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We study the 𝑞-analogue of Euler-Maclaurin formula and by introducing a new 𝑞-operator we drive to this form. Moreover,
approximation properties of 𝑞-Bernoulli polynomials are discussed. We estimate the suitable functions as a combination of
truncated series of 𝑞-Bernoulli polynomials and the error is calculated.This paper can be helpful in two different branches: first we
solve the differential equations by estimating functions and second we may apply these techniques for operator theory.

1. Introduction

The present study has sought to investigate the approxi-
mation of suitable function 𝑓(𝑥) as a linear combination
of 𝑞-Bernoulli polynomials. This study applies q-operator
to expand a function in terms of q-Bernoulli polynomials.
In addition, this method leads us to q-analogue of Euler
expansion. This expansion offers a proper tool to solve 𝑞-
difference equations or normal differential equation as well.
There are many approaches to approximate the capable
functions. According to properties of 𝑞-functions many 𝑞-
functions have been used in order to approximate a suitable
function. For example, at [1], some identities and formulae
for the 𝑞-Bernstein basis function, including the partition of
unity property, and formulae for representing the monomials
were studied. In addition, a kind of approximation of a
function in terms of Bernoulli polynomials is used in several
approaches for solving differential equations, such as [2–4].
This paper gives conditions to approximate capable functions
as a linear combination of 𝑞-Bernoulli polynomials as well as
related examples. Also, it introduces the new 𝑞-operator to
reach the 𝑞-analogue of Euler-Maclaurin formula.

This study, first, introduces some 𝑞-calculus concepts.
There are several types of 𝑞-Bernoulli polynomials and
numbers that can be generated by different 𝑞-exponential
functions. Carlitz [5] is pioneer of introducing 𝑞-analogue of

the Bernoulli numbers; he applied a sequence {𝛽𝑚}𝑚≥0 in the
middle of the 20th century;

𝑚∑
𝑘=0

(𝑚𝑘)𝛽𝑘𝑞𝑘+1 − 𝛽𝑚 = {1, 𝑚 = 1,
0, 𝑚 > 1. (1)

First, this study makes an assumption that |𝑞| < 1, and
this assumption is going to apply in the rest of the paper as
well. If 𝑞 tends to one from a left side the ordinary formwould
be reached.

Since Carlitz, there have been many distinct 𝑞-analogues
of Bernoulli numbers arising from varying motivations. In
[6], the authors used improved 𝑞-exponential functions to
introduce a new class of 𝑞-Bernoulli polynomials. In addition,
they investigate some properties of these 𝑞-Bernoulli polyno-
mials.

Let us introduce a class of 𝑞-Bernoulli polynomials in a
form of generating function as follows:𝑧𝑒𝑞 (𝑧𝑡)𝑒𝑞 (𝑧) − 1 = ∞∑

𝑛=0

𝛽𝑛,𝑞 (𝑡) 𝑧𝑛[𝑛]𝑞! , |𝑧| < 2𝜋, (2)

where [𝑛]𝑞 is 𝑞-number and 𝑞-numbers factorial is defined by

[𝑎]𝑞 = 1 − 𝑞𝑎1 − 𝑞 (𝑞 ̸= 1) ;
[0]! = 1;
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[𝑛]! = [𝑛] [𝑛 − 1]!
𝑛 ∈ N, 𝑎 ∈ C.

(3)

The 𝑞-shifted factorial for the case 𝑛 = 0, for natural 𝑛, and
for infinity case and 𝑞-polynomial coefficient are defined by
the following expressions, respectively:

(𝑎; 𝑞)0 = 1,
(𝑎; 𝑞)𝑛 = 𝑛−1∏

𝑗=0

(1 − 𝑞𝑗𝑎) , 𝑛 ∈ N,
(𝑎; 𝑞)∞ = ∞∏

𝑗=0

(1 − 𝑞𝑗𝑎) , 󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨 < 1, 𝑎 ∈ C;
(𝑛𝑘)
𝑞

= (𝑞; 𝑞)𝑛(𝑞; 𝑞)𝑛−𝑘 (𝑞; 𝑞)𝑘 ,

(4)

