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In this paper we present a mathematical model for the transmission dynamics of Contagious Bovine Pleuropneumonia (CBPP)
by considering antibiotic treatment and vaccination. The model is comprised of susceptible, vaccinated, exposed, infectious,
persistently infected, and recovered compartments. We analyse the model by deriving a formula for the control reproduction
numberR𝑐 and prove that, forR𝑐 < 1, the disease free equilibrium is globally asymptotically stable; thus CBPP dies out, whereas
for R𝑐 > 1, the unique endemic equilibrium is globally asymptotically stable and hence the disease persists. Thus, R𝑐 = 1 acts
as a sharp threshold between the disease dying out or causing an epidemic. As a result, the threshold of antibiotic treatment is𝛼∗𝑡 = 0.1049. Thus, without using vaccination, more than 85.45% of the infectious cattle should receive antibiotic treatment or
the period of infection should be reduced to less than 8.15 days to control the disease. Similarly, the threshold of vaccination is𝜌∗ = 0.0084. Therefore, we have to vaccinate at least 80% of susceptible cattle in less than 49.5 days, to control the disease. Using
both vaccination and antibiotic treatment, the threshold value of vaccination depends on the rate of antibiotic treatment, 𝛼𝑡, and
is denoted by 𝜌𝛼𝑡 . Hence, if 50% of infectious cattle receive antibiotic treatment, then at least 50% of susceptible cattle should get
vaccination in less than 73.8 days in order to control the disease.

1. Introduction

Contagious Bovine Pleuropneumonia (CBPP) is a major
constraint to cattle production in the key pastoral regions
of Africa (see [1–3] for more details). It is caused by
Mycoplasma mycoides subspecies mycoides (Mmm) that
attacks the lungs and the membranes of cattle and water
buffalo. It is transmitted by direct contact between an infected
and a susceptible animal which becomes infected by inhaling
droplets disseminated by coughing. It causes high morbidity
and mortality losses to cattle which leads to economic crisis
(see [4–7] for more details). Cost of control of CBPP is also
a major concern in African countries [6, 8]. Since some
animals can carry the diseasewithout showing signs of illness,
controlling the spread is more difficult. In many countries
in sub-Saharan Africa, CBPP control is based on vaccination
alone, but this strategy does not eradicate the disease [9].

In [10] we presented and analysed a five-compartmental
mathematical model of the transmission dynamics of CBPP,
without any intervention, having the objective of identifying
parameters that have significant role in changing the dynam-
ics of the disease.As a result, fromelasticity analysis, we found
that the effective contact rate 𝛽 and the rate of recovery 𝛼𝑟
are the top two parameters that control the dynamics of the
disease in such a way that as the value of 𝛽 decreases and
the value of 𝛼𝑟 increases,R0 decreases and can be made less
than one; as a result the disease can be controlled. However,
we know that vaccination is one of the ways of reducing the
effective contact rate (𝛽) and antibiotic treatment is one way
of reducing infection by increasing the recovery rate.

Thus, in this paper we consider vaccination and antibi-
otic treatment as a controlling tool of CBPP and present
a compartmental model for the transmission dynamics of
CBPP containing six compartments: susceptible, vaccinated,
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Figure 1: A compartmental model for the transmission dynamics of CBPP with antibiotic treatment and vaccination.

exposed, infectious, persistently infected, and recovered com-
partments. Antibiotic treatment is considered in the model
by incorporating rate of recovery of treated cattle such
that treated cattle move from infectious compartment to
recovered compartment at a rate of 𝛼𝑡.

The objective of this paper is to determine the better
control method out of vaccination, antibiotic treatment, and
a combination of both. We derive the formula for the control
reproduction number R𝑐 and determine the number of
cattle to be vaccinated and treated independently and in
combination, which will enable us to choose the feasible
and effective controlling method in our context. Numerical
simulations are performed using MATLAB.

This paper is structured as follows. In Section 2, we
present a mathematical model of the dynamics of CBPP,
with vaccination and antibiotic interventions. In Section 3,
we prove the well-posedness of the model. We calculate
equilibria of the system and rigorously derive a formula of the
control reproduction numberR𝑐, in Section 4. Stability anal-
ysis of the DFE and EE is presented in Section 5, we present
parameter values andnumerical simulations in Section 6, and
lastly, we draw the conclusions and remarks in Section 7.

2. Mathematical Model

We model the transmission dynamics of Contagious Bovine
Pleuropneumonia (CBPP). In this model we assume inter-
vention by vaccination and antibiotic treatment. Thus, the
compartmental model is consisting of susceptible, vacci-
nated, exposed, infectious, persistently infected, and recov-
ered classes, as shown in Figure 1. We assume an open
population, with a total number 𝑁 at time 𝑡, where all
newborn animals are born into susceptible class (𝑆) at rate𝑏. Susceptible cattle move to vaccinal immune class (𝑉) at
a rate 𝜌. Cattle in vaccinal immune class can lose vaccinal
immunity and return back to susceptible class at a rate𝜔. Susceptible animals move to the exposed compartment(𝐸) at a rate 𝛽(𝐼/𝑁). Cattle in the exposed compartment
move to the infectious compartment (𝐼) at a rate 𝛾. Natural
mortality occurs at a rate 𝜇 and results in losses from all six
compartments. However, we assume that death due to the
disease does not occur. The infectious cattle either naturally
heal or receive antibiotic treatment and enter directly into the
recovered (𝑅) compartment at a rate 𝛼𝑟 and 𝛼𝑡, respectively;

or they pass through a process of sequestration and enter
into persistently infected (𝑄) compartment at a rate 𝛼𝑞.
Cattle in persistently infected compartment are encapsulated
and infected, but not infectious. As sequestra resolve and/or
become noninfected, then the animals in persistently infected
compartment move to the recovered (𝑅) compartment at
a rate 𝜓. Recovered cattle remain recovered for life time.
Infected sequestra can occasionally be reactivated and in
this instance the animal will transition from the persistently
infected (𝑄) compartment back to the infectious (𝐼) compart-
ment at a rate 𝑘. We assume randommixing of all individuals
in the population. The total number of population at time 𝑡,𝑁, is given by𝑁 = 𝑆(𝑡) + 𝑉(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑄(𝑡) + 𝑅(𝑡). The
flow diagram of the model is shown in Figure 1.

