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The crossing number of graph𝐺 is theminimum number of edges crossing in any drawing of𝐺 in a plane. In this paper we describe
a method of finding the bound of 2-page fixed linear crossing number of 𝐺. We consider a conflict graph 𝐺󸀠 of 𝐺. Then, instead of
minimizing the crossing number of𝐺, we show that it is equivalent to maximize the weight of a cut of𝐺󸀠. We formulate the original
problem into theMAXCUT problem.We consider a semidefinite relaxation of theMAXCUT problem. An example of a case where𝐺 is hypercube is explicitly shown to obtain an upper bound.The numerical results confirm the effectiveness of the approximation.

1. Introduction

Let 𝐺 be a simple connected graph with a vertex-set 𝑉(𝐺) ={V1, V2, V3, . . . , V𝑛} and an edge-set 𝐸(𝐺) = {𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑚}.
The crossing number of graph 𝐺, denoted cr(𝐺), is the
minimum number of pairwise intersections of edge crossing
on the plane drawing of graph𝐺. Clearly, cr(𝐺) = 0 if and only
if 𝐺 is planar. It is known that the exact crossing numbers of
any graphs are very difficult to compute. In 1973, Erdös and
Guy [1] wrote, “Almost all questions that one can ask about
crossing numbers remain unsolved.” In fact, Garey and John-
son [2] prove that computing the crossing number is NP-
complete.

A 2-page drawing of 𝐺 is a representation of 𝐺 on the
plane such that its vertices are placed on a straight horizontal
line 𝐿 according to fixed vertex ordering and its edges are
drawn as a semicircle above or below 𝐿 but never cross 𝐿.

The 𝑛-cube or 𝑛-dimensional hypercube 𝑄𝑛 is recur-
sively defined in terms of the Cartesian products. The one-
dimension cube 𝑄1 is simply 𝐾2 where 𝐾2 is a complete
graph with 2 vertices. For 𝑛 ≥ 2, 𝑄𝑛 is defined recursively
as 𝑄𝑛−1 × 𝐾2. The order of 𝑄𝑛 is |𝑉(𝑄𝑛)| = 2𝑛 and its size
is |𝐸(𝑄𝑛)| = 𝑛2𝑛−1. Since 𝑄𝑛 is planar for 𝑛 = 1, 2, 3, so
cr(𝑄𝑛) = 0 for each such 𝑛. Eggleton and Guy [3] showed
that cr(𝑄4) = 8 but cr(𝑄𝑛) is unknown for 𝑛 ≥ 5.

It was declared by Eggleton and Guy [3] that the crossing
numbers of the hypercube 𝑄𝑛 (non-2-page) for 𝑛 ≥ 3 was

cr (𝑄𝑛) ≤ 5324𝑛 − ⌊𝑛
2 + 12 ⌋ 2𝑛−2. (1)

Then, in 1973, Erdös and Guy [1] conjectured equality in
(1). In 1993, a lower bound of cr(𝑄𝑛) was proved by Sýkora
and Vrt’o [4]:

cr (𝑄𝑛) ≥ 1204𝑛 + 𝑂 (𝑛22𝑛) . (2)

In 2008, Faria et al. [5] constructed a new drawing of 𝑄𝑛
in the plane which led to the conjectured number of crossings

5324𝑛 − ⌊𝑛
2 + 12 ⌋ 2𝑛−2. (3)

To the best of our knowledge, the fixed linear crossing
number for 𝑄𝑛 has not been established. In this paper, we
discuss a method to obtain an approximation for fixed linear
crossing number for hypercube graph.

2. 2-Page Drawings of Hypercube Graph 𝑄𝑛
Throughout this paper, we consider the ordering of hyper-
cube graph𝑄𝑛. Since𝑄𝑛 is defined recursively as𝑄𝑛−1×𝐾2, for
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Figure 1: 𝑛-Cube graphs with fixed vertex ordering for 𝑛 = 1, 2, 3.
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Figure 2: 𝑛-Cube graph with fixed vertex ordering for 𝑛 = 4.

