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Copyright © 2018 Adnane Boukhouima et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In this paper, we study the dynamics of a viral infectionmodel formulated by five fractional differential equations (FDEs) to describe
the interactions between host cells, virus, and humoral immunity presented by antibodies. The infection transmission process is
modeled by Hattaf-Yousfi functional response which covers several forms of incidence rate existing in the literature.We first show
that the model is mathematically and biologically well-posed. By constructing suitable Lyapunov functionals, the global stability
of equilibria is established and characterized by two threshold parameters. Finally, some numerical simulations are presented to
illustrate our theoretical analysis.

1. Introduction

The immune response plays an important role to control the
dynamics of viral infections such as human immunodefi-
ciency virus (HIV), hepatitis B virus (HBV), hepatitis C virus
(HCV), and human T-cell leukemia virus (HTLV).Therefore,
many mathematical models have been developed to incorpo-
rate the role of immune response in viral infections. Some
of these models considered the cellular immune response
mediated by cytotoxic T lymphocytes (CTL) cells that attack
and kill the infected cells [1–5] and the others considered the
humoral immune response based on the antibodies which are
produced by the B-cells and are programmed to neutralize
the viruses [6–11]. However, all these models have been
formulated by using ordinary differential equations (ODEs)
in which the memory effect is neglected while the immune
response involves memory [12, 13].

Fractional derivative is a generalization of integer deriva-
tive and it is a suitable tool to model real phenomena with
memory which exists in most biological systems [14–16].The
fractional derivative is a nonlocal operator in contrast to
integer derivative. This means that if we want to compute
the fractional derivative at some point 𝑡 = 𝑡1, it is necessary

to take into account the entire history from the starting
point 𝑡 = 𝑡0 up to the point 𝑡 = 𝑡1. For these reasons,
modeling some real process by using fractional derivative has
drawn attention of several authors in various fields [17–22].
In biology, it has been shown that the fractional derivative
is useful to analyse the rheological proprieties of cells [23].
Furthermore, it has been deduced that the membranes of
cells of biological organism have fractional order electrical
conductance [24]. Recently, much works have been done on
modeling the dynamics of viral infections with FDEs [25–31].
These works ignored the impact of the immune response and
the majority of them deal only with the local stability.

In some viral infections, the humoral immune response
is more effective than cellular immune response [32]. For
this reason, we improve the above ODE and FDE models by
proposing a new fractional order model that describes the
interactions between susceptible host cells, viral particles, and
the humoral immune response mediated by the antibodies;
that is,

𝐷𝛼𝑥 (𝑡) = 𝜆 − 𝑑𝑥 − 𝑓 (𝑥, V) V + 𝜌𝑙,𝐷𝛼𝑙 (𝑡) = 𝑓 (𝑥, V) V − (𝑚 + 𝜌 + 𝛾) 𝑙,
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𝐷𝛼𝑦 (𝑡) = 𝛾𝑙 − 𝑎𝑦,𝐷𝛼V (𝑡) = 𝑘𝑦 − 𝜇V − 𝑞V𝑤,𝐷𝛼𝑤 (𝑡) = 𝑔V𝑤 − ℎ𝑤,
(1)

where 𝑥(𝑡), 𝑙(𝑡), 𝑦(𝑡), V(𝑡), and 𝑤(𝑡) are the concentrations
of susceptible host cells, latently infected cells (infected
cells which are not yet able to produce virions), productive
infected cells, free virus particles, and antibodies at time𝑡, respectively. Susceptible host cells are assumed to be
produced at a constant rate 𝜆, die at the rate 𝑑𝑥, and become
infected by virus at the rate 𝑓(𝑥, V)V. Latently infected cells
die at the rate 𝑚𝑙 and return to the uninfected state by loss
of all covalently closed circular DNA (cccDNA) from their
nucleus at the rate 𝜌𝑙. Productive infected cells are produced
from latently infected cells at the rate 𝛾𝑙 and die at the rate 𝑎𝑦.
Free virus particles are produced from productive infected
cells at the rate 𝑘𝑦, cleared at the rate 𝜇V, and are neutralized
by antibodies at the rate 𝑞V𝑤. Antibodies are activated against
virus at the rate 𝑔V𝑤 and die at the rate ℎ𝑤.

In system (1),𝐷𝛼 represents the Caputo fractional deriva-
tive of order 𝛼 defined for an arbitrary function 𝜑 by

𝐷𝛼𝜑 (𝑡) = 1Γ (1 − 𝛼) ∫𝑡0 𝜑󸀠 (𝑢)(𝑡 − 𝑢)𝛼 𝑑𝑢, (2)

with 0 < 𝛼 ≤ 1 [33]. Further, the infection transmission
process in (1) ismodeled byHattaf-Yousfi functional response
[34] which was recently used in [35, 36] and has the form𝑓(𝑥, V) = 𝛽𝑥/(𝛼0 + 𝛼1𝑥 + 𝛼2V + 𝛼3𝑥V), where 𝛼0, 𝛼1, 𝛼2, 𝛼3 ≥0 are the saturation factors measuring the psychological
or inhibitory effect and 𝛽 > 0 is the infection rate. In
addition, this functional response generalizes many common
types existing in the literature such as the specific functional
response proposed by Hattaf et al. in [37] and used in [2,
31] when 𝛼0 = 1; the Crowley-Martin functional response
introduced in [38] and used in [39] when 𝛼0 = 1 and 𝛼3 =𝛼1𝛼2; and the Beddington-DeAngelis functional response
proposed in [40, 41] and used in [3, 4, 10] when 𝛼0 = 1 and𝛼3 = 0. Also, theHattaf-Yousfi functional response is reduced
to the saturated incidence rate used in [9] when 𝛼0 = 1 and𝛼1 = 𝛼3 = 0 and the standard incidence function used in [27]
when 𝛼0 = 𝛼3 = 0 and 𝛼1 = 𝛼2 = 1, and it was simplified
to the bilinear incidence rate used in [5, 6] when 𝛼0 = 1 and𝛼1 = 𝛼2 = 𝛼3 = 0.

On the other hand, system (1) becomes a model with
ODEs when 𝛼 = 1, which improves and generalizes the
ODEmodel with bilinear incidence rate [42], the ODEmodel
with saturated incidence rate [43], and the ODE model with
specific functional response [44].

The rest of the paper is organized as follows. The next
section deals with some basic proprieties of the solutions and
the existence of equilibria. The global stability of equilibria
is established in Section 3. To verify our theoretical results,
we provide some numerical simulations in Section 4, and we
conclude in Section 5.