The differential equationmodel is given by system (1)–(7)

𝑑𝑆𝑑𝑡 = 𝜇𝑁 + 𝜔𝑉 − 𝛽𝑆𝐼𝑁 − 𝜌𝑆 − 𝜇𝑆 (1)

𝑑𝑉𝑑𝑡 = 𝜌𝑆 − 𝜔𝑉 − 𝜇𝑉 (2)

𝑑𝐸𝑑𝑡 = 𝛽𝑆𝐼𝑁 − 𝛾𝐸 − 𝜇𝐸 (3)

𝑑𝐼𝑑𝑡 = 𝛾𝐸 + 𝑘𝑄 − (𝛼𝑟 + 𝛼𝑡) 𝐼 − 𝛼𝑞𝐼 − 𝜇𝐼 (4)

𝑑𝑄𝑑𝑡 = 𝛼𝑞𝐼 − 𝑘𝑄 − 𝜓𝑄 − 𝜇𝑄 (5)

𝑑𝑅𝑑𝑡 = (𝛼𝑟 + 𝛼𝑡) 𝐼 + 𝜓𝑄 − 𝜇𝑅. (6)

with initial condition

(𝑆 (0) , 𝑉 (0) , 𝐸 (0) , 𝐼 (0) , 𝑄 (0) , 𝑅 (0))
= (𝑆0, 𝑉0, 𝐸0, 𝐼0, 𝑄0, 𝑅0) . (7)

3. Well-Posedness of the System

Let𝑋(𝑡) = (𝑆(𝑡), 𝑉(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡)) and
𝑓 : Ω 󳨀→ Y

𝑋 󳨃󳨀→ 𝑋󸀠 (8)
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provided that Y ⊆ 𝑅6, Ω is a compact subset of 𝑅6 such
that Ω = {𝑥 = (𝑆(𝑡), 𝑉(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡)) ∈ 𝑅6 :𝑆(𝑡) + 𝑉(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑄(𝑡) + 𝑅(𝑡) ≤ 𝑁0 = 𝑁(0)}, and𝑓 = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6), where

𝑓1 (𝑋) = 𝑑𝑆𝑑𝑡 = 𝜇𝑁 + 𝜔𝑉 − 𝛽𝑆𝐼𝑁 − 𝜌𝑆 − 𝜇𝑆 (9)

𝑓2 (𝑋) = 𝑑𝑉𝑑𝑡 = 𝜌𝑆 − 𝜔𝑉 − 𝜇𝑉 (10)

𝑓3 (𝑋) = 𝑑𝐸𝑑𝑡 = 𝛽𝑆𝐼𝑁 − 𝛾𝐸 − 𝜇𝐸 (11)

𝑓4 (𝑋) = 𝑑𝐼𝑑𝑡 = 𝛾𝐸 + 𝑘𝑄 − (𝛼𝑟 + 𝛼𝑡) 𝐼 − 𝛼𝑞𝐼 − 𝜇𝐼 (12)

𝑓5 (𝑋) = 𝑑𝑄𝑑𝑡 = 𝛼𝑞𝐼 − 𝑘𝑄 − 𝜓𝑄 − 𝜇𝑄. (13)

𝑓6 (𝑋) = 𝑑𝑅𝑑𝑡 = (𝛼𝑟 + 𝛼𝑡) 𝐼 + 𝜓𝑄 − 𝜇𝑅. (14)

Then, (9)–(14) can be written of the form

𝑋󸀠 (𝑡) = 𝑓 (𝑋 (𝑡)) ;
𝑋 (0) = (𝑆0, 𝑉0, 𝐸0, 𝐼0, 𝑄0, 𝑅0) ∈ Ω. (15)

Theorem 1. System (1)–(6) has a unique solution X(t) which
is positive and bounded if 𝑓 is given by (15) and the initial
conditions𝑋(0) = (𝑆0, 𝑉0, 𝐸0, 𝐼0, 𝑄0, 𝑅0) is nonnegative.
Proof. See [10].

4. Equilibria and Control
Reproduction Number

4.1. Equilibria of the System

Proposition 2. Model (1)-(6) has at least two equilibrium
points, the disease free equilibrium, and at least one endemic
equilibrium.

Proof. The equilibria of the system are obtained by solving
equations:

𝑑𝑆𝑑𝑡 = 𝑑𝑉𝑑𝑡 = 𝑑𝐸𝑑𝑡 = 𝑑𝐼𝑑𝑡 = 𝑑𝑄𝑑𝑡 = 𝑑𝑅𝑑𝑡 = 0. (16)

From (9)–(14), we have

𝜇𝑁 + 𝜔𝑉 − 𝑆(𝛽𝐼𝑁 + 𝜌 + 𝜇) = 0 (17)

𝜌𝑆 − 𝑉 (𝜔 + 𝜇) = 0 (18)

𝛽𝑆𝐼𝑁 − 𝐸 (𝛾 + 𝜇) = 0 (19)

𝛾𝐸 + 𝑘𝑄 − 𝐼 (𝛼𝑟 + 𝛼𝑡 + 𝛼𝑞 + 𝜇) = 0 (20)

𝛼𝑞𝐼 − 𝑄 (𝑘 + 𝜓 + 𝜇) = 0 (21)

(𝛼𝑟 + 𝛼𝑡) 𝐼 + 𝜓𝑄 − 𝜇𝑅 = 0. (22)

From (21),

𝑄 = 𝛼𝑞𝐼
𝑘 ; where, 𝑘 = 𝑘 + 𝜓 + 𝜇. (23)

Putting (23) into (20) yields

𝐸 = (𝑘𝛼 − 𝑘𝛼𝑞) 𝐼
𝛾𝑘 ; where, 𝛼 = 𝛼𝑟 + 𝛼𝑡 + 𝛼𝑞 + 𝜇. (24)

And, putting (23) into (22), we find that

𝑅 = ((𝛼𝑟 + 𝛼𝑡) 𝑘 + 𝜓𝛼𝑞) 𝐼
𝜇𝑘 . (25)

Similarly, putting (24) into (19) gives

𝛽𝑆𝐼𝑁 − 𝛾 (𝑘𝛼 − 𝑘𝛼𝑞) 𝐼
𝛾𝑘 = 0. ⇐⇒ (26)

𝛽𝐼( 𝑆𝑁 − 𝛾 (𝑘𝛼 − 𝑘𝛼𝑞)
𝛽𝛾𝑘 ) = 0. (27)

Then, we have the following two cases for solution of (27).