𝑛 = 2, . . ., where𝑄1 is a simple graph with 2 vertices together
with a single edge incident to both vertices, 𝑄𝑛 has 2 copies
of 𝑄𝑛−1 with edges connecting between them. Given a fixed
ordering on 𝑄𝑛−1, the vertices of the first 𝑄𝑛−1 are labeled1, 2, 3, . . . , 2𝑛−1 and the vertices of the second𝑄𝑛−1 are labeled2𝑛−1+1, 2𝑛−1+2, . . . , 2𝑛−1+2𝑛−1 = 2𝑛.The two vertices between
the first 𝑄𝑛−1 and the second 𝑄𝑛−1 are adjacent if and only if
the sum of the labeled is 2𝑛 + 1. Figures 1 and 2 present the
ordering of𝑄1, 𝑄2, 𝑄3 and𝑄4 which we consider throughout
this paper. Notice that our method is independent on vertex
ordering; therefore, for a fixed 𝑛, we can apply the method(2𝑛)! times so as to obtain the 2-page linear crossing number.

The 2-page drawing of 𝑄𝑛 can be represented by drawing
the vertices of 𝑄𝑛 on a straight horizontal line 𝐿 according a
fixed vertex ordering. Each edge fully contained one of the
two half-planes (pages) as a semicircle and never cross 𝐿.
Notice that no edge crosses itself, no adjacent edges cross each
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Figure 3: The 2-page drawing of 𝑄3 with fixed vertex ordering.

other, no two edges cross more than once, and no three edges
cross in a point.

For a given 2-page drawing of 𝑄𝑛 with the fixed vertex
ordering, a pair of edges 𝑒𝑖𝑗 = (V𝑖, V𝑗) and 𝑒𝑙𝑘 = (V𝑙, V𝑘) are
potential crossing if 𝑒𝑖𝑗 and 𝑒𝑙𝑘 cross each other when routed
on the same side of 𝐿. Clearly, 𝑒𝑖𝑗 and 𝑒𝑙𝑘 are potential crossing
if and only if V𝑖 < V𝑙 < V𝑗 < V𝑘 or V𝑙 < V𝑖 < V𝑘 < V𝑗.

Next we give the definition of conflict graph𝐺󸀠 of graph𝐺.
Definition 1. Given a graph 𝐺. We define an associated
conflict graph 𝐺󸀠 = (𝑉󸀠, 𝐸󸀠) of a graph 𝐺 = (𝑉, 𝐸). There
is corresponding one-to-one and onto mapping between the
set of 𝑉󸀠(𝐺󸀠) and 𝐸(𝐺). Two vertices of 𝐺󸀠 are adjacent if any
two edges in 𝐺 are potential crossing.

For example, according to the given fixed vertex ordering
of 𝑄3 (see Figure 3), 𝑄󸀠3 is a graph of 𝑛2𝑛−1 nodes, 𝑉󸀠(𝑄󸀠3) ={V󸀠12, V󸀠23, V󸀠34, V󸀠45, V󸀠56, V󸀠67, V󸀠78, V󸀠14, V󸀠36, V󸀠58, V󸀠27, V󸀠18}. V󸀠24 and V󸀠35
are adjacent in 𝑄󸀠3 because 𝑒24 and 𝑒35 are potential crossing
in a 2-page drawing of 𝑄3. A fixed vertex ordering of 𝑄4 and
its potential crossing can be seen in Figure 4.

In this paper, we are interested only in fixed linear
embeddings of 𝑄𝑛. There is a crossing between 𝑒𝑖𝑗 and 𝑒𝑙𝑘 if
and only if 𝑒𝑖𝑗 and 𝑒𝑙𝑘 are potential crossing and embedded
on the same side of 𝐿. We can see that the number of edge
crossings depends on the order of vertices and on the sides to
which the edges are assigned.

The 2-page linear crossing number of 𝑄𝑛, denoted by
]2(𝑄𝑛), is the minimum number of pairwise intersections of
edges crossings determined by a 2-page drawing of 𝑄𝑛. The
2-page fixed linear crossing number of 𝑄𝑛 is the minimum
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Figure 4: The 2-page drawing of 𝑄4 with fixed vertex ordering.

number of pairwise intersections of edges crossings deter-
mined by a 2-page drawing of 𝑄𝑛 with fixed vertex ordering
of 𝑄𝑛. It is known that ]2(𝑄𝑛) = 0 for 𝑛 = 1, 2, 3, ]2(𝑄𝑛) > 0
for 𝑛 ≥ 4.
3. Reduction to MAXCUT Problem

In this section, we show that the problem can be reduced to
the maximum cut problem. Next, we reduce the fixed linear
crossing number problem to the maximum cut problem
(MAXCUT). The MAXCUT problem is as follows.