2. Basic Properties and Equilibria

In this section, we will show that ourmodel is well-posed and
we discuss the existence of equilibria.

Since system (1) describes the evolution of cells, then
we need to prove that the cell numbers should remain
nonnegative and bounded. For biological considerations, we
assume that the initial conditions of (1) satisfy

𝑥 (0) ≥ 0,
𝑙 (0) ≥ 0,
𝑦 (0) ≥ 0,
V (0) ≥ 0,
𝑤 (0) ≥ 0.

(3)

Then we have the following result.

Theorem 1. Assume that the initial conditions satisfy (3).Then
there exists a unique solution of system (1) defined on [0, +∞).
Moreover, this solution remains nonnegative and bounded for
all 𝑡 ≥ 0.
Proof. First, system (1) can be written as follows:

𝐷𝛼𝑋(𝑡) = 𝐹 (𝑋) , (4)

where

𝑋(𝑡) =(((
(

𝑥(𝑡)𝑙 (𝑡)𝑦 (𝑡)
V (𝑡)𝑤 (𝑡)

)))
)

and 𝐹 (𝑋) =(((
(

𝜆− 𝑑𝑥 − 𝑓 (𝑥, V) V + 𝜌𝑙𝑓 (𝑥, V) V − (𝑚 + 𝜌 + 𝛾) 𝑙𝛾𝑙 − 𝑎𝑦𝑘𝑦 − 𝜇V − 𝑞V𝑤𝑔V𝑤 − ℎ𝑤
)))
)

.
(5)

It is important to note that when 𝛼 = 1, (4) becomes a
system with ODEs. In this case, we refer the reader to [45] for
the existence of solutions and to the works [46–50] for the
stability of equilibria. In the case of FDEs, we will use Lemma
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2.4 in [31] to prove the existence and uniqueness of solutions.
Hence, we put

𝜁 =((
(

𝜆0000
))
)

,

𝐴 =((
(

−𝑑 𝜌 0 0 00 − (𝑚 + 𝜌 + 𝛾) 0 0 00 𝛾 −𝑎 0 00 0 𝑘 −𝜇 00 0 0 0 −ℎ
))
)

and 𝐶 =((
(

0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 −𝑞0 0 0 0 𝑔
))
)

.

(6)

We discuss four cases:

(i) If 𝛼0 ̸= 0, 𝐹(𝑋) can be formulated as follows:

𝐹 (𝑋) = 𝜁 + 𝐴𝑋 + 𝛼0𝛼0 + 𝛼1𝑥 + 𝛼2V + 𝛼3𝑥VV𝐵0𝑋+ V𝐶𝑋, (7)

where

𝐵0 =((((
(

− 𝛽𝛼0 0 0 0 0𝛽𝛼0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0
))))
)

. (8)

Hence,

‖𝐹 (𝑋)‖ ≤ 󵄩󵄩󵄩󵄩𝜁󵄩󵄩󵄩󵄩 + (‖𝐴‖ + ‖V‖ (󵄩󵄩󵄩󵄩𝐵0󵄩󵄩󵄩󵄩 + ‖𝐶‖)) ‖𝑋‖ . (9)

(ii) If 𝛼1 ̸= 0, we can write 𝐹(𝑋) in the form

𝐹 (𝑋) = 𝜁 + 𝐴𝑋 + 𝛼1𝑥𝛼0 + 𝛼1𝑥 + 𝛼2V + 𝛼3𝑥V𝐵1𝑋+ V𝐶𝑋, (10)

where

𝐵1 =((((
(

0 0 0 − 𝛽𝛼1 0
0 0 0 𝛽𝛼1 00 0 0 0 00 0 0 0 00 0 0 0 0

))))
)

. (11)

Moreover, we get

‖𝐹 (𝑋)‖ ≤ 󵄩󵄩󵄩󵄩𝜁󵄩󵄩󵄩󵄩 + (‖𝐴‖ + 󵄩󵄩󵄩󵄩𝐵1󵄩󵄩󵄩󵄩 + ‖V‖ ‖𝐶‖) ‖𝑋‖ . (12)

(iii) If 𝛼2 ̸= 0, we have
𝐹 (𝑋) = 𝜁 + 𝐴𝑋 + 𝛼2V𝛼0 + 𝛼1𝑥 + 𝛼2V + 𝛼3𝑥V𝐵2𝑋+ V𝐶𝑋, (13)

where

𝐵2 =((((
(

− 𝛽𝛼2 0 0 0 0𝛽𝛼2 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0
))))
)

. (14)

Further, we obtain

‖𝐹 (𝑋)‖ ≤ 󵄩󵄩󵄩󵄩𝜁󵄩󵄩󵄩󵄩 + (‖𝐴‖ + 󵄩󵄩󵄩󵄩𝐵2󵄩󵄩󵄩󵄩 + ‖V‖ ‖𝐶‖) ‖𝑋‖ . (15)

(iv) If 𝛼3 ̸= 0, we have
𝐹 (𝑋) = 𝜁 + 𝐴𝑋 + 𝛼3𝑥V𝛼0 + 𝛼1𝑥 + 𝛼2V + 𝛼3𝑥V𝐵3 + V𝐶𝑋, (16)

where

𝐵3 =((((
(

− 𝛽𝛼3𝛽𝛼3000
))))
)

. (17)

Then

‖𝐹 (𝑋)‖ ≤ (󵄩󵄩󵄩󵄩𝜁󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐵3󵄩󵄩󵄩󵄩) + (‖𝐴‖ + ‖V‖ ‖𝐶‖) ‖𝑋‖ . (18)
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Hence, the conditions of Lemma 2.4 in [31] are verified. Then
system (1) has a unique solution on [0, +∞). Now, we show
the nonnegativity of solutions. By (1), we have𝐷𝛼𝑥 (𝑡)󵄨󵄨󵄨󵄨𝑥=0 = 𝜆 + 𝜌𝑙 ≥ 0,𝐷𝛼𝑙 (𝑡)󵄨󵄨󵄨󵄨𝑙=0 = 𝑓 (𝑥, V) V ≥ 0,𝐷𝛼𝑦 (𝑡)󵄨󵄨󵄨󵄨𝑦=0 = 𝛾𝑙 ≥ 0,𝐷𝛼V (𝑡)󵄨󵄨󵄨󵄨V=0 = 𝑘𝑦 ≥ 0,𝐷𝛼𝑤 (𝑡)󵄨󵄨󵄨󵄨𝑤=0 = 0 ≥ 0.

(19)

As in [31, Theorem 2.7], we deduce that the solution of (1) is
nonnegative.