Case 1. If 𝛾(𝑘𝛼−𝑘𝛼𝑞)/𝛽𝛾𝑘 ≥ 1, then 𝐼 = 0 is the only solution
of (27) and

Case 2. If 𝛾(𝑘𝛼 − 𝑘𝛼𝑞)/𝛽𝛾𝑘 < 1, then 𝐼 = 0 or 𝑆 = 𝛾(𝑘𝛼 −
𝑘𝛼𝑞)𝑁/𝛽𝛾𝑘 are the solutions of (27).
For Case 1, when 𝐼 = 0 = 𝐼0, let 𝑆 = 𝑆0, 𝑉 = 𝑉0, 𝐸 = 𝐸0, 𝑄 =𝑄0, and 𝑅 = 𝑅0 for (17)–(22). Then, from (23)–(25), we have

𝑄0 = 𝐸0 = 𝑅0 = 0. (28)

And, from (17) and (18),

𝑉0 = 𝜌𝑁𝜌 + 𝜔 (29)

and

𝑆0 = 𝜔𝑁𝜌 + 𝜔. (30)

Therefore, from (28)–(30), 𝑋0 = (𝑆0, 𝑉0, 𝐸0, 𝐼0, 𝑄0, 𝑅0) =(𝜔𝑁/(𝜌 + 𝜔), 𝜌𝑁/(𝜌 + 𝜔), 0, 0, 0, 0) is the disease free equi-
librium (DFE).

ForCase 2, we are donewhen 𝐼 = 0.And,when 𝑆 = 𝛾(𝑘𝛼−𝑘𝛼𝑞)𝑁/𝛽𝛾𝑘 = 𝑆∗, let 𝑉 = 𝑉∗, 𝐸 = 𝐸∗, 𝐼 = 𝐼∗, 𝑄 = 𝑄∗ and𝑅 = 𝑅∗ for (17)–(22). Then (18) gives that

𝑉∗ = 𝜌𝛾 (𝑘𝛼 − 𝑘𝛼𝑞)𝑁
𝜔𝛽𝛾𝑘 . (31)
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Finally, putting 𝑆∗ and 𝑉∗ into (17), we get
𝐼∗ = (𝛽𝛾𝑘𝜔 + 𝛾 (𝜌 + 𝜔) (𝑘𝛼 − 𝑘𝛼𝑞)) 𝜇𝑁

𝛽𝜔𝛾 (𝑘𝛼 − 𝑘𝛼𝑞) . (32)

Hence, 𝑋∗ = (𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗) is an endemic equilib-
rium (EE), where, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗ are as in (24), (32), (23), and
(25), respectively.

4.2. The Control Reproduction Number (R𝑐). Due to the
presence of control measures, we will use the term control
reproduction number (R𝑐) instead of the commonly used
basic reproduction number (R0). As explained in [12], we
use the next generation matrix to calculate the control repro-
duction number. Compartments 𝐸, 𝐼, and 𝑄 are considered
to be the disease compartments and 𝑆, 𝑉, and 𝑅 are the
nondisease compartments. We set F = (F1,F2,F3)𝑇 and
V = (V1,V2,V3)𝑇, where F𝑖 represents the rate of new
infections in the 𝑖𝑡ℎ disease compartment, V+𝑖 being the
transfer rate of individuals into compartment 𝑖 by all other
means whileV−𝑖 represents the transfer rate of individual out
of compartment 𝑖. Assuming𝑋0 to be the DFE, we have

F = [[[
[

𝛽𝑆𝐼𝑁0
0
]]]
]
,

V =V
− −V

+ = [[[
[

𝛾𝐸
𝛼𝐼 − 𝛾𝐸 − 𝑘𝑄
𝑘𝑄 − 𝛼𝑞𝐼

]]]
]
,

𝐹 = [𝜕F𝑖𝜕𝑥𝑗 (𝑋0)] =
[[[[
[

0 𝛽𝑆0𝑁 0
0 0 0
0 0 0

]]]]
]
,

𝑉 = [𝜕V𝑖𝜕𝑥𝑗 (𝑋0)] =
[[[
[

𝛾 0 0
−𝛾 𝛼 −𝑘
0 −𝛼𝑞 𝑘

]]]
]

and

𝑉−1 =
[[[[[[[[
[

1𝛾 0 0
𝛾𝑘

𝛾 (𝑘𝛼 − 𝑘𝛼𝑞)
𝑘

𝑘𝛼 − 𝑘𝛼𝑞
𝑘

𝑘𝛼 − 𝑘𝛼𝑞𝛼𝑞𝛾
𝛾 (𝑘𝛼 − 𝑘𝛼𝑞)

𝛼𝑞
𝑘𝛼 − 𝑘𝛼𝑞

𝛼
𝑘𝛼 − 𝑘𝛼𝑞

]]]]]]]]
]
.

(33)

Therefore,

𝐹𝑉−1

= 𝛽𝑆0𝑁
[[[[[
[

𝛾𝑘
𝛾 (𝑘𝛼 − 𝑘𝛼𝑞)

𝑘
𝑘𝛼 − 𝑘𝛼𝑞

𝑘
𝑘𝛼 − 𝑘𝛼𝑞0 0 0

0 0 0

]]]]]
]
. (34)

Therefore,R𝑐 = 𝜌(𝐹𝑉−1) = 𝑇/2+√(𝑇/2)2 − 𝐷, where𝑇 and𝐷 are trace and determinant of thematrix 𝐹𝑉−1. Since𝐷 = 0,
R𝑐 = 𝑇 = 𝛽𝜔𝜌 + 𝜔 ( 𝛾𝑘

𝛾 (𝑘𝛼 − 𝑘𝛼𝑞)) (35)

Equivalently,

R𝑐 = ( 𝜔𝜌 + 𝜔)(
𝑘 (𝛼 − 𝛼𝑡) − 𝑘𝛼𝑞

𝑘𝛼 − 𝑘𝛼𝑞 )R0, (36)

whereR0 = 𝛽𝛾𝑘/𝛾(𝑘(𝛼−𝛼𝑡) − 𝑘𝛼𝑞) is the basic reproduction
number as derived in [10] and 𝜔/(𝜌 + 𝜔) is the proportion of
cattle that survive the vaccination class and the control repro-
duction number, R𝑐, is the average number of secondary
cases caused by an infected individual over the course of
infectious period in the presence of vaccination and antibiotic
treatment. We observe thatR𝑐 <R0.