𝑞-standard terminology and notation can be found at [7] and
[8]. We call 𝛽𝑛,𝑞 Bernoulli number and 𝛽𝑛,𝑞 = 𝛽𝑛,𝑞(0). In
addition, 𝑞-analogue of (𝑥 − 𝑎)𝑛 is defined as

(𝑥 − 𝑎)𝑛𝑞 = {{{
1, 𝑛 = 0,
(𝑥 − 𝑎) (𝑥 − 𝑎𝑞) ⋅ ⋅ ⋅ (𝑥 − 𝑎𝑞𝑛−1) , 𝑛 ̸= 0. (5)

In the standard approach to the 𝑞-calculus, two exponen-
tial functions are used. These 𝑞-exponentials are defined by

𝑒𝑞 (𝑧) = ∞∑
𝑛=0

𝑧𝑛[𝑛]𝑞! =
∞∏
𝑘=0

1(1 − (1 − 𝑞) 𝑞𝑘𝑧) ,
0 < 󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨 < 1, |𝑧| < 1󵄨󵄨󵄨󵄨1 − 𝑞󵄨󵄨󵄨󵄨 ,

𝐸𝑞 (𝑧) = 𝑒1/𝑞 (𝑧) = ∞∑
𝑛=0

𝑞(1/2)𝑛(𝑛−1)𝑧𝑛[𝑛]𝑞!
= ∞∏
𝑘=0

(1 + (1 − 𝑞) 𝑞𝑘𝑧) , 0 < 󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨 < 1, 𝑧 ∈ C.

(6)

𝑞-shifted factorial can be expressed by Heine’s binomial
formula as follows:

(𝑎; 𝑞)𝑛 = 𝑛∑
𝑘=0

(𝑛𝑘)
𝑞

𝑞𝑘(𝑘−1)/2 (−1)𝑘 𝑎𝑘. (7)

For some 0 ≤ 𝛼 < 1, the function |𝑓(𝑥)𝑥𝛼| is bounded on
the interval (0, 𝐴], then Jackson integral is defined as [7]

∫𝑓 (𝑥) 𝑑𝑞𝑥 = (1 − 𝑞) 𝑥∞∑
𝑖=0

𝑞𝑖𝑓 (𝑞𝑖𝑥) . (8)

The above expression converges to a function 𝐹(𝑥) on(0, 𝐴], which is a 𝑞-antiderivative of 𝑓(𝑥). Suppose 0 < 𝑎 < 𝑏;
the definite 𝑞-integral is defined as

∫𝑏
0
𝑓 (𝑥) 𝑑𝑞𝑥 = (1 − 𝑞) 𝑏∞∑

𝑖=0

𝑞𝑖𝑓 (𝑞𝑖𝑏) ,
∫𝑏
𝑎
𝑓 (𝑥) 𝑑𝑞𝑥 = ∫𝑏

0
𝑓 (𝑥) 𝑑𝑞𝑥 − ∫𝑎

0
𝑓 (𝑥) 𝑑𝑞𝑥.

(9)

We need to apply some properties of the 𝑞-Bernoulli
polynomials to prepare the approximation conditions. These
properties are listed below as a lemma.

Lemma 1. The following statements hold true:

(a) 𝐷𝑞 (𝛽𝑛,𝑞 (𝑡)) = [𝑛]𝑞 𝛽𝑛−1,𝑞 (𝑡) , (10)

(b) 𝛽𝑛,𝑞 (𝑡) = 𝑛∑
𝑘=0

(𝑛𝑘)
𝑞

𝛽𝑘,𝑞𝑡𝑛−𝑘, (11)

(c) 𝑛∑
𝑘=0

(𝑛𝑘)
𝑞

𝛽𝑘,𝑞[𝑛 − 𝑘 + 1]𝑞 = 𝛿0,𝑛
𝑤ℎ𝑒𝑟𝑒 𝛿 𝑖𝑠 𝑘𝑟𝑜𝑛𝑒𝑐𝑘𝑒𝑟 𝑑𝑒𝑙𝑡𝑎,

(12)

(d) ∫1
0
𝛽𝑛,𝑞 (𝑡) 𝑑𝑞𝑡 = 0 𝑛 ̸= 0. (13)

Proof. Taking 𝑞-derivative fromboth sides of (2) to prove part
(a). If we apply Cauchy product for generating formula (11),
it leads to (b). Put 𝑥 = 0 at part (b) and change boundary of
summation to reach (c). If we take Jackson integral directly
from 𝛽𝑛,𝑞(𝑡) with the aid of part (c), we can reach (d).