Maximum Cut Problem (MAXCUT). Given an undirected
graph 𝐺󸀠 = (𝑉󸀠, 𝐸󸀠) the edge 𝑒𝑖𝑗 of the graph is associated
with nonnegative weights 𝑎𝑖𝑗. The problem is to find a cut of
the largest possible weight, that is, to partition the set of 𝑉󸀠
into disjoint sets 𝑉1 and 𝑉2 such that the total weight of all
edges linking 𝑉1 and 𝑉2 (i.e., with one incident node in 𝑉1
and the other one in 𝑉2) is as large as possible.

In the MAXCUT problem, we may assume that the
weights 𝑎𝑖𝑗 = 𝑎𝑗𝑖 ≥ 0 are defined for every pair 𝑖, 𝑗 of indices:
it suffices to set 𝑎𝑖𝑗 = 0 for pairs 𝑖, 𝑗 of nonadjacent nodes.
For the unweighted graph, we assume that 𝑎𝑖𝑗 = 1 for 𝑖, 𝑗 =1, 2, . . . , 𝑛.

Let𝐺 be a graph with a fixed vertex permutation. Given a
vertex partition (𝑉1, 𝑉2) of its conflict graph𝐺󸀠, the associated
cut embedding is the fixed linear embedding of𝐺where edges
corresponding to 𝑉1 and 𝑉2 are embedded to the half spaces
above and below the vertex line, respectively.

Lemma 2 (see [6]).
]2 (𝐺) = 󵄨󵄨󵄨󵄨󵄨𝐸󸀠󵄨󵄨󵄨󵄨󵄨 −MC (𝐺󸀠) , (4)

where |𝐸󸀠| is a number of potential crossing of 2-page drawing
of 𝐺, which is the number of edges of 𝐺󸀠.MC(𝐺󸀠) is the size of
the maxcut of 𝐺󸀠.
Proof. Given a 2-page (circle) drawing of 𝐺, define𝑊 ⊂ 𝑉𝑛
as the chords that are drawn inside the circle. The edges of 𝐸󸀠
with precisely one endpoint in𝑊 now correspond to edges of𝐺 that do not cross in the drawing.

Theorem 3 (see [7]). Consider a partition (𝑉1, 𝑉2) of𝑉󸀠. Then
the corresponding cut embedding is a fixed linear embedding of𝐺 with a minimum number of crossings if and only if (𝑉1, 𝑉2)
is a maximum cut in 𝐺󸀠.

Proof. Let 𝐹󸀠 be the set of edges in 𝐺󸀠 with one endpoint in𝑉1 and one endpoint in 𝑉2, that is, the cut given by (𝑉1, 𝑉2).
By definition of 𝐺󸀠, we know that every crossing in the cut
embedding associated with (𝑉1, 𝑉2) corresponds to an edge
in 𝐺󸀠 such that either both its endpoint belong to 𝑉1 or both
belong to 𝑉2, that is, to an edge in 𝐸󸀠 \ 𝐹󸀠. Thus, the number
of crossings is |𝐸󸀠| − |𝐹󸀠|. As |𝐸󸀠| is constant for a fixed vertex
permutation, the result follows.

Theorem 3 reduces the fixed linear crossing number
problem to the maximum cut problem (MAXCUT). In the
next section, we describe the relaxation of the MAXCUT
problem which leads to semidefinite programming.

3.1. Formulating MAXCUT by Semidefinite Relaxation. In
this section, we show that 2-page crossing number of hyper-
cube graph problem can be obtained by computing a semidef-
inite relaxation of MAXCUT.

First of all, we introduce the adjacency matrix of 𝐺
denoted Adj(𝐺) as we know it is an 𝑛 × 𝑛 matrix with the
property

Adj (𝐺) ≡ [𝑎𝑖𝑗] ,

𝑎𝑖𝑗 ∈ {0, 1} , 𝑎𝑖𝑗 = {{{
1, if V𝑖 and V𝑗 are adjacent;
0, otherwise.