Finally, we prove the boundedness of solutions. We define
the function𝑇 (𝑡) = 𝑥 (𝑡) + 𝑙 (𝑡) + 𝑦 (𝑡) + 𝑎2𝑘V (𝑡) + 𝑎𝑞2𝑘𝑔𝑤 (𝑡) . (20)

Then, we have𝐷𝛼𝑇 (𝑡) = 𝐷𝛼𝑥 (𝑡) + 𝐷𝛼𝑙 (𝑡) + 𝐷𝛼𝑦 (𝑡) + 𝑎2𝑘𝐷𝛼V (𝑡)+ 𝑎𝑞2𝑘𝑔𝐷𝛼𝑤 (𝑡)
= 𝜆 − 𝑑𝑥 (𝑡) − 𝑚𝑙 (𝑡) − 𝑎2𝑦 (𝑡) − 𝑎𝜇2𝑘 V (𝑡)
− 𝑎𝑞ℎ2𝑘𝑔𝑤 (𝑡) ≤ 𝜆 − 𝛿𝑇 (𝑡) ,

(21)

where 𝛿 = min{𝑑,𝑚, 𝑎/2, 𝜇, ℎ}. Thus, we obtain

𝑇 (𝑡) ≤ 𝑇 (0) 𝐸𝛼 (−𝛿𝑡𝛼) + 𝜆𝛿 [1 − 𝐸𝛼 (−𝛿𝑡𝛼)] . (22)

Since 0 ≤ 𝐸𝛼(−𝛿𝑡𝛼) ≤ 1, we get𝑇 (𝑡) ≤ 𝑇 (0) + 𝜆𝛿 . (23)

This completes the proof.

Now, we discuss the existence of equilibria. It is clear
that system (1) has always an infection-free equilibrium𝐸0(𝜆/𝑑, 0, 0, 0, 0). Then the basic reproduction number of (1)
is as follows:

𝑅0 = 𝑘𝛽𝜆𝛾𝑎𝜇 (𝑚 + 𝜌 + 𝛾) (𝑑𝛼0 + 𝜆𝛼1) . (24)

To find the other equilibria, we solve the following system:𝜆 − 𝑑𝑥 − 𝑓 (𝑥, V) V + 𝜌𝑙 = 0, (25)𝑓 (𝑥, V) V − (𝑚 + 𝜌 + 𝛾) 𝑙 = 0, (26)𝛾𝑙 − 𝑎𝑦 = 0, (27)𝑘𝑦 − 𝜇V − 𝑞V𝑤 = 0, (28)𝑔V𝑤 − ℎ𝑤 = 0. (29)

From (29), we get 𝑤 = 0 or V = ℎ/𝑔. Then we discuss two
cases.

If 𝑤 = 0, by (25)-(28), we have 𝑙 = (𝜆 − 𝑑𝑥)/(𝑚 + 𝛾),𝑦 = 𝛾(𝜆 − 𝑑𝑥)/𝑎(𝑚 + 𝛾), V = 𝑘𝛾(𝜆 − 𝑑𝑥)/𝑎𝜇(𝑚 + 𝛾), and
𝑓(𝑥, 𝑘𝛾 (𝜆 − 𝑑𝑥)𝑎𝜇 (𝑚 + 𝛾) ) = 𝑎𝜇 (𝑚 + 𝜌 + 𝛾)𝑘𝛾 . (30)

Since 𝑙 ≥ 0, 𝑦 ≥ 0, and V ≥ 0, then 𝑥 ≤ 𝜆/𝑑. Consequently,
there is no equilibrium when 𝑥 > 𝜆/𝑑.

We define the function ℎ1 on [0, 𝜆/𝑑] by
ℎ1 (𝑥) = 𝑓(𝑥, 𝑘𝛾 (𝜆 − 𝑑𝑥)𝑎𝜇 (𝑚 + 𝛾) ) − 𝑎𝜇 (𝑚 + 𝜌 + 𝛾)𝑘𝛾 . (31)

We have ℎ1(0) = −𝑎𝜇(𝑚 + 𝜌 + 𝛾)/𝑘𝛾 < 0, ℎ󸀠1(𝑥) = 𝜕𝑓/𝜕𝑥 −(𝑘𝛾𝑑/𝑎𝜇(𝑚 + 𝛾))(𝜕𝑓/𝜕V) > 0, and ℎ1(𝜆/𝑑) = (𝑎𝜇(𝑚 + 𝜌 +𝛾)/𝑘𝛾)(𝑅0 − 1).
Hence if 𝑅0 > 1, (30) has a unique root 𝑥1 ∈ (0, 𝜆/𝑑).

As a result, when 𝑅0 > 1 there exists an equilibrium𝐸1(𝑥1, 𝑙1, 𝑦1, V1, 0) satisfying 𝑥1 ∈ (0, 𝜆/𝑑), 𝑙1 = (𝜆−𝑑𝑥1)/(𝑚+𝛾),𝑦1 = 𝛾(𝜆−𝑑𝑥1)/𝑎(𝑚+𝛾), and V1 = 𝑘𝛾(𝜆−𝑑𝑥1)/𝑎𝜇(𝑚+𝛾).
If 𝑤 ̸= 0, then V = ℎ/𝑔. By (25)-(27), we obtain 𝑙 = (𝜆 −𝑑𝑥)/(𝑚+𝛾),𝑦 = 𝛾(𝜆−𝑑𝑥)/𝑎(𝑚+𝛾),𝑤 = 𝑘𝛾𝑔(𝜆−𝑑𝑥)/𝑎𝑞ℎ(𝑚+𝛾) − 𝜇/𝑞, and

𝑓(𝑥, ℎ𝑔) = 𝑔 (𝑚 + 𝜌 + 𝛾)ℎ (𝑚 + 𝛾) (𝜆 − 𝑑𝑥) . (32)

Since 𝑙 ≥ 0, 𝑦 ≥ 0, and 𝑤 ≥ 0, we have 𝑥 ≤ 𝜆/𝑑 − 𝑎ℎ𝜇(𝑚 +𝛾)/𝑑𝑘𝑔𝛾. Hence, there is no equilibrium if 𝑥 > 𝜆/𝑑−𝑎ℎ𝜇(𝑚+𝛾)/𝑑𝑘𝑔𝛾.
We define the function ℎ2 on [0, 𝜆/𝑑− 𝑎ℎ𝜇(𝑚+𝛾)/𝑑𝑘𝑔𝛾]

by

ℎ2 (𝑥) = 𝑓(𝑥, ℎ𝑔) − 𝑔 (𝑚 + 𝜌 + 𝛾)ℎ (𝑚 + 𝛾) (𝜆 − 𝑑𝑥) . (33)

We have ℎ2(0) = −𝑔𝜆(𝑚 + 𝜌 + 𝛾)/ℎ(𝑚 + 𝛾) < 0, ℎ󸀠2(𝑥) =𝜕𝑓/𝜕𝑥 + 𝑔𝑑(𝑚 + 𝜌 + 𝛾)/ℎ(𝑚 + 𝛾) > 0, and ℎ2(𝜆/𝑑 − 𝑎ℎ𝜇(𝑚 +𝛾)/𝑑𝑘𝑔𝛾) = ℎ1(𝜆/𝑑 − 𝑎ℎ𝜇(𝑚 + 𝛾)/𝑑𝑘𝑔𝛾).
Let us introduce the reproduction number for humoral

immunity as follows:

𝑅1 = 𝑔V1ℎ , (34)

which 1/ℎ denotes the average life expectancy of antibodies
and V1 is the number of free viruses at 𝐸1. For the biological
significance, 𝑅1 represents the average number of the anti-
bodies activated by virus.

If 𝑅1 < 1, we have 𝑥1 > 𝜆/𝑑 − 𝑎ℎ𝜇(𝑚 + 𝛾)/𝑑𝑘𝑔𝛾 and
ℎ2 (𝜆𝑑 − 𝑎ℎ𝜇 (𝑚 + 𝛾)𝑑𝑘𝑔𝛾 ) < ℎ1 (𝑥1) = 0. (35)

Therefore, there is no equilibrium when 𝑅1 < 1.
If 𝑅1 > 1, then 𝑥1 < 𝜆/𝑑 − 𝑎ℎ𝜇(𝑚 + 𝛾)/𝑑𝑘𝑔𝛾 and

ℎ2 (𝜆𝑑 − 𝑎ℎ𝜇 (𝑚 + 𝛾)𝑑𝑘𝑔𝛾 ) > ℎ1 (𝑥1) = 0. (36)
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In this case, (32) has one root𝑥2 ∈ (0, 𝜆/𝑑−𝑎ℎ𝜇(𝑚+𝛾)/𝑑𝑘𝑔𝛾).
Consequently, when 𝑅1 > 1, there exists an equilibrium𝐸2(𝑥2, 𝑙2, 𝑦2, V2, 𝑤2) satisfying 𝑥2 ∈ (0, 𝜆/𝑑 − 𝑎ℎ𝜇(𝑚 +𝛾)/𝑑𝑘𝑔𝛾), 𝑙2 = (𝜆 − 𝑑𝑥2)/(𝑚 + 𝛾), 𝑦2 = 𝛾(𝜆 − 𝑑𝑥2)/𝑎(𝑚 + 𝛾),
V2 = ℎ/𝑔, and 𝑤2 = 𝑘𝛾𝑔(𝜆 − 𝑑𝑥2)/𝑎𝑞ℎ(𝑚 + 𝛾) − 𝜇/𝑞. When𝑅1 = 1, 𝐸1 = 𝐸2.

We summarize the above discussions in the following
theorem.

Theorem 2.

(i) If 𝑅0 ≤ 1, then system (1) has one infection-free
equilibrium of the form 𝐸0(𝑥0, 0, 0, 0, 0), where 𝑥0 =𝜆/𝑑.

(ii) If 𝑅0 > 1, then system (1) has an infection
equilibrium without humoral immunity of the form𝐸1(𝑥1, 𝑙1, 𝑦1, V1, 0), where 𝑥1 ∈ (0, 𝜆/𝑑), 𝑙1 = (𝜆 −𝑑𝑥1)/(𝑚 + 𝛾), 𝑦1 = 𝛾(𝜆 − 𝑑𝑥1)/𝑎(𝑚 + 𝛾), and V1 =𝑘𝛾(𝜆 − 𝑑𝑥1)/𝑎𝜇(𝑚 + 𝛾).

(iii) If 𝑅1 > 1, then system (1) has an infection
equilibrium with humoral immunity of the form𝐸2(𝑥2, 𝑙2, 𝑦2, V2, 𝑤2), where 𝑥2 ∈ (0, 𝜆/𝑑 − 𝑎ℎ𝜇(𝑚 +𝛾)/𝑑𝑘𝑔𝛾), 𝑙2 = (𝜆−𝑑𝑥2)/(𝑚+𝛾),𝑦2 = 𝛾(𝜆−𝑑𝑥2)/𝑎(𝑚+𝛾), V2 = ℎ/𝑔, and𝑤2 = 𝑘𝛾𝑔(𝜆−𝑑𝑥1)/𝑎𝑞ℎ(𝑚+𝛾)−𝜇/𝑞.

3. Global Stability of Equilibria

In this section, we focus on the global stability of equilibria.

Theorem 3. If𝑅0 ≤ 1, then the infection-free equilibrium𝐸0 is
globally asymptotically stable and it becomes unstable if𝑅0 > 1.
Proof. The proof of the first part of this theorem is based
on the construction of a suitable Lyapunov functional that
satisfies the conditions given in [51, Lemma 4.6]. Hence, we
define a Lyapunov functional as follows:

𝐿0 (𝑡)
= 𝛼0𝛼0 + 𝛼1𝑥0 𝑥0Φ( 𝑥𝑥0)
+ 𝜌𝛼02 (𝑑 + 𝑚 + 𝛾) (𝛼0 + 𝛼1𝑥0) 𝑥0 (𝑥 − 𝑥0 + 𝑙)2
+ 𝑙 + 𝑚 + 𝜌 + 𝛾𝛾 𝑦 + 𝑎 (𝑚 + 𝜌 + 𝛾)𝑘𝛾 V

+ 𝑎𝑞 (𝑚 + 𝜌 + 𝛾)𝑘𝑔𝛾 𝑤,

(37)

where Φ(𝑥) = 𝑥 − 1 − ln(𝑥) for 𝑥 > 0. It is not hard to show
that the functional 𝐿0 is nonnegative. In fact, the function Φ
has a global minimum at 𝑥 = 1. Consequently, Φ(𝑥) ≥ 0 for
all 𝑥 > 0.