A few numbers of these polynomials and related 𝑞-
Bernoulli numbers can be expressed as follows:

𝛽0,𝑞 = 1,
𝛽0,𝑞 (𝑡) = 1,

𝛽1,𝑞 = − 1[2]𝑞 ,
𝛽1,𝑞 (𝑡) = 𝑡 − 1[2]𝑞 ,

𝛽2,𝑞 = 𝑞2[3]𝑞! ,
𝛽2,𝑞 (𝑡) = 𝑡2 − 𝑡 + 𝑞2[3]𝑞! ,

𝛽3,𝑞 = 𝑞3 (1 − 𝑞)[5]𝑞 + [4]𝑞 − 1 ,
𝛽3,𝑞 (𝑡) = 𝑡3 − [3]𝑞[2]𝑞 𝑡2 + 𝑞2[2]𝑞 𝑡 + 𝑞3 (1 − 𝑞)[5]𝑞 + [4]𝑞 − 1 .

(14)
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Definition 2. 𝑞-Bernoulli polynomials of two variables are
defined as a generating function as follows:

𝑡𝑒𝑞 (𝑥𝑡) 𝑒𝑞 (𝑦𝑡)𝑒𝑞 (𝑡) − 1 = ∞∑
𝑛=0

𝛽𝑛,𝑞 (𝑥, 𝑦) 𝑡𝑛[𝑛]𝑞! , |𝑡| < 2𝜋. (15)

A simple calculation of generating function leads us to

𝑡𝑒𝑞 (𝑥𝑡) + 𝑡𝑒𝑞 (𝑡) − 1𝑒𝑞 (𝑡𝑥) =
𝑡𝑒𝑞 (𝑥𝑡)𝑒𝑞 (𝑡) − 1𝑒𝑞 (𝑡)

= ∞∑
𝑛=0

𝛽𝑛,𝑞 (𝑥, 1) 𝑡𝑛[𝑛]𝑞! , |𝑡| < 2𝜋.
(16)

The LHS can be written as
∞∑
𝑛=0

𝑡𝑛+1𝑥𝑛[𝑛]𝑞! + ∞∑
𝑛=0

𝛽𝑛,𝑞 (𝑥) 𝑡𝑛[𝑛]𝑞! . (17)

By comparing the 𝑛th coefficients, we drive to difference
equations as follows:

𝛽𝑛,𝑞 (𝑥, 1) − 𝛽𝑛,𝑞 (𝑥) = [𝑛]𝑞!𝑥𝑛−1 𝑛 ≥ 1. (18)

If we put 𝑥 = 0, then 𝛽𝑛,𝑞(0, 1) − 𝛽𝑛,𝑞(0) = 𝛿𝑛,1.
2. 𝑞-Analogue of Euler-Maclaurin Formula

This section introduces 𝑞-operator to find 𝑞-analogue of
Euler-Maclaurin formula.The 𝑞-analogue of Euler-Maclaurin
formula has been studied in [9]. The authors of [9] applied
q-integral by parts to reach q-analogue of Euler-Maclaurin
formula. We can not apply that approach to approximation,
because it was written in terms of 𝑝(𝑥) = 𝛽𝑛,𝑞(𝑥 − [𝑥]).
Moreover, the errors have not been studied and our 𝑞-
operator, which is totally new, leads us to the more applicable
function. That is why, this study situates 𝑞-Taylor theorem
first [8].