(5)

FromAdj(𝐺)we construct the conflict graph of𝐺denoted𝐺󸀠. Finally, we perform MAXCUT on graph 𝐺󸀠. We use
semidefinite relaxation to approximate the optimal value
solution to the MAXCUT problem. Obviously the approxi-
mation is larger than the actual MAXCUT optimal value.The
feasibility of the relaxation set is strictly larger than the
original ones.

According to [2], the MAXCUT problem can be formu-
lated as follows:

max 14
𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗 (1 − 𝑥𝑖𝑥𝑗)
s.t. 𝑥2𝑖 = 1

𝑖 = 1, . . . , 𝑛.
(6)
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Figure 5: The adjacency matrix of size 26 × 26 of 𝑄6.

We call the optimal value of (6) as “OPT.”Then, the relaxation
of (6) can be rewritten as

max 14
𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗 (1 − 𝑋𝑖𝑗)
s.t. 𝑋 = [𝑋𝑖𝑗]𝑛𝑖,𝑗=1 = 𝑋𝑇 ⪰ 0,

𝑋𝑖𝑖 = 1, 𝑖 = 1, . . . , 𝑛,
(7)

where 𝐴 = [𝑎𝑖𝑗] is an adjacency matrix of 𝐺󸀠 and𝑋 = [𝑋𝑖𝑗] is
a feasible solution to the semidefinite relaxation.The problem
(7) is equivalent to

min 14 tr (𝐴𝑋)
s.t. 𝑋 = [𝑋𝑖𝑗]𝑛𝑖,𝑗=1 = 𝑋𝑇 ⪰ 0,

𝑋𝑖𝑖 = 1, 𝑖 = 1, . . . , 𝑛,
(8)

where 𝐴 is a given adjacency matrix of 𝐺󸀠 and 𝑋 = [𝑋𝑖𝑗] is
a feasible solution to the semidefinite relaxation. We call the
optimal value of (8) as “SDP.”

As we have seen from the relation (4), we let |𝐸󸀠𝑛| be the
number of potential crossing of 2-page drawing of 𝑄𝑛 with
our fixed vertex ordering (i.e., |𝐸󸀠𝑛| is the number of edges of𝑄󸀠𝑛).

We can determine |𝐸󸀠𝑛| by considering the upper half of
the main diagonal of the adjacency matrix of 𝑄𝑛.
Definition 4. Let 𝐴𝐺 = [𝑎𝑖𝑗] be the 𝑛 × 𝑛 adjacency matrix
of 𝐺. The element 𝑎𝑖𝑗 where 𝑖 + 𝑗 = 𝑛 + 1 is called minor
diagonal of adjacency matrix of 𝐺 and the element 𝑎𝑖𝑗 where𝑖 + 𝑗 = 𝑛 + 1, 𝑖 < 𝑗 is called semiminor diagonal of adjacency
matrix of 𝐺, denoted by smd(𝐴𝐺).

For simplicity, the size of smd(𝐴𝐺) is a number of
elements in smd(𝐴𝐺). Let 𝐴𝑄𝑛 be the adjacency matrix of
graph 𝑄𝑛. Therefore 𝐴𝑄𝑛 is 2𝑛 × 2𝑛 symmetric matrix. It is
clear that the size of smd(𝐴𝑄𝑛) is 2𝑛−1.

Let𝐴𝐺1 and𝐴𝐺2 be adjacency matrices of graphs𝐺1 and𝐺2, respectively; we say that the number of potential crossing
between 𝐴𝐺1 and 𝐴𝐺2, denoted by PC[𝐴𝐺1, 𝐴𝐺2], is simply
the number of potential crossing between 2-page drawing of
graph 𝐺1 and 𝐺2. The adjacency matrix of size 26 × 26 of 𝑄6
with respect to our ordering is presented in Figure 5.
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Lemma 5. For any integer 𝑛 ≥ 5,
PC [smd (𝐴𝑄𝑛−1) , smd (𝐴𝑄𝑛)]
= PC [smd (𝐴𝑄𝑛−1) , smd (𝐴𝑄𝑛+𝑖)] , (9)

where 𝑖 = 1, 2, . . . , 𝑛.
Lemma 6. For every adjacency matrix of 𝑄𝑛, 𝐴𝑄𝑛, where𝑛 ≥ 4, there exists adjacency matrix of 𝑄3, 𝐴𝑄3, which is a
submatrix embedding in 𝐴𝑄𝑛. The number of submatrix 𝐴𝑄3
embedding in 𝐴𝑄𝑛 is 2𝑛−3.
Lemma 7. For any integer 𝑛 ≥ 5,

PC [𝐴𝑄3, smd (𝐴𝑄𝑛)] = PC [𝐴𝑄3, smd (𝐴𝑄𝑛+𝑖)] , (10)

where 𝑖 = 1, 2, . . . , 𝑛.
Lemma 8. For any integer 𝑛 ≥ 5,

PC [𝐴𝑄𝑛−1, smd (𝐴𝑄𝑛)]
= PC [𝐴𝑄𝑛−1, smd (𝐴𝑄𝑛+𝑖)] , (11)

where 𝑖 = 1, 2, . . . , 𝑛.
Lemma 9. For 𝑛 ≥ 4, the number of block smd(𝐴𝑄𝑖)
embedding in 𝐴𝑄𝑛 equals 2𝑛−𝑖, 4 ≤ 𝑖 ≤ 𝑛.

Lemmas 5–9 follow directly from the definitions.

Lemma 10. For any integer 𝑛 ≥ 4,
PC [smd (𝐴𝑄𝑛) , smd (𝐴𝑄𝑛+1)] = (2𝑛−12 ) (2𝑛 − 2) . (12)

Proof. The number of potential crossing between smd(𝐴𝑄𝑛)
and smd(𝐴𝑄𝑛+1) is a result of the number of potential
crossing between all of the element 𝑎1,2𝑛 , 𝑎2,2𝑛−1, . . . , 𝑎2𝑛−1 ,2𝑛−1+1
in 𝐴𝑄𝑛 and smd(𝐴𝑄𝑛+1). That is,

PC [smd (𝐴𝑄𝑛) , smd (𝐴𝑄𝑛+1)]
= (2𝑛 − 2) + (2𝑛 − 4) + ⋅ ⋅ ⋅ + 2 + 0
= (2𝑛−12 ) (2𝑛 − 2) .

(13)

Theorem 11. For any integer 𝑛 ≥ 5,
󵄨󵄨󵄨󵄨󵄨𝐸󸀠𝑛󵄨󵄨󵄨󵄨󵄨 = 2 󵄨󵄨󵄨󵄨󵄨𝐸󸀠𝑛−1󵄨󵄨󵄨󵄨󵄨 + 2𝑛+1 + 2

𝑛∑
𝑘=5

(2𝑛−𝑘)(2𝑘4 − 1)(2
𝑘

4 ) ,
󵄨󵄨󵄨󵄨󵄨𝐸󸀠4󵄨󵄨󵄨󵄨󵄨 = 40,

(14)

where |𝐸󸀠𝑛| is the number of potential crossing of 2-page drawing
of 𝑄𝑛 with our fixed vertex ordering.

Proof. We prove this lemma by considering the number of
potential crossing of 2-page drawing of 𝑄𝑛 with our fixed
vertex ordering. Since 𝑄𝑛 has 2 copies of 𝑄𝑛−1 with some
edges connecting between them, the number of potential
crossing of𝐴𝑄𝑛 is a result of twice of the number of potential
crossing within 𝐴𝑄𝑛−1 together with PC[𝐴𝑄3, smd(𝐴𝑄𝑛)]
and PC[smd(𝐴𝑄𝑖), smd(𝐴𝑄𝑛)], 𝑖 = 4, 5, . . . , 𝑛 − 1.

Hence, it is enough to show that the number of potential
crossing between 2-page drawing of𝑄𝑛−1 and𝑄𝑛−1 is equal to𝛾(𝑛), where

𝛾 (𝑛) = 2𝑛+1 + 2 𝑛∑
𝑘=5

(2𝑛−𝑘)(2𝑘4 − 1)(2
𝑘

4 ) . (15)

Note 𝛾(𝑛) is the number of potential crossing between
all of submatrices 𝐴𝑄3 and smd(𝐴𝑄𝑛) and also between
smd(𝐴Q𝑖) and smd(𝐴𝑄𝑛), