate solution for different values of δ
with fixed ε � 0.05, η � 0, and N � 100 are displayed in
Figure 4. In Figure 5, the plots of the approximate solutions
for δ � 0, ε � 0.05, and N � 100 with different values of η are
displayed.

Example 4. Consider the following variable coefficient BVP:

εy″(x) − 1 + e
x2

􏼒 􏼓y′(x) − xy(x − δ) + x
2
y(x)

− 1 − e
− x

( 􏼁y(x + η) � 1,

(66)

with

y(x) � 1, − δ ≤x≤ 0,

y(x) � − 1, 1≤x≤ 1 + η.
(67)

Exact solution: not known.
Property: boundary layer near right end.
Solution: using Taylor’s series expansion, this problem

can be written equivalently as

ε″u(x) + A(x)u′(x) + B(x)u(x) � 1,

with u(0) � 1, u(1) � − 1,
(68)

where

A(x) � δx + ηe
− x

− e
x2

− 1 − η,

B(x) � x
2

+ e
− x

− x − 1.
(69)

Since 0≤ δ≪ 1, 0≤ η≪ 1, and 0≤x≤ 1, then A(x)< 0
and B(x)< 0 which implies the given problem has a

Table 3: Result for Example 3 (max. errors for N � 100).

ε↓
δ � 0.0∗ ε δ � 0.2∗ ε δ � 0.5∗ ε δ � 0.8∗ ε δ � 2.0∗ ε
η � 2.0∗ ε η � 0.8∗ ε η � 0.5∗ ε η � 0.2∗ ε η � 0.0∗ ε

0.1000 7.84E − 02 1.04E − 01 1.19E − 01 1.37E − 01 1.99E − 01
0.0500 5.51E − 02 5.98E − 02 6.44E − 02 6.95E − 02 8.42E − 02
0.0250 2.97E − 02 3.26E − 02 3.39E − 02 3.54E − 02 3.91E − 02
0.0100 1.33E − 02 1.38E − 02 1.40E − 02 1.42E − 02 1.48E − 02
0.0050 5.90E − 03 6.05E − 03 6.11E − 03 6.18E − 03 6.34E − 03
0.0025 2.68E − 03 2.71E − 03 2.73E − 03 2.74E − 03 2.78E − 03
0.0015 1.62E − 03 1.64E − 03 1.64E − 03 1.65E − 03 1.66E − 03
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Figure 4: Approximate solution of Example 3 for different values
of δ.
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Figure 5: Approximate solution of Example 3 for different values
of η.
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boundary layer near right end. (en, the reduced problem
becomes

A(x)u0′(x) + B(x)u0(x) � 1, with u0(0) � 1, (70)

Since this problem is difficult to solve analytically, we
apply classical fourth-order Runge–Kutta method to com-
pute the approximate solution 􏽢u0.

Next, the boundary layer correction problem becomes

−
dV

dt
+ A(1)V � 0, withV(0) � v(1) − 􏽢u0(1),

−
dV

dt
+ A(1)V � 0, withV(0) � − 1 − 􏽢u0(1).

(71)

where A(1) � A � δ + ηe− 1 − e1 − 1 − η, then solving this
IVP analytically gives

V
(1 − x)

ε
􏼠 􏼡 � − 1 − 􏽢u0(1)( 􏼁e

A(1− x)/ε
. (72)

Finally, the approximate solution of the given problem
becomes

u(x) � 􏽢u0(x) − 1 + 􏽢u0(1)( 􏼁e
A(1− x)/ε

+ O(ε) + O h
4

􏼐 􏼑.

(73)

(e maximum errors and rate of convergences for Ex-
ample 4 for different values of ε and N by taking δ � η �

0.5∗ ε are given in Table 4. (e plots of the approximate
solution for N � 32 and N � 64 with ε � 0.1 and δ � η �

0.5∗ ε are displayed in Figure 6.

7. Discussion

In this article, an initial value method for solving linear
second-order singularly perturbed differential difference
equation with both delay and advance parameters is con-
sidered. First, by applying Taylor’s series expansion on the
term containing the delay and advance, the given problem is
modified to an asymptotically equivalent singularly per-
turbed problem. (en, the solution of the modified problem
is computed analytically and/or numerically by solving two
initial value problems, namely, the reduced problem and the
boundary layer correction problem, which are independent

of the perturbation parameter ε. (e method is simple to
apply, very easy to implement on a computer, and offers a
relatively simple tool for obtaining approximate solution.

To show the efficiency and applicability of the proposed
method, four test problems are considered. For problems
with exact solution, the maximum error is calculated and
tabulated in Tables 1–3 for different values of ε, δ, and η. On
the other hand, for the problem with no exact solution, the
double mesh principle is used to compute the maximum
error and rate of convergence, and the results are displayed
in Table 4. From the results, it is observed that, for very small
ε, the present method approximates the exact solution of the
problems very well, and also it is superior to some of the
existing methods in the literature such as [17, 20, 21, 24].

In addition, to examine the effect of the small shifts on
the behavior of the solution, graphs of the solution for the
test problems are displayed in Figures 1–5. We observe from
Figures 1–3 that, when the solution exhibits left layer, the
effect of both shifts on the solution in the layer region is
negligible whereas that in the outer region is considerable.
On the other hand, Figures 4 and 5 illustrate that, when the

Table 4: Result for Example 4 (max. errors and rate of convergences for δ � η � 0.5∗ ε).

ε↓ N � 4 N � 8 N � 16 N � 32 N � 64

2− 2 4.591E − 06 2.154E − 07 1.131E − 08 6.409E − 10 3.801E − 11
4.4138 4.2512 4.1414 4.0755 4.0387

2− 4 4.827E − 06 2.280E − 07 1.203E − 08 6.840E − 10 4.065E − 11
4.4043 4.2439 4.1367 4.0728 4.0375

2− 6 4.867E − 06 2.304E − 07 1.218E − 08 6.932E − 10 4.124E − 11
4.4011 4.2415 4.1351 4.0712 4.0370

2− 12 4.870E − 06 2.305E − 07 1.219E − 08 6.938E − 10 4.128E − 11
4.4008 4.2413 4.1350 4.0710 4.0371

2− 16 4.870E − 06 2.305E − 07 1.219E − 08 6.938E − 10 4.128E − 11
4.4008 4.2413 4.1350 4.0710 4.0371

2− 24 4.870E − 06 2.305E − 07 1.219E − 08 6.938E − 10 4.128E − 11
4.4008 4.2413 4.1350 4.0710 4.0371
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Figure 6: Approximate solution of Example 4 for different values
of N.
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solution exhibits right layer, the changes in delay or advance
affect the solution in layer region as well as outer region. But,
the thickness of the layer increases as the size of the delay
increases while it decreases as the size of the advance
increases.
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