Theorem 3. If the function 𝑓(𝑥) is capable of expansion as a
convergent power series and if 𝑞 ̸= root of unity, then

𝑓 (𝑥) = ∞∑
𝑛=0

(𝑥 − 𝑎)𝑛𝑞[𝑛]𝑞! (𝐷𝑛𝑞𝑓) (𝑎) , (19)

where 𝐷𝑞(𝑓(𝑥)) = (𝑓(𝑥𝑞) − 𝑓(𝑥))/𝑥(𝑞 − 1) is 𝑞-derivative of𝑓(𝑥), and for 𝑥 ̸= 0, we can define it at 𝑥 = 0 as a normal
derivative.

Definition 4. One defines𝐻𝑞 and𝐷ℎ operators as follows:
𝐻𝑛𝑞 (𝑥) = ℎ1 − 𝑞 ( ℎ1 − 𝑞 + 𝑥)

⋅ ( ℎ1 − 𝑞 + [2]𝑞 𝑥) ⋅ ⋅ ⋅ ( ℎ1 − 𝑞 + [𝑛 − 1]𝑞 𝑥) (1 − 𝑞)𝑛
= (𝑥 + ℎ)𝑛 ( 𝑥𝑥 + ℎ ; 𝑛)𝑞

= 𝑛∑
𝑘=0

(𝑛𝑘)
𝑞

𝑞𝑘(𝑘−1)/2 (𝑥 + ℎ)𝑛−𝑘 (−𝑥)𝑘
𝐷ℎ (𝐹 (𝑥)) = 𝐹 (𝑥 + ℎ) − 𝐹 (𝑥)ℎ = 𝑓 (𝑥) .

(20)

In this definition, we assume that 𝑛 ∈ N and the functions
and values are well defined (ℎ ̸= 0, 𝑞 ̸= 1).The first equality
holds because of Heine’s binomial formula.

For a long time, mathematicians have worked on the area
of operators and they solved several types of differential equa-
tions by using shifted-operators. The 𝐻-operator rules like
a bridge between the ordinary expansions and 𝑞-analogue
of these expansions. We may rewrite several formulae of
these areas to the form of 𝑞-calculus such as [10–14]. Actually
we may write 𝑞-expansion of these functions. In a letter,
Bernoulli concerned the importance of this expansion for
Leibnitz by these words “Nothing is more elegant than the
agreement, which you have observed between the numerical
power of the binomial and differential expansions, there is no
doubt that something is hidden there” [13].

Theorem 5 (fundamental theorem of ℎ-calculus). If 𝐹(𝑥) is
an ℎ-derivative of 𝑓(𝑥) and 𝑏 − 𝑎 ∈ ℎZ, one has [7]

∫𝑓 (𝑥) 𝑑ℎ𝑥 = 𝐹 (𝑏) − 𝐹 (𝑎) , (21)

where we define ℎ-integral as follows:
∫𝑓 (𝑥) 𝑑ℎ𝑥

= {{{{{{{{{
ℎ (𝑓 (𝑎) + 𝑓 (𝑎 + ℎ) + ⋅ ⋅ ⋅ + 𝑓 (𝑏 − ℎ)) 𝑖𝑓 𝑎 < 𝑏
0 𝑖𝑓 𝑎 = 𝑏
−ℎ (𝑓 (𝑏) + 𝑓 (𝑏 + ℎ) + ⋅ ⋅ ⋅ + 𝑓 (𝑎 − ℎ)) 𝑖𝑓 𝑎 > 𝑏.

(22)

Now in the aid of 𝑞-Taylor expansion, wemay write 𝐹(𝑥+ℎ) as follows:
𝐹 (𝑥 + ℎ) = ∞∑

𝑗=0

((𝑥 + ℎ) − 𝑥)𝑗𝑞[𝑗]𝑞! (𝐷𝑗𝑞𝐹) (𝑥)
= ∞∑
𝑗=0

𝐷𝑗𝑞𝐻𝑗𝑞[𝑗]𝑞! (𝐹 (𝑥)) = 𝑒𝑞 (𝐷𝑞𝐻𝑞) (𝐹 (𝑥)) .
(23)

Here, 𝑒𝑞 is 𝑞-shifted operator and can be expressed as
expansion of 𝐷𝑞 and 𝐻𝑞. We may assume that 𝐷ℎ(𝐹(𝑥)) =𝑓(𝑥) and then

𝑓 (𝑥) = 𝐹 (𝑥 + ℎ) − 𝐹 (𝑥)ℎ = 𝑒𝑞 (𝐷𝑞𝐻𝑞) − 1𝐻𝑞 𝐹 (𝑥) . (24)

Since the Jackson integral is 𝑞-antiderivative, we have
𝐻𝑞𝐷𝑞𝑒𝑞 (𝐷𝑞𝐻𝑞) − 1 ∫𝑓 (𝑥) 𝑑𝑞𝑥 = 𝐹 (𝑥) . (25)
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And in the aid of (2), the left hand side of the equation
can be expressed as a 𝑞-Bernoulli numbers; therefore

𝐹 (𝑥) = ∞∑
𝑛=0

𝛽𝑛,𝑞 (𝐻𝑞𝐷𝑞)
𝑛

[𝑛]𝑞! ∫𝑓 (𝑥) 𝑑𝑞𝑥 (26)

= ∫𝑓 (𝑥) 𝑑𝑞𝑥 − ℎ[2]𝑞𝑓 (𝑥)
+ ∞∑
𝑛=1

𝛽𝑛,𝑞[𝑛]𝑞! (𝐷𝑛−1𝑞 𝑓 (𝑥))𝐻𝑛𝑞 (𝑥)
(27)

= ∫𝑓 (𝑥) 𝑑𝑞𝑥 − ℎ[2]𝑞𝑓 (𝑥)
+ ∞∑
𝑛=1

( 𝑛∑
𝑘=0

(𝑛𝑘)
𝑞

𝑞𝑘(𝑘−1)/2 (ℎ + 𝑥)𝑛−𝑘 (−𝑥)𝑘)
⋅ (𝐷𝑛−1𝑞 𝑓 (𝑥)) 𝛽𝑛,𝑞[𝑛]𝑞! .

(28)

Thus we can state the following 𝑞-analogue of Euler-
Maclaurin formula.

Theorem 6. If the function 𝑓(𝑥) is capable of expansion as a
convergent power series and 𝑓(𝑥) decreases so rapidly with 𝑥
such that all normal derivatives approach zero as 𝑥 → ∞, then
one can express the series of function 𝑓(𝑥) as follows:
∞∑
𝑛=𝑎

𝑓 (𝑛) = ∫∞
𝑎

𝑓 (𝑥) 𝑑𝑞𝑥 + 1[2]𝑞 (𝑓 (𝑎))
− lim
𝑏→∞

∞∑
𝑛=1

( 𝑛∑
𝑘=0

(𝑛𝑘)
𝑞

⋅ 𝑞𝑘(𝑘−1)/2 ((1 + 𝑏)𝑛−𝑘 (−𝑏)𝑘 − (1 + 𝑎)𝑛−𝑘 (−𝑎)𝑘))
⋅ ℎ𝑛 (𝐷𝑛−1𝑞 𝑓 (𝑎)) 𝛽𝑛,𝑞[𝑛]𝑞! .

(29)

Proof. In the aid ofTheorem (12) and (24), if we suppose thatℎ = 1 and 𝑏 − 𝑎 ∈ N, we have

𝑏−1∑
𝑛=𝑎

𝑓 (𝑛) = ∫𝑏
𝑎
𝑓 (𝑥) 𝑑1𝑥 = 𝐹 (𝑏) − 𝐹 (𝑎)

= ∫𝑏
𝑎
𝑓 (𝑥) 𝑑𝑞𝑥 − 1[2]𝑞 (𝑓 (𝑏) − 𝑓 (𝑎))

+ ∞∑
𝑛=1

( 𝑛∑
𝑘=0

(𝑛𝑘)
𝑞

⋅ 𝑞𝑘(𝑘−1)/2 ((1 + 𝑏)𝑛−𝑘 (−𝑏)𝑘 − (1 + 𝑎)𝑛−𝑘 (−𝑎)𝑘))

⋅ (𝐷𝑛−1𝑞 𝑓 (𝑏) − 𝐷𝑛−1𝑞 𝑓 (𝑎)) 𝛽𝑛,𝑞[𝑛]𝑞! .
(30)