5. Stability Analysis

5.1. Stability Analysis of the Disease Free Equilibrium (DFE)

5.1.1. Local Stability Analysis of the DFE

Theorem 3 (see [12]). If 𝑋0 is a DFE of the model given by
(1)–(7), then 𝑋0 is locally asymptotically stable ifR𝑐 < 1, and
unstable ifR𝑐 > 1, whereR𝑐 is defined by (36).
Proof. See [12].

5.1.2. Global Stability Analysis of the DFE

Theorem4. IfR𝑐 < 1, then disease free equilibrium (𝜔𝑁/(𝜔+𝜌), 𝜌𝑁/(𝜔+𝜌), 0, 0, 0, 0) is globally asymptotically stable inΩ.
If R𝑐 > 1, then the DFE is unstable, the system is uniformly
persistent and there is at least one equilibrium in interior ofΩ, where Ω = {(𝑆, 𝑉, 𝐸, 𝐼, 𝑄, 𝑅) ∈ 𝑅6+ : 𝑆 ≥ 0, 𝑉 ≥ 0, 𝐸 ≥0, 𝐼 ≥ 0, 𝑄 ≥ 0, 𝑅 ≥ 0, 𝑆 + 𝑉 + 𝐸 + 𝐼 + 𝑄 + 𝑅 ≤ 𝑁0 =𝑁(0)}.
Proof. We use matrix-theoretic method as explained in [13].
We assume 𝑥 = (𝐸, 𝐼, 𝑄)𝑇 and 𝑦 = (𝑆, 𝑉, 𝑅)𝑇. And,
considering 𝐹, 𝑉, and 𝑉−1 as in Section 4.2, we set

𝑓 (𝑥, 𝑦) = (𝐹 − 𝑉) 𝑥 −F (𝑥, 𝑦) +V (𝑥, 𝑦)

= [[[[
[

𝛽𝑆0𝐼𝑁 − 𝛽𝑆𝐼𝑁0
0

]]]]
]
= 𝛽𝐼𝑁

[[[[
[

( 𝜔𝑁𝜔 + 𝜌 − 𝑆)0
0

]]]]
]
; (37)

where 𝑆0 = 𝜔𝑁/(𝜔 + 𝜌) is as in (30).
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And,

𝑉−1𝐹 = 𝛽𝑆0𝑁
[[[[[[[[
[

0 1𝛾 0
0 𝛾𝑘
𝛾 (𝑘𝛼 − 𝑘𝛼𝑞) 0

0 𝛼𝑞𝛾
𝛾 (𝑘𝛼 − 𝑘𝛼𝑞) 0

]]]]]]]]
]

(38)

= 𝛽𝜔𝜔 + 𝜌
[[[[[[[[
[

0 1𝛾 0
0 𝛾𝑘
𝛾 (𝑘𝛼 − 𝑘𝛼𝑞) 0

0 𝛼𝑞𝛾
𝛾 (𝑘𝛼 − 𝑘𝛼𝑞) 0

]]]]]]]]
]

(39)

= 𝛽𝛾𝜔𝛾 (𝜔 + 𝜌)
[[[[[[[[
[

0 1𝛾 0
0 𝑘
(𝑘𝛼 − 𝑘𝛼𝑞) 0

0 𝛼𝑞
(𝑘𝛼 − 𝑘𝛼𝑞) 0

]]]]]]]]
]

(40)

We observe that 𝐹 ≥ 0, 𝑉−1 ≥ 0, and 𝑓(𝑥, 𝑦) ≥ 0 when 𝜌 = 0
and𝑓(𝑥, (𝜔𝑁/(𝜔+𝜌), 𝜌𝑁/(𝜔+𝜌), 0)𝑇) = 0 inΩ. Sincematrix𝑉−1𝐹 is reducible, we use Theorem 2.1 of [13] to construct
a Lyapunov function. Let 𝜔𝑇 = (V1, V2, V3) ≥ 0 be the left
eigenvector of nonnegativematrix𝑉−1𝐹 corresponding to the
eigenvalueR𝑐. Then

(V1, V2, V3) 𝑉−1𝐹 = 𝑅𝑐 (V1, V2, V3) (41)

such that

(V1, V2, V3) 𝑉−1𝐹 = ( 𝛽𝜔𝛾(𝜔 + 𝜌) 𝛾) (0, 𝑥, 0) ; where, (42)

𝑥 = V1𝛾 + 𝑘V2(𝑘𝛼 − 𝑘𝛼𝑞) +
𝛼𝑞V3

(𝑘𝛼 − 𝑘𝛼𝑞) (43)

and

𝑅𝑐 (V1, V2, V3) = 𝛽𝜔𝛾(𝜔 + 𝜌) 𝛾 ( 𝑘
𝛼𝑘 − 𝑘𝛼𝑞)(V1, V2, V3) . (44)

Thus, from (41)-(44), we find that V1 = V3 = 0 and V2 ∈ 𝑅+.
Hence, 𝜔𝑇 = (0, V2, 0). By Theorem 2.1 of [13],

𝐿 = 𝜔𝑇𝑉−1𝑥
= V2( 𝛾𝑘𝐸

𝛾 (𝑘𝛼 − 𝑘𝛼𝑞) +
𝑘𝐼

𝑘𝛼 − 𝑘𝛼𝑞 +
𝑘𝑄

𝑘𝛼 − 𝑘𝛼𝑞)
(45)

is the Lyapunov function for the system when R𝑐 < 1.
Since 𝐿󸀠 = (R𝑐 − 1)𝜔𝑇𝑥 − 𝜔𝑇𝑉−1𝑓(𝑥, 𝑦) = 0 implies that𝑥 = 0 and 𝑦 = (𝜔𝑁/(𝜔 + 𝜌), 𝜌𝑁/(𝜔 + 𝜌), 0)𝑇, it follows that