Calculating the fractional derivative of 𝐿0(𝑡) along solu-
tions of system (1) and using the results in [52], we get

𝐷𝛼𝐿0 (𝑡) ≤ 𝛼0𝛼0 + 𝛼1𝑥0 (1 − 𝑥0𝑥 )𝐷𝛼𝑥
+ 𝜌𝛼0(𝑑 + 𝑚 + 𝛾) (𝛼0 + 𝛼1𝑥0) 𝑥0 (𝑥 − 𝑥0 + 𝑙)⋅ (𝐷𝛼𝑥 + 𝐷𝛼𝑙) + 𝐷𝛼𝑙 + 𝑚 + 𝜌 + 𝛾𝛾 𝐷𝛼𝑦
+ 𝑎 (𝑚 + 𝜌 + 𝛾)𝑘𝛾 𝐷𝛼V + 𝑎𝑞 (𝑚 + 𝜌 + 𝛾)𝑘𝑔𝛾 𝐷𝛼𝑤.

(38)

Using 𝜆 = 𝑑𝑥0, we obtain
𝐷𝛼𝐿0 (𝑡) ≤ −𝑑𝛼0 (𝑥 − 𝑥0)2(𝛼0 + 𝛼1𝑥0) 𝑥 − 𝛼0𝛼0 + 𝛼1𝑥0 (1 − 𝑥0𝑥 )

⋅ 𝑓 (𝑥, V) V + 𝜌𝛼0𝛼0 + 𝛼1𝑥0 (1 − 𝑥0𝑥 ) 𝑙
⋅ 𝜌𝛼0 (𝑥 − 𝑥0 + 𝑙)(𝑑 + 𝑚 + 𝛾) (𝛼0 + 𝛼1𝑥0) 𝑥0 (𝑑 (𝑥0 − 𝑥)
− (𝑚 + 𝛾) 𝑙) + 𝑓 (𝑥, V) V − 𝑎𝜇 (𝑚 + 𝜌 + 𝛾)𝑘𝛾 V

− 𝑎𝑞ℎ (𝑚 + 𝜌 + 𝛾)𝑘𝑔𝛾 𝑤
≤ −(1𝑥 + 𝜌(𝑑 + 𝑚 + 𝛾) 𝑥0) 𝑑𝛼0 (𝑥 − 𝑥0)2(𝛼0 + 𝛼1𝑥0)
− 𝜌𝛼0 (𝑚 + 𝛾) 𝑙2(𝑑 + 𝑚 + 𝛾) (𝛼0 + 𝛼1𝑥0) 𝑥0 − 𝜌𝛼0 (𝑥 − 𝑥0)2 𝑙(𝛼0 + 𝛼1𝑥0) 𝑥𝑥0
+ 𝑎𝜇 (𝑚 + 𝜌 + 𝛾)𝑘𝛾 (𝑅0 − 1) V − 𝑎𝑞ℎ (𝑚 + 𝜌 + 𝛾)𝑘𝑔𝛾 𝑤.

(39)

Hence if 𝑅0 ≤ 1, then 𝐷𝛼𝐿0(𝑡) ≤ 0. In addition, the equality
holds if and only if 𝑥 = 𝑥0, 𝑙 = 0, 𝑦 = 0,𝑤 = 0, and (𝑅0−1)V =0. If 𝑅0 < 1, then V = 0. If 𝑅0 = 1, from (1), we get 𝑓(𝑥0, V)V =0which implies that V = 0. Consequently, the largest invariant
set of {(𝑥, 𝑙, 𝑦, V, 𝑤) ∈ R5+ : 𝐷𝛼𝐿0(𝑡) = 0} is the singleton{𝐸0}. Therefore, by the LaSalle’s invariance principle [51], 𝐸0
is globally asymptotically stable.

The proof of the instability of 𝐸0 is based on the
computation of the Jacobean matrix of system (1) and the
results presented in [53–55].The Jacobean matrix of (1) at any
equilibrium 𝐸(𝑥, 𝑙, 𝑦, V, 𝑤) is given by

((((
(

−𝑑 − 𝜕𝑓𝜕𝑥V 𝜌 0 −𝜕𝑓𝜕V V − 𝑓 (𝑥, V) 0𝜕𝑓𝜕𝑥V − (𝑚 + 𝜌 + 𝛾) 0 𝜕𝑓𝜕V V + 𝑓 (𝑥, V) 00 𝛾 −𝑎 0 00 0 𝑘 −𝜇 − 𝑞𝑤 −𝑞V0 0 0 𝑔𝑤 𝑔V − ℎ
))))
)

. (40)
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We recall that 𝐸 is locally asymptotically stable if the all
eigenvalues 𝜉𝑖 of (40) satisfy the following condition [53–55]:󵄨󵄨󵄨󵄨arg (𝜉𝑖)󵄨󵄨󵄨󵄨 > 𝛼𝜋2 . (41)

From (40), the characteristic equation at 𝐸0 is given as
follows: (𝑑 + 𝜉) (ℎ + 𝜉) 𝑔0 (𝜉) = 0, (42)

where 𝑔0 (𝜉) = ((𝑚 + 𝜌 + 𝛾) + 𝜉) (𝑎 + 𝜉) (𝜇 + 𝜉)
− 𝑘𝛾𝛽𝜆𝑑𝛼0 + 𝛼1𝜆 . (43)

Obviously, (42) has the roots 𝜉1 = −𝑑 and 𝜉2 = −ℎ. If𝑅0 > 1, we have 𝑔0(0) = 𝑎𝜇(𝑚 + 𝜌 + 𝛾)(1 − 𝑅0) < 0 and
lim𝜉󳨀→+∞𝑔0(𝜉) = +∞. Then, there exists 𝜉∗ > 0 satisfying𝑔0(𝜉∗) = 0. In addition, we have |arg(𝜉∗)| = 0 < 𝛼𝜋/2.
Consequently, when 𝑅0 > 1, 𝐸0 is unstable.
Theorem 4.

(i) The infection equilibrium without humoral immunity𝐸1 is globally asymptotically stable if 𝑅0 > 1, 𝑅1 ≤ 1,
and𝑅0 ≤ 1

+ (𝑚 + 𝜌 + 𝛾) [𝛼0𝑎𝑑𝜇 (𝑚 + 𝜌) + 𝑑𝑘𝜆𝛾𝛼2] + 𝑘𝜌𝛾𝛼3𝜆2𝑎𝜌𝜇 (𝑚 + 𝜌 + 𝛾) (𝛼0𝑑 + 𝜆𝛼1) . (44)

(ii) When 𝑅1 > 1, 𝐸1 is unstable.