Let 𝑓(𝑥) decrease so rapidly with 𝑥, since 𝐷𝑞𝑓(𝑥) =(𝑓(𝑥𝑞) − 𝑓(𝑥))/𝑥(𝑞 − 1)), then by applying the limits when𝑥 tends to infinity, 𝐷𝑞𝑓(𝑥) reach zero. Now if normal
derivatives of 𝑓(𝑥) tend to zero, then 𝑞-derivatives are also
tending to zero.The same discussionmakes𝐷𝑛−1𝑞 𝑓(𝑏) = 0 for
big enough 𝑏. Therefore

∞∑
𝑛=𝑎

𝑓 (𝑛) = ∫∞
𝑎

𝑓 (𝑥) 𝑑𝑞𝑥 + 1[2]𝑞 (𝑓 (𝑎))

− lim
𝑏→∞

∞∑
𝑛=1

( 𝑛∑
𝑘=0

(𝑛𝑘)
𝑞

⋅ 𝑞𝑘(𝑘−1)/2 ((1 + 𝑏)𝑛−𝑘 (−𝑏)𝑘 − (1 + 𝑎)𝑛−𝑘 (−𝑎)𝑘))

⋅ ℎ𝑛 (𝐷𝑛−1𝑞 𝑓 (𝑎)) 𝛽𝑛,𝑞[𝑛]𝑞! .

(31)

Example 7. Let 𝑓(𝑥) = 𝑥𝑠, where 𝑠 is a positive integer, then
we can apply this function at (28), where 𝑎 = 0 and 𝑏 − 1 ∈ N

𝑏−1∑
𝑛=0

𝑛𝑠 = 𝑏𝑠+1[𝑠 + 1]𝑞 − ( 𝑏𝑠[2]𝑞)

+ 𝑠+1∑
𝑛=2

( 𝑛∑
𝑘=0

(𝑛𝑘)
𝑞

𝑞𝑘(𝑘−1)/2 ((1 + 𝑏)𝑛−𝑘 (−𝑏)𝑘))

⋅ ( 𝑠
𝑛 − 1)

𝑞

𝑏𝑠−𝑛+1𝛽𝑛,𝑞[𝑛]𝑞 .

(32)

This relation shows the sum of power in the combination
of 𝑞-Bernoulli numbers. When 𝑞 → 1 from the right side, we
have an ordinary form of this relation. For the another forms
of sum of power, see [15].

Example 8. Let 𝑓(𝑥) = 𝑒−𝑥𝑞 = 1/𝐸𝑥𝑞 , then this function
decreases so rapidly with 𝑥 such that all normal derivatives
approach zero as 𝑥 → ∞. For confirming this, let us mention
that 𝐸𝑥𝑞 , for some fixed 0 < |𝑞| < 1 and | − 𝑥| < 1/|1 − 𝑞|, is
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increasing rapidly, since (𝑑/𝑑𝑥)(𝐸𝑥𝑞 ) = ∑∞𝑗=1(1−𝑞)𝑞𝑗∏∞𝑘=0
𝑘 ̸=𝑗

(1+
(1 − 𝑞)𝑞𝑘𝑥) > 0.
∞∑
𝑛=0

𝑒−𝑛𝑞 = 1 + 1[2]𝑞
− lim
𝑏→∞

∞∑
𝑛=1

( 𝑛∑
𝑘=0

(𝑛𝑘)
𝑞

𝑞𝑘(𝑘−1)/2 ((1 + 𝑏)𝑛−𝑘 (−𝑏)𝑘))
⋅ 𝛽𝑛,𝑞[𝑛]𝑞! .