(𝜔𝑁/(𝜔 + 𝜌), 𝜌𝑁/(𝜔 + 𝜌), 0, 0, 0, 0) is the only invariant set
in Ω when 𝑥 = 0 and 𝑦 = (𝜔𝑁/(𝜔 + 𝜌), 𝜌𝑁/(𝜔 + 𝜌), 0)𝑇.
Thus, by LaSalle’s invariance principle, the DFE (𝜔𝑁/(𝜔 +𝜌), 𝜌𝑁/(𝜔 + 𝜌), 0, 0, 0, 0) is globally asymptotically stable inΩ when R𝑐 < 1. If R𝑐 > 1, then 𝐿󸀠 > 0 for 𝑥 = 0 and𝑦 = (𝜔𝑁/(𝜔 + 𝜌), 𝜌𝑁/(𝜔 + 𝜌), 0)𝑇. Hence, by continuity,𝐿󸀠 > 0 in the neighbourhood of the DFE, implies that the
DFE is unstable whenR𝑐 > 1. Instability of the DFE implies
uniform persistence of (1)–(7). Uniform persistence and the
positive invariance of the compact set Ω imply the existence
of a unique EE of (1)–(7).

5.2. Global Stability Analysis of the Endemic Equilibrium (EE)

Theorem 5. If R𝑐 > 1, then the endemic equilibrium 𝑋∗
of (1)–(7) is unique and globally asymptotically stable in the
interior of Ω.
Proof. We use a graph-theoretic method as explained in [13].
Thus, for construction of a Lyapunov function, set 𝐷1 =𝑆 − 𝑆∗ − 𝑆∗ ln(𝑆/𝑆∗), 𝐷2 = 𝑉 − 𝑉∗ − 𝑉∗ ln(𝑉/𝑉∗), 𝐷3 =𝐸 − 𝐸∗ − 𝐸∗ ln(𝐸/𝐸∗), 𝐷4 = 𝐼 − 𝐼∗ − 𝐼∗ln(𝐼/𝐼∗), 𝐷5 =𝑄 − 𝑄∗ − 𝑄∗ln(𝑄/𝑄∗), and 𝐷6 = 𝑅 − 𝑅∗ − 𝑅∗ln(𝑅/𝑅∗).
And, putting (𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗) into (17)–(22), we find
that 𝜇𝑁 = 𝛽𝑆∗𝐼∗/𝑁 + 𝑆∗(𝜌 + 𝜇) − 𝜔𝑉∗, 𝜔 + 𝜇 = 𝜌𝑆∗/𝑉∗,𝛾 + 𝜇 = 𝛽𝑆∗𝐼∗/𝑁𝐸∗, 𝛼𝑟 + 𝛼𝑞 + 𝜇 = (𝛾𝐸∗ + 𝑘𝑄∗)/𝐼∗,𝑘+𝜓+𝜇 = 𝛼𝑞𝐼∗/𝑄∗, and 𝜇 = (𝛼𝑟𝐼∗ +𝜓𝑄∗)/𝑅∗. We use these
equalities and the inequality 1−𝑥+ ln 𝑥 ≤ 0 in differentiation
of𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5, and𝐷6, with respect to 𝑡, as follows:

𝐷󸀠1 = (1 − 𝑆∗𝑆 )(𝜇𝑁 + 𝜔𝑉 − 𝛽𝑆𝐼𝑁 − 𝑆 (𝜌 + 𝜇))
= (1 − 𝑆∗𝑆 )(𝛽𝑆

∗𝐼∗𝑁 + 𝑆∗ (𝜌 + 𝜇) − 𝜔𝑉∗ + 𝜔𝑉
− 𝛽𝑆𝐼𝑁 − 𝑆 (𝜌 + 𝜇)) = 𝜔𝑉∗ (1 − 𝑆∗𝑆 ) ( 𝑉𝑉∗ − 1)
+ 𝑆∗ (𝜌 + 𝜇) (1 − 𝑆∗𝑆 ) (1 − 𝑆𝑆∗ ) + 𝛽𝑆∗𝐼∗𝑁 (1
− 𝑆∗𝑆 ) (1 − 𝑆𝐼𝑆∗𝐼∗ ) = 𝜔𝑉∗ ( 𝑉𝑉∗ − 𝑆∗𝑉𝑆𝑉∗ + 𝑆∗𝑆
− 1) + (𝜌 + 𝜇) (𝜔 + 𝜇)𝑉∗

𝜌 (1 − S𝑆∗ − 𝑆∗𝑆 + 1)
+ 𝛽𝑆∗𝐼∗𝑁 (1 − 𝑆𝐼𝑆∗𝐼∗ − 𝑆∗𝑆 + 𝐼𝐼∗)
≤ (𝜌 + 𝜇) (𝜔 + 𝜇)𝑉∗𝜌 ( 𝑉𝑉∗ − 𝑆∗𝑉𝑆𝑉∗ − 𝑆𝑆∗ + 1)
+ 𝛽𝑆∗𝐼∗𝑁 (1 − 𝑆𝐼𝑆∗𝐼∗ − 𝑆∗𝑆 + 𝐼𝐼∗)
≤ (𝜌 + 𝜇) (𝜔 + 𝜇)𝑉∗𝜌 ( 𝑉𝑉∗ − 𝑆𝑆∗ − ln(𝑆∗𝑆 )
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Figure 2: The weighted digraph (𝐺, 𝐴) constructed for model (1)–(6).