Proof. Define a Lyapunov functional as follows:

𝐿1 (𝑡) = 𝛼0 + 𝛼2V1𝛼0 + 𝛼1𝑥1 + 𝛼2V1 + 𝛼3𝑥1V1 𝑥1Φ( 𝑥𝑥1)+ 𝑙1Φ( 𝑙𝑙1)
+ 𝜌 (𝛼0 + 𝛼2V1)2 (𝑑 + 𝑚 + 𝛾) (𝛼0 + 𝛼1𝑥1 + 𝛼2V1 + 𝛼3𝑥1V1) 𝑥1 (𝑥
− 𝑥1 + 𝑙 − 𝑙1)2 + 𝑚 + 𝜌 + 𝛾𝛾 𝑦1Φ( 𝑦𝑦1)
+ 𝑎 (𝑚 + 𝜌 + 𝛾)𝑘𝛾 V1Φ( V

V1
) + 𝑎𝑞 (𝑚 + 𝜌 + 𝛾)𝑘𝑔𝛾 𝑤.

(45)

Calculating the fractional derivative of 𝐿1(𝑡), we get
𝐷𝛼𝐿1 (𝑡) = 𝛼0 + 𝛼2V1𝛼0 + 𝛼1𝑥1 + 𝛼2V1 + 𝛼3𝑥1V1 (1 − 𝑥1𝑥 )𝐷𝛼𝑥

+ (1 − 𝑙1𝑙 )𝐷𝛼𝑙
+ 𝜌 (𝛼0 + 𝛼2V1) (𝑥 − 𝑥1 + 𝑙 − 𝑙1)(𝑑 + 𝑚 + 𝛾) (𝛼0 + 𝛼1𝑥1 + 𝛼2V1 + 𝛼3𝑥1V1) 𝑥1 (𝐷𝛼𝑥
+ 𝐷𝛼𝑙) + 𝑚 + 𝜌 + 𝛾𝛾 (1 − 𝑦1𝑦 )𝐷𝛼𝑦
+ 𝑎 (𝑚 + 𝜌 + 𝛾)𝑘𝛾 (1 − V1

V
)𝐷𝛼V + 𝑎𝑞 (𝑚 + 𝜌 + 𝛾)𝑘𝑔𝛾 𝑤.

(46)

Using𝜆 = 𝑑𝑥1+(𝑚+𝛾)𝑙1,𝑓(𝑥1, V1)V1 = (𝑚+𝜌+𝛾)𝑙1, 𝛾𝑙1 = 𝑎𝑦1,𝑘𝑦1 = 𝜇V1, and 1−𝑓(𝑥𝑖, V𝑖)/𝑓(𝑥, V𝑖) = ((𝛼0+𝛼2V𝑖)/(𝛼0+𝛼1𝑥𝑖+𝛼2V𝑖 + 𝛼3𝑥𝑖V𝑖))(1 − 𝑥𝑖/𝑥)∀𝑖 ∈ {1, 2}, we obtain
𝐷𝛼𝐿1 (𝑡) ≤ 𝑑(1 − 𝑓 (𝑥1, V1)𝑓 (𝑥, V1) ) (𝑥1 − 𝑥) + (𝑚 + 𝜌 + 𝛾) 𝑙1 (1 − 𝑓 (𝑥1, V1)𝑓 (𝑥, V1) + V

V1

𝑓 (𝑥, V)𝑓 (𝑥, V1)) + (𝑚 + 𝜌 + 𝛾)
⋅ 𝑙1 (1 − 𝑙1𝑓 (𝑥, V) V𝑙𝑓 (𝑥1, V1) V1) + (𝑚 + 𝜌 + 𝛾) 𝑙1 (1 − 𝑙𝑦1𝑙1𝑦) + (𝑚 + 𝜌 + 𝛾) 𝑙1 (1 − V

V1
− 𝑦V1𝑦1V) + 𝜌 (𝑙 − 𝑙1)

⋅ (1 − 𝑓 (𝑥1, V1)𝑓 (𝑥, V1) ) − 𝜌 (𝛼0 + 𝛼2V1) [𝑑 (𝑥 − 𝑥1)2 + (𝑚 + 𝛾) (𝑙 − 𝑙1)2 + (𝑑 + 𝑚 + 𝛾) (𝑥 − 𝑥1) (𝑙 − 𝑙1)](𝑑 + 𝑚 + 𝛾) (𝛼0 + 𝛼1𝑥1 + 𝛼2V1 + 𝛼3𝑥1V1) 𝑥1
+ 𝑎𝑞ℎ (𝑚 + 𝜌 + 𝛾)𝑘𝑔𝛾 (𝑔V1ℎ − 1)𝑤.

(47)

Hence,𝐷𝛼𝐿1 (𝑡)
≤ − (𝛼0 + 𝛼2V1) (𝑥 − 𝑥1)2𝑥𝑥1 (𝛼0 + 𝛼1𝑥1 + 𝛼2V1 + 𝛼3𝑥1V1) ((𝑑𝑥1 − 𝜌𝑙1) + 𝜌𝑙
+ 𝑑𝜌𝑥𝑑 + 𝑚 + 𝛾)

− 𝜌 (𝛼0 + 𝛼2V1) (𝑚 + 𝛾) (𝑙 − 𝑙1)2(𝑚 + 𝜌 + 𝛾) (𝛼0 + 𝛼1𝑥1 + 𝛼2V1 + 𝛼3𝑥1V1) 𝑥1 + (𝑚 + 𝜌
+ 𝛾) 𝑙1 (5 − 𝑓 (𝑥1, V1)𝑓 (𝑥, V1) − 𝑙1𝑓 (𝑥, V) V𝑙𝑓 (𝑥1, V1) V1 − 𝑙𝑦1𝑙1𝑦 − 𝑦V1𝑦1V
− 𝑓 (𝑥, V1)𝑓 (𝑥, V) ) − (𝑚 + 𝜌 + 𝛾) 𝑙1
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⋅ (𝛼0 + 𝛼1𝑥) (𝛼2 + 𝛼3𝑥) (V − V1)2
V1 (𝛼0 + 𝛼1𝑥 + 𝛼2V + 𝛼3𝑥V) (𝛼0 + 𝛼1𝑥 + 𝛼2V1 + 𝛼3𝑥V1)+ 𝑎𝑞ℎ (𝑚 + 𝜌 + 𝛾)𝑘𝑔𝛾 (𝑅1 − 1)𝑤.

(48)

Using the arithmetic-geometric inequality, we have

5 − 𝑓 (𝑥𝑖, V𝑖)𝑓 (𝑥, V𝑖) − 𝑙𝑖𝑓 (𝑥, V) V𝑙𝑓 (𝑥𝑖, V𝑖) V𝑖 − 𝑙𝑦𝑖𝑙𝑖𝑦 − 𝑦V𝑖𝑦𝑖V − 𝑓 (𝑥, V𝑖)𝑓 (𝑥, V)≤ 0. (49)

Since 𝑅1 ≤ 1, we have 𝐷𝛼𝐿1(𝑡) ≤ 0 if 𝑑𝑥1 ≥ 𝜌𝑙1. It is easy
to see that this condition is equivalent to (44). Furthermore,

𝐷𝛼𝐿1(𝑡) = 0 if and only if 𝑥 = 𝑥1, 𝑙 = 𝑙1, 𝑦 = 𝑦1, V = V1, and(𝑅1 − 1)𝑤 = 0. We discuss two cases: If 𝑅1 < 1, then 𝑤 = 0. If𝑅1 = 1, from (1), we get𝐷𝛼V1 = 0 = 𝑘𝑦1−𝜇V1−𝑞V1𝑤, and then𝑤 = 0. Hence, the largest invariant set of {(𝑥, 𝑙, 𝑦, V, 𝑤) ∈ R5+ :𝐷𝛼𝐿1(𝑡) = 0} is the singleton {𝐸1}. By the LaSalle’s invariance
principle, 𝐸1 is globally asymptotically stable.

At 𝐸1, the characteristic equation of (40) is given as
follows:

(𝑔V1 − ℎ − 𝜉) 𝑔1 (𝜉) = 0, (50)

where

𝑔1 (𝜉) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝑑 − 𝜕𝑓𝜕𝑥 (𝑥1, V1) V1 − 𝜉 𝜌 0 −𝜕𝑓𝜕V (𝑥1, V1) V1 − 𝑓 (𝑥1, V1)𝜕𝑓𝜕𝑥 (𝑥1, V1) V1 − (𝑚 + 𝜌 + 𝛾) − 𝜉 0 𝜕𝑓𝜕V (𝑥1, V1) V1 + 𝑓 (𝑥1, V1)0 𝛾 −𝑎 − 𝜉 00 0 𝑘 −𝜇 − 𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (51)

We can easily see that (50) has the root 𝜉1 = 𝑔V1 − ℎ. Then,
when 𝑅1 > 1, we have 𝜉1 > 0. In this case, 𝐸1 is unstable.
Theorem 5. The infection equilibrium with humoral immu-
nity 𝐸2 is globally asymptotically stable if 𝑅1 > 1 and𝜌𝛽ℎ ≤ 𝑑 (𝑚 + 𝜌 + 𝛾) (𝛼0𝑔 + 𝛼2ℎ) + 𝜌𝜆 (𝛼1𝑔 + 𝛼3ℎ) . (52)

Proof. Consider the following Lyapunov functional:

𝐿2 (𝑡) = 𝛼0 + 𝛼2V2𝛼0 + 𝛼1𝑥2 + 𝛼2V2 + 𝛼3𝑥2V2 𝑥2Φ( 𝑥𝑥2)
+ 𝑙2Φ( 𝑙𝑙2)

+ 𝜌 (𝛼0 + 𝛼2V2)2 (𝑑 + 𝑚 + 𝛾) (𝛼0 + 𝛼1𝑥2 + 𝛼2V2 + 𝛼3𝑥2V2) 𝑥2 (𝑥
− 𝑥2 + 𝑙 − 𝑙2)2 + 𝑚 + 𝜌 + 𝛾𝛾 𝑦2Φ( 𝑦𝑦2)
+ 𝑎 (𝑚 + 𝜌 + 𝛾)𝑘𝛾 V2Φ( V

V2
) + 𝑎𝑞 (𝑚 + 𝜌 + 𝛾)𝑘𝑔𝛾

⋅ 𝑤2Φ( 𝑤𝑤2) .
(53)

Computing the fractional derivative of 𝐿2(𝑡) and using 𝜆 =𝑑𝑥2 + (𝑚 + 𝛾)𝑙2, 𝑓(𝑥2, V2)V2 = (𝑚 + 𝜌 + 𝛾)𝑙2, 𝛾𝑙2 = 𝑎𝑦2, 𝑘𝑦2 =(𝜇 + 𝑞𝑤2)V2, and V2 = ℎ/𝑔, we get
𝐷𝛼𝐿2 (𝑡) ≤ 𝑑(1 − 𝑓 (𝑥2, V2)𝑓 (𝑥, V2) ) (𝑥2 − 𝑥) + (𝑚 + 𝜌 + 𝛾) 𝑙2 (1 − 𝑓 (𝑥2, V2)𝑓 (𝑥, V2) + 𝑓 (𝑥, V) V𝑓 (𝑥, V2) V2)

+ (𝑚 + 𝜌 + 𝛾) 𝑙2 (1 − 𝑙2𝑓 (𝑥, V) V𝑙𝑓 (𝑥2, V2) V2) + (𝑚 + 𝜌 + 𝛾) 𝑙2 (1 − 𝑙𝑦2𝑙2𝑦) + (𝑚 + 𝜌 + 𝛾) 𝑙2 (1 − V
V2
− 𝑦V2𝑦2V)

+ 𝜌 (𝑙 − 𝑙2) (1 − 𝑓 (𝑥2, V2)𝑓 (𝑥, V2) )
− 𝜌 (𝛼0 + 𝛼2V2) [𝑑 (𝑥 − 𝑥2)2 + (𝑚 + 𝛾) (𝑙 − 𝑙2)2 + (𝑑 + 𝑚 + 𝛾) (𝑥 − 𝑥2) (𝑙 − 𝑙2)](𝑑 + 𝑚 + 𝛾) (𝛼0 + 𝛼1𝑥2 + 𝛼2V2 + 𝛼3𝑥2V2) 𝑥2
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≤ − (𝛼0 + 𝛼2V2) (𝑥 − 𝑥2)2𝑥𝑥2 (𝛼0 + 𝛼1𝑥2 + 𝛼2V2 + 𝛼3𝑥2V2) ((𝑑𝑥2 − 𝜌𝑙2) + 𝜌𝑙 + 𝑑𝜌𝑥𝑑 + 𝑚 + 𝛾)
− 𝜌 (𝛼0 + 𝛼2V2) (𝑚 + 𝛾) (𝑙 − 𝑙2)2(𝑚 + 𝜌 + 𝛾) (𝛼0 + 𝛼1𝑥2 + 𝛼2V2 + 𝛼3𝑥2V2) 𝑥2
+ (𝑚 + 𝜌 + 𝛾) 𝑙2 (5 − 𝑓 (𝑥2, V2)𝑓 (𝑥, V2) − 𝑙2𝑓 (𝑥, V) V𝑙𝑓 (𝑥2, V2) V2 − 𝑙𝑦2𝑙2𝑦 − 𝑦V2𝑦2V − 𝑓 (𝑥, V2)𝑓 (𝑥, V) )
− (𝑚 + 𝜌 + 𝛾) 𝑙2 (𝛼0 + 𝛼1𝑥) (𝛼2 + 𝛼3𝑥) (V − V2)2