(33)

Moreover, this is 𝑞-analogue of ∑∞𝑛=0 𝑒−𝑛 = −1/(𝑒−1 −1) = 3/2 + ∑∞𝑛=1(𝛽2𝑛/(2𝑛)!), where 𝛽2𝑛 is a normal Bernoulli
number that is generated by −1/(𝑒−1 − 1).
3. Approximation by 𝑞-Bernoulli Polynomial

We know that the class of 𝑞-Bernoulli polynomials are not
in a form of orthogonal polynomials. In addition, we may
apply Gram-Schmidt algorithm to make these polynomials
orthonormal, then, according to Theorem 8.11 [16], we
have the best approximation in the form of Fourier series.
Now, instead of using that algorithm, we apply properties of
Lemma 1 to achieve an approximation. Let 𝐻 = 𝐿2𝑞[0, 1] ={𝑓𝑞 : [0, 1] → [0, 1] | ∫1

0
|𝑓2𝑞 (𝑡)|𝑑𝑞𝑡 < ∞} be the

Hilbert space [17], then 𝛽𝑛,𝑞(𝑥) ∈ 𝐻 for 𝑛 = 0, . . . , 𝑁 and𝑌 = Span{𝛽0,𝑞(𝑥), 𝛽1,𝑞(𝑥), . . . , 𝛽𝑁,𝑞(𝑥)} is finite dimensional
vector subspace of 𝐻. Unique best approximation for any
arbitrary elements of 𝐻 like ℎ is ℎ̂ ∈ 𝑌 such that for any𝑦 ∈ 𝑌 the inequality ‖ℎ− ℎ̂‖2,𝑞 ≤ ‖ℎ−𝑦‖2,𝑞, where the norm is
defined by ‖𝑓‖2,𝑞 fl (∫1

0
|𝑓2𝑞 (𝑡)|𝑑𝑞𝑡)1/2. Following proposition

determine the coefficient of 𝑞-Bernoulli polynomials, when
we estimate any 𝑓 ∈ 𝐿2𝑞[0, 1] by truncated 𝑞-Bernoulli
series. In fact, in order to see how well a certain partial
sum approximates the actual value, we would like to drive a
formula similar to (25), but with the infinite sum on the right
hand side repla by the𝑁th partial sum 𝑆𝑁, plus an additional
term 𝑅𝑁.

Suppose 𝑎 ∈ Z and 𝑏 = 𝑎 + 1. Consider the 𝑁th partial
sum

𝑆𝑁 = 𝑁∑
𝑘=0

𝛽𝑘,𝑞[𝑘]𝑞! (𝐻𝑘𝑞𝐷𝑘𝑞 (𝑓) (𝑎 + 1) − 𝐻𝑘𝑞𝐷𝑘𝑞 (𝑓) (𝑎)) . (34)

Let𝑔(𝑥, 𝑦) = 𝛽𝑁,𝑞(𝑥, 𝑦)/[𝑁]𝑞!, then in the aid of Lemma 1
we have𝐷𝑛−𝑘𝑞 𝑔(𝑥, 𝑦) = 𝛽𝑘,𝑞(𝑥, 𝑦)/[𝑘]𝑞! and we have

𝑆𝑁 = 𝑁∑
𝑘=0

(𝛽𝑘,𝑞 (0, 0)[𝑘]𝑞! 𝐻𝑘𝑞𝐷𝑘𝑞 (𝑓) (𝑎 + 1)
− 𝛽𝑘,𝑞 (0, 1)[𝑘]𝑞! 𝐻𝑘𝑞𝐷𝑘𝑞 (𝑓) (𝑎)) − 𝐷𝑞 (𝑓) (𝑎)
= 𝑁∑
𝑘=0

(𝐷𝑁−𝑘𝑞 𝑔 (0, 0)𝐻𝑘𝑞𝐷𝑘𝑞 (𝑓) (𝑎 + 1)

− 𝐷𝑁−𝑘𝑞 𝑔 (0, 1)𝐻𝑘𝑞𝐷𝑘𝑞 (𝑓) (𝑎)) − 𝐷𝑞 (𝑓) (𝑎)
= 𝐷𝑞 (𝑓) (𝑎)
− 𝑁∑
𝑘=0

𝐷𝑁−𝑘𝑞 𝑔 (0, 𝑥)𝐻𝑘𝑞𝐷𝑘𝑞 (𝑓) (𝑎 + 1 − 𝑥)󵄨󵄨󵄨󵄨󵄨𝑥=1𝑥=0 .
(35)