− ln( 𝑉𝑉∗ )) + 𝛽𝑆∗𝐼∗𝑁 (1 − 𝑆𝐼𝑆∗𝐼∗ − 𝑆∗𝑆 + 𝐼𝐼∗)
š 𝑎12𝐺12 + 𝑎14𝐺14

𝐷󸀠2 = (1 − 𝑉∗𝑉 ) (𝜌𝑆 − (𝜔 + 𝜇)𝑉) = (1 − 𝑉∗𝑉 )(𝜌𝑆
− 𝜌𝑆∗𝑉𝑉∗ ) = 𝜌𝑆∗ (1 − 𝑉∗𝑉 )( 𝑆𝑆∗ − 𝑉𝑉∗ )
= 𝜌𝑆∗ ( 𝑆𝑆∗ − 𝑉𝑉∗ − 𝑉∗𝑆𝑉𝑆∗ + 1) ≤ 𝜌𝑆∗ ( 𝑆𝑆∗ − 𝑉𝑉∗
+ ln 𝑉𝑉∗ + ln 𝑆∗𝑆 ) š 𝑎21𝐺21

𝐷󸀠3 = (1 − 𝐸∗𝐸 )(𝛽𝑆𝐼𝑁 − (𝛾 + 𝜇) 𝐸) = (1 − 𝐸∗𝐸 )
⋅ (𝛽𝑆𝐼𝑁 − 𝛽𝑆∗𝐼∗𝐸𝑁𝐸∗ ) = (1 − 𝐸∗𝐸 )(𝛽𝑆∗𝐼∗𝑁 )( 𝑆𝐼𝑆∗𝐼∗
− 𝐸𝐸∗ ) = 𝛽𝑆∗𝐼∗𝑁 ( 𝑆𝐼𝑆∗𝐼∗ − 𝐸𝐸∗ − 𝐸∗𝑆𝐼𝐸𝑆∗𝐼∗ + 1)
≤ 𝛽𝑆∗𝐼∗𝑁 ( 𝑆𝐼𝑆∗𝐼∗ − 𝐸𝐸∗ + ln 𝐸𝐸∗ − ln 𝑆𝐼𝑆∗𝐼∗ )
= 𝛽𝑆∗𝐼∗𝑁 ( 𝑆𝐼𝑆∗𝐼∗ − ln 𝑆𝐼𝑆∗𝐼∗ − 𝐼𝐼∗ + ln 𝐼𝐼∗)
+ 𝛽𝑆∗𝐼∗𝑁 (− 𝐸𝐸∗ + ln 𝐸𝐸∗ + 𝐼𝐼∗ − ln 𝐼𝐼∗) š 𝑎31𝐺31
+ 𝑎34𝐺34

𝐷󸀠4 = (1 − 𝐼∗𝐼 ) (𝛾𝐸 + 𝑘𝑄 − 𝐼 (𝛼𝑟 + 𝛼𝑞 + 𝜇)) = (1
− 𝐼∗𝐼 )(𝛾𝐸 + 𝑘𝑄 − 𝐼 (𝛾𝐸∗ + 𝑘𝑄∗)

𝐼∗ ) = 𝛾𝐸∗ ( 𝐸𝐸∗
− 𝐼𝐼∗ − 𝐼∗𝐸𝐼𝐸∗ + 1) + 𝑘𝑄∗ ( 𝑄𝑄∗ − 𝐼𝐼∗ − 𝐼∗𝑄𝐼𝑄∗ + 1)
≤ 𝛾𝐸∗ ( 𝐸𝐸∗ − 𝐼𝐼∗ + ln 𝐼𝐼∗ − ln 𝐸𝐸∗ ) + 𝑘𝑄∗ ( 𝑄𝑄∗
− 𝐼𝐼∗ + ln 𝐼𝐼∗ − ln 𝑄𝑄∗) š 𝑎43𝐺43 + 𝑎45𝐺45

𝐷󸀠5 = (1 − 𝑄∗𝑄 ) (𝛼𝑞𝐼 − 𝑄 (𝑘 + 𝜓 + 𝜇)) = (1 − 𝑄∗𝑄 )

⋅ (𝛼𝑞𝐼 − 𝑄(𝛼𝑞𝐼
∗

𝑄∗ )) = 𝛼𝑞𝐼∗ ( 𝐼𝐼∗ − 𝑄𝑄∗ − 𝐼𝑄∗𝐼∗𝑄
+ 1) ≤ 𝛼𝑞𝐼∗ ( 𝐼𝐼∗ − 𝑄𝑄∗ + ln 𝑄𝑄∗ − ln 𝐼𝐼∗)
š 𝑎54𝐺54

𝐷󸀠6 = (1 − 𝑅∗𝑅 ) (𝛼𝑟𝐼 + 𝜓𝑄 − 𝜇𝑅) = (1 − 𝑅∗𝑅 )(𝛼𝑟𝐼

+ 𝜓𝑄 − 𝑅 (𝛼𝑟𝐼∗ + 𝜓𝑄∗)𝑅∗ ) = 𝛼𝑟𝐼∗ ( 𝐼𝐼∗ − 𝑅𝑅∗
− 𝑅∗𝐼𝑅𝐼∗ + 1) + 𝜓𝑄∗ ( 𝑄𝑄∗ − 𝑅𝑅∗ − 𝑅∗𝑄𝑅𝑄∗ + 1)
≤ 𝛼𝑟𝐼∗ ( 𝐼𝐼∗ − 𝑅𝑅∗ + ln 𝑅𝑅∗ − ln 𝐼𝐼∗ ) + 𝜓𝑄∗ ( 𝑄𝑄∗
− 𝑅𝑅∗ + ln 𝑅𝑅∗ − ln 𝑄𝑄∗) š 𝑎64𝐺64 + 𝑎65𝐺65

(46)

where 𝑎12 = ((𝜌 + 𝜇)(𝜔 + 𝜇)/𝜌)𝑉∗ = (𝜌 + 𝜇)𝑆∗, 𝑎14 = 𝑎31 =𝑎34 = 𝛽𝑆∗𝐼∗/𝑁, 𝑎21 = 𝜌𝑆∗, 𝑎43 = 𝛾𝐸∗, 𝑎45 = 𝑘𝑄∗, 𝑎54 = 𝛼𝑞𝐼∗,𝑎64 = 𝛼𝑟𝐼∗, 𝑎65 = 𝜓𝑄∗, and all other 𝑎𝑖𝑗 = 0 such that the
weight matrix is 𝐴 = [𝑎𝑖𝑗]6×6, where 𝑎𝑖𝑗 > 0 is the weight of
arc(𝑗, 𝑖). Thus, the associated weighted digraph (𝐺, 𝐴) for the
model given by system of (1)–(6) is presented in Figure 2.