V2 (𝛼0 + 𝛼1𝑥 + 𝛼2V + 𝛼3𝑥V) (𝛼0 + 𝛼1𝑥 + 𝛼2V2 + 𝛼3𝑥V2) .
(54)

From (49), we have 𝐷𝛼𝐿2(𝑡) ≤ 0 when 𝑑𝑥2 ≥ 𝜌𝑙2. This
condition is equivalent to (52). In addition, 𝐷𝛼𝐿2(𝑡) = 0
if 𝑥 = 𝑥2, 𝑙 = 𝑙2, 𝑦 = 𝑦2, and V = V2. Further, 𝐷𝛼V2 =0 = 𝑘𝑦2 − 𝜇V2 − 𝑞V2𝑤; then 𝑤 = 𝑤2. Consequently, the
largest invariant set of {(𝑥, 𝑙, 𝑦, V, 𝑤) ∈ R5+ : 𝐷𝛼𝐿2(𝑡) = 0}
is the singleton {𝐸2}. By the LaSalle’s invariance principle, 𝐸2
is globally asymptotically stable.

It is important to note that when 𝜌 is sufficiently small
or 𝛾 is sufficiently large, the two conditions (44) and (52) are
satisfied. Then, we have the following corollary.

Corollary 6. Assume that 𝑅0 > 1. When 𝜌 is sufficiently small
or 𝛾 is sufficiently large, then we have the following:

(i) The infection equilibrium without humoral immunity𝐸1 is globally asymptotically stable if 𝑅1 ≤ 1.
(ii) The infection equilibrium with humoral immunity 𝐸2

is globally asymptotically stable if 𝑅1 > 1.
4. Numerical Simulations

In this section, we validate our theoretical results to HIV
infection. Firstly, we take the parameter values as shown in
Table 1.

By calculation, we have 𝑅0 = 0.4274 ≤ 1. Then system (1)
has an infection-free equilibrium 𝐸0(719.4245, 0, 0, 0, 0). By
Theorem 3, the solution of (1) converges to 𝐸0 (see Figure 1).
Consequently, the virus is cleared and the infection dies out.

Now, we choose 𝛽 = 0.0012 and we keep the other
parameter values. Hence, we obtain 𝑅0 = 2.137, 𝑅1 = 0.8334,
and

1 + (𝑚 + 𝜌 + 𝛾) [𝛼0𝑎𝑑𝜇 (𝑚 + 𝜌) + 𝑑𝑘𝜆𝛾𝛼2] + 𝑘𝜌𝛾𝛼3𝜆2𝑎𝜌𝜇 (𝑚 + 𝜌 + 𝛾) (𝛼0𝑑 + 𝜆𝛼1)= 2.5934. (55)

Consequently, condition (44) is satisfied.Therefore, the infec-
tion equilibrium without humoral immunity 𝐸1(176.6853,168.7712, 6.2508, 1666.9, 0) is globally asymptotically stable.
Figure 2 demonstrates this result. In this case, the infection
becomes chronic.

Next, we take 𝑔 = 0.0004 and do not change the other
parameter values. In this case, we have 𝑅1 = 3.3338, 𝜌𝛽ℎ =0.0000024, and 𝑑(𝑚 + 𝜌 + 𝛾)(𝛼0𝑔 + 𝛼2ℎ) + 𝜌𝜆(𝛼1𝑔 + 𝛼3ℎ) =0.000006. Hence, condition (52) is satisfied. Consequently,
system (1) has an infection equilibrium with humoral immu-
nity 𝐸2(423.4261, 92.0442, 3.4090, 500, 245.4473) which is
globally asymptotically stable. Figure 3 illustrates this result.
We can observe that the activation of the humoral immune
response increases the healthy cells and decreases the produc-
tive infected cells and viral load to a lower levels but it is not
able to eradicate the infection.

5. Conclusion

In the present paper, we have studied the dynamics of a
viral infection model by taking into account the memory
effect represented by the Caputo fractional derivative and
the humoral immunity. We have proved that the solutions
of the model are nonnegative and bounded which assure the
well-posedness. We have shown that the proposed model
has three infection equilibriums, namely, the infection-free
equilibrium 𝐸0, the infection equilibrium without humoral
immunity 𝐸1, and the infection equilibrium with humoral
immunity 𝐸2. By constructing suitable Lyapunov functionals,
the global stability of these equilibria is fully determined by
two threshold parameters 𝑅0 and 𝑅1. More precisely, when𝑅0 ≤ 1, 𝐸0 is globally asymptotically stable, whereas if𝑅0 > 1, it becomes unstable and another equilibrium point
appears, that is, 𝐸1, which is globally asymptotically stable
whenever 𝑅1 ≤ 1 and condition (44) is satisfied. In the case
that 𝑅1 > 1, 𝐸1 becomes unstable and there exists another
equilibrium point 𝐸2 which is globally asymptotically stable
when condition (52) is satisfied. In addition, we remarked
that when 𝜌 is sufficiently small or 𝛾 is sufficiently large,
conditions (44) and (52) are verified, and then the global
stability of 𝐸1 and 𝐸2 is characterized only by 𝑅0 and 𝑅1.

From our theoretical and numerical results, we deduce
that the order of the fractional derivative 𝛼 has no effect
on the dynamics of the model. However, when the value
of 𝛼 decreases (long memory), the solutions of our model
converge rapidly to the steady states (see Figures 1–3). This
behavior can be explained by the memory term 1/Γ(1−𝛼)(𝑡−𝑢)𝛼 included in the fractional derivative which represents
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Table 1: Parameter values of system (1).

parameters values parameters values parameters values𝜆 10 𝑎 0.27 ℎ 0.2𝑑 0.0139 𝛾 0.01 𝑔 0.0001𝛽 0.00024 𝑘 800 𝛼0 1𝜌 0.01 𝜇 3 𝛼1 0.1𝑚 0.0347 𝑞 0.01 𝛼2 0.01𝛼3 0.00001
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Figure 1: Stability of the infection-free equilibrium 𝐸0.
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Figure 2: Stability of the infection equilibrium without humoral immunity 𝐸1.
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Figure 3: Stability of the infection equilibrium with humoral immunity 𝐸2.
the time needed for the interaction between cells and viral
particles and the time needed for the activation of humoral
immune response. In fact, the knowledge about the infection
and the activation of the humoral immune response in an
early stage can help us to control the infection.
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