By taking 𝑞-derivative of the summation, we may rewrite
this partial sum by integral presentation. Moreover this
relation gives a boundary for 𝑅𝑁(𝑥).
Proposition9. Let𝑓 ∈ 𝐿2𝑞[0, 1] and be estimated by truncated𝑞-Bernoulli series ∑𝑁𝑛=0 𝐶𝑛𝛽𝑛,𝑞(𝑥). Then 𝐶𝑛 coefficients for𝑛 = 0, 1, . . . , 𝑁 can be calculated as an integral form 𝐶𝑛 =(1/[𝑛]𝑞!) ∫10 𝐷(𝑛)𝑞 𝑓(𝑥)𝑑𝑞𝑥. In addition one canwrite𝑓(𝑥) in the
following form:

𝑓 (𝑥) = ∫1
0
𝑓 (𝑥) 𝑑𝑞𝑥 − ℎ[2]𝑞𝑓 (𝑥)

+ 𝑁∑
𝑛=1

( 1[𝑛]𝑞! ∫
1

0
𝐷(𝑛)𝑞 𝑓 (𝑥) 𝑑𝑞𝑥)𝛽𝑛,𝑞 (𝑥)

+ 𝑅𝑞,𝑛 (𝑥) .
(36)

Moreover 𝑅𝑞,𝑛(𝑥) as a reminder part is bounded by(2𝑛/[𝑁]𝑞!)sup𝑥∈[0,1]|𝛽𝑛,𝑞(𝑥)|sup𝑥∈[0,1]|𝐷(𝑛)𝑞 𝑓(𝑥)|.
Proof. In fact we approximate 𝑓(𝑥) as a linear combination
of 𝑞-Bernoulli polynomials and we assume that 𝑓(𝑥) ≃∑𝑁𝑛=0 𝐶𝑛𝛽𝑛,𝑞(𝑥), so taking the Jackson integral fromboth sides
leads us to

∫1
0
𝑓 (𝑥) 𝑑𝑞𝑥 ≃ 𝑁∑

𝑛=0

𝐶𝑛 ∫1
0
𝛽𝑛,𝑞 (𝑥) 𝑑𝑞𝑥

= 𝐶0 ∫1
0
𝛽0,𝑞 (𝑥) 𝑑𝑞𝑥

+ 𝐶1 ∫1
0
𝛽1,𝑞 (𝑥) 𝑑𝑞𝑥 + ⋅ ⋅ ⋅

+ 𝐶𝑁∫1
0
𝛽𝑁,𝑞 (𝑥) 𝑑𝑞𝑥.

(37)

In the aid of Lemma 1 part (d), all the terms at the right
side except the first one have to be zero.We calculate𝛽0,𝑞(𝑥) =1, so 𝐶0 = (1/[0]𝑞!) ∫10 𝑓(𝑥)𝑑𝑞𝑥.Using part (a) of that lemma
for 𝑞-derivative of 𝑞-Bernoulli polynomial gathered by taking𝑞-derivative of 𝑓(𝑥) leads to

∫1
0
𝐷𝑞 (𝑓 (𝑥)) 𝑑𝑞𝑥 ≃ 𝑁∑

𝑛=0

𝐶𝑛 [𝑛]𝑞! ∫1
0
𝛽𝑛−1,𝑞 (𝑥) 𝑑𝑞𝑥

= 𝐶1 ∫1
0
𝛽0,𝑞 (𝑥) 𝑑𝑞𝑥 = 𝐶1.

(38)
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Repeating this procedure 𝑛-times yields the form of 𝐶𝑛
as we mention it at theorem. We mention that if 𝑥 ∈ [0, 1]
and 0 < |𝑞| < 1, then 𝐻𝑛𝑞 (𝑥) for ℎ = 1 is bounded by 2𝑛.
In addition, the reminder part can be presented by integral
forms and this boundary can be found easily.

3.1. FurtherWorks. In this paper, we introduced a proper tool
to approximate a given capable function by combinations of𝑞-Bernoulli polynomials. In spite of a lot of investigations
on 𝑞-Bernoulli polynomials, approximation properties of
the 𝑞-Bernoulli polynomials are not studied. We may apply
these results to solve 𝑞-difference equation, 𝑞-analogue of the
things that is done in [3] or [4].The techniques of𝐻-operator
can be applied in operator theory.
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