Along each directed cycle, 𝐺12 + 𝐺21 = 0, 𝐺34 + 𝐺43 = 0,
and 𝐺45 + 𝐺54 = 0. Therefore, by Theorem 3.5 of [13], there
exists 𝑐𝑖, 1 ≤ 𝑖 ≤ 6, such that 𝑉 = ∑6𝑖=1 𝑐𝑖𝐷𝑖 is a Lyapunov
function for (1)–(6), where the relations between 𝑐𝑖’s can be
derived from Theorems 3.3 and 3.4 of [13] that 𝑑+(2) = 1
implies 𝑐1𝑎12 = 𝑐2𝑎21, 𝑑+(3) = 1 implies 𝑐4𝑎43 = 𝑐3(𝑎31 + 𝑎34),
and 𝑑−(5) = 1 implies 𝑐5𝑎54 = 𝑐4𝑎45 + 𝑐6𝑎65. Hence, 𝑐2 =(𝑎12/𝑎21)𝑐1, 𝑐4 = ((𝑎31 + 𝑎34)/𝑎43)𝑐3, and 𝑐6 = ((𝑎54𝑎43𝑐5 −𝑎45(𝑎31 + 𝑎34)𝑐3)/𝑎65𝑎43). And, 𝑉󸀠 = ∑6𝑖=1 𝑐𝑖𝐷󸀠𝑖 = 0 implies𝑋 = 𝑋∗. Hence the largest invariance set for (1)–(7) where𝑉󸀠 = 0 is the singleton set {𝑋∗}.

Thus, proving uniqueness and global asymptotic stability
of X∗ in interior ofΩ provided thatR𝑐 > 1.
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Table 1: Description of model parameters and their values, indicating baselines, ranges, and references. Units are days−1 unless otherwise
defined. ∗Proportions.

Parameter Description Baseline value Value range and
references

𝛽 Effective contact rate 0.126 0.07 to 0.13 [11]
𝑝𝑒 Vaccination efficacy∗ 0.65 0.5 to 0.8 [11]
𝑝V Proportion vaccinated∗ 0.5 [11]
𝜖 Vaccination efficiency∗ 0.8 [11]
𝑝 Proportion immunized∗ 𝜖 × 𝑝V × 𝑝𝑒 [11]

𝜌 Rate of vaccination
𝑝73days assumed

𝜔 Rate of loss of vaccinal immunity 13 × 365 0.00078 to 0.0011 [11]
𝛾 Transition rate from exposed to infectious compartment 16 × 7 18 × 7 to 14 × 7 [11]

𝛼𝑟 Natural recovery rate of infectious cattle 14 × 56 14 × 142 to 14 × 170 [11]

𝛼𝑞 Rate of sequestrum formation of infectious cattle 3𝛼𝑟 [11]

𝛼𝑡 Rate of recovery of treated cattle 128 − 156
128 − 142 to 128 − 170

assumed

𝑘 Rate of sequestrum reactivation 0.00009 0.00007 − 0.00011[11]
𝜓 Rate of sequestrum resolution 0.0075 0.0068 to 0.0079 [11]
𝜇 Mortality rate 15 × 365

16 × 365 to 14.5 × 365
[11] and estimated

guess

𝑏 Birth rate 15 × 365
16 × 365 to 14.5 × 365

[11] and estimated

6. Parameter Values and
Numerical Simulations

6.1. Parameter Values. Most of the parameter values used in
this paper are explained in Table 1, Sections 2.2 and 2.3 of [14],
and Table 1 of [1]. We assume that the life expectancy of cattle
is in average 5 years, then the value of 𝜇 and 𝑏 is taken to be1/(5 × 365), 𝛽 = 0.126, the incubation period between 4 and8 weeks with mean value of 6 weeks yields 𝛾 = 1/(6 × 7),
without applying antibiotic treatment, the infection period
is between 6 and 10 weeks with mean value of 8 weeks and𝛼𝑞 = 3𝛼𝑟, then𝛼𝑟 = 1/(4×56), the persistently infected period
given in a range of 18–21 weeks with an average period of19 weeks with 4months × 2 reactivations per month for 582
cases gives 𝑘 = 0.0009 and𝜓 = 0.0075, the rate of vaccination,𝜌 = 𝜖𝑝V𝑝𝑒/𝑡, where 𝜖 is the efficiency of vaccine, 𝑝V is the
proportion vaccinated, 𝑝𝑒 is efficacy of the vaccine, and 𝑡 is
the period of vaccination and vaccinal immunity lasts for 3

years which implies that 𝜔 = 1/(3×365). When we introduce
antibiotic treatment at a rate of 𝛼𝑡, the period of infection
(56 days) will be reduced to some new period 𝑃 such that𝛼𝑟 + 𝛼𝑡 + 𝛼𝑞 = 1/𝑃 implies 𝛼𝑡 = 1/𝑃 − 1/56. Since R𝑐 = 1
acts as a sharp threshold between the disease dying out or
causing an epidemic, we find that the threshold of antibiotic
treatment is given by 𝛼∗𝑡 = 𝛽𝛾(R0 − 1)/(𝛾 + 𝜇)R0 = 0.1049,
where R0 is the basic reproduction number as in [10]. This
implies that, without using vaccination, more than 85.45% of
the infectious cattle should receive antibiotic treatment or the
period of infection should be reduced to less than 8.15 days
to control the disease. And, threshold of vaccination is also
given by 𝜌∗ = (𝜖 × 𝑝V × 𝑝𝑒)/𝑡 = (𝜔 + 𝜇)(R0 − 1) = 0.0084,
where 𝑡 is period of vaccination, which can be interpreted
that at least 80% of susceptible cattle should get vaccination
in less than 49.5 days in order to control the disease; however,
since the proportion to be vaccinate 𝑝V depends on 𝑡, a single
value of 𝜌 can have many practical interpretation. For the last
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Figure 3: Number of cattle in each compartment for parameter
values in Table 1 with 𝛼𝑟 = 1/56 (as in [10]) and 𝐼0 = 1, 𝑆0 =499, 𝐸0 = 𝑄0 = 𝑅0 = 0, giving approximate equilibrium values𝑆∗ = 127, 𝐸∗ = 12, 𝐼∗ = 9, 𝑄∗ = 15, 𝑅∗ = 337, andR0 = 3.9399.

option, in applying both vaccination and antibiotic treatment,
the threshold value of vaccination depends on the rate of
antibiotic treatment, 𝛼𝑡, and is given by 𝜌𝛼

𝑡

= (𝜔 + 𝜇)(((𝑘(𝛼 −
𝛼𝑡) − 𝑘𝛼𝑞)/(𝑘𝛼 − 𝑘𝛼𝑞))R0 − 1). Thus, if we introduce both
antibiotic treatment and vaccination in the population such
that 50% of infectious cattle receive antibiotic treatment or
the period of infection is reduced to 28 days, then at least50% of susceptible cattle should get vaccination in less than
73.8 days in order to control the disease. Mathematically, it
means that, for 𝛼𝑡 = 1/28 − 1/56 = 1/56, we should take 𝜌 =(0.65 × 0.5 × 0.8)/73 to makeR𝑐 < 1, to control the disease.
Parameter values considering both antibiotic treatment and
vaccination are summarized in Table 1.

(i) All parameter values used in this paper and in [10] are
the same except the value of 𝛼𝑟 which is taken in [10]
as 1/56 instead of 1/(4 × 56).

6.2. Numerical Simulations. Initially we consider a herd size
of 500 cattle population which is consisting of an infectious
cattle and 499 susceptible cattle with individual animals as the
epidemiological units of interest. For the same assumption
and parametric values, the result obtained in this paper
coincides with the result obtained in [10]; in this case, R0 =3.9399 as shown in Figure 3. Using parameter values in
Table 1,model (1)-(6) is numerically solved. If no intervention
is considered, the population goes extinct withR0 = 6.7462
as shown in Figure 4. Figures 5 and 6 show the number of
cattle in each compartment when we consider intervention
by antibiotic treatment without vaccination and vice versa,
respectively; in both cases, R𝑐 < 1. Lastly, considering both
antibiotic treatment and vaccination, the number of cattle in
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Figure 4: Number of cattle in each compartment with baseline
parameter values in Table 1 with 𝜌 = 𝛼𝑡 = 0, 𝐼0 = 1, 𝑆0 = 499, and𝑉0 = 𝐸0 = 𝑇0 = 𝑄0 = 𝑅0 = 0, giving approximate equilibrium values𝑆∗ = 74, 𝐸∗ = 10, 𝐼∗ = 12, 𝑄∗ = 21, 𝑅∗ = 383, andR0 = 6.7462.
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Figure 5: Number of cattle in each compartment with baseline
parameter values in Table 1 with the assumption that 85.7% of
infectious cattle receive antibiotic treatment within 8 days (𝛼𝑡 =1/8 − 1/56) without vaccinating healthy cattle (𝜌 = 0), 𝐼0 = 1,𝑆0 = 499, and 𝑉0 = 𝐸0 = 𝑄0 = 𝑅0 = 0, giving approximate
equilibrium values 𝑆∗ = 498, 𝐸∗ = 𝐼∗ = 𝑄∗ = 0, 𝑅∗ = 2, and
R𝑐 = 0.9822.
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Figure 6: Number of cattle in each compartment with baseline
parameter values in Table 1 with the assumption that 80% of
susceptible cattle are vaccinated within 49 days (𝜌 = (0.65 ∗ 0.8 ∗0.8)/49) without treating infectious cattle (𝛼𝑡 = 0), 𝐼0 = 1, 𝑆0 = 499,
and 𝑉0 = 𝐸0 = 𝑄0=𝑅0 = 0, giving approximate equilibrium values𝑆∗ = 73, 𝑉∗ = 421, 𝐸∗ = 𝐼∗ = 𝑄∗ = 0, 𝑅∗ = 6, andR𝑐 = 0.9906.

each compartment at time 𝑡 is plotted in Figure 7; in this case,
R𝑐 = 0.99213 for parametric values in Table 1.

7. Conclusion and Remarks

In this paper we presented compartmental model and differ-
ential equations for the transmission dynamics of CBPP with
intervention.We calculated the equilibriumof the system and
to study the behaviour of the disease, we derived a formula
for the control reproduction numberR𝑐. We proved that, for
R𝑐 < 1, the DFE is globally asymptotically stable, thus CBPP
dies out, whereas forR𝑐 > 1, the EE is globally asymptotically
stable and hence the disease persists in all the populations.
Hence R𝑐 = 1 acts as a sharp threshold between the disease
dying out or causing an epidemic. Without considering any
intervention, the model in this paper coincides with the
model studied in [10]; in both papers, R0 = 3.9399 when𝛼𝑟 = 1/56; see Figure 3. Similarly, when 𝛼𝑟 = 1/(4 ×56), which is the right value, and without any intervention,
R0 = 6.7462; see Figure 4. Hence, without any intervention
the disease persists in all the population. However, we can
control the disease by giving antibiotic treatment to 85.7%
of infectious cattle, without vaccinating any of healthy cattle;
see Figure 5. As a second option, we can also control the
disease by vaccinating 80% of susceptible cattle within a
period of 49 days, without treating any of infectious cattle;
see Figure 6. Finally, for parametric values in Table 1, with
the assumption that 50% of susceptible are vaccinated within
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Figure 7: Number of cattle in each compartment with baseline
parameter values in Table 1 with the assumption that 50% of infec-
tious cattle receive antibiotic treatment or the period of infection
is reduced to 28 days (𝛼𝑡 = 1/28 − 1/56), 50% of susceptible get
vaccinationwithin 73 days (𝜌 = (0.5×0.8×0.65)/73), 𝐼0 = 1, 𝑆0 = 499
and 𝑉0 = 𝐸0 = 𝑇0 = 𝑄0 = 𝑅0 = 0, giving approximate equilibrium
values 𝑆∗ = 144, 𝑉∗ = 350, 𝐸∗ = 𝐼∗ = 𝑄∗ = 0, 𝑅∗ = 6, and
R𝑐 = 0.9921.

a period of 73 days and 50% of infectious cattle are treated,
R𝑐 can be made less than one and hence we can control
the disease; see Figure 7. In all the above three intervention
methods,R𝑐 < 1 and hence the disease can be controlled by
properly applying the methods as explained above; however,
due to lack of awareness, time, and financial and logistic
constraint, the first two methods do not look feasible in the
context of developing countries. Therefore, we recommend
that vaccination with antibiotic treatment is the best way to
control the disease which is in agreement with the result
of [1]. Since the proportion to be vaccinated 𝑝V and 𝑡 are
independent variables of 𝜌, a given value of 𝜌 can have many
practical interpretation. Therefore, practical implementation
of the value of 𝜌 can be adjusted based on availability, cost of
control, and time value.

Data Availability

Data are available in the literature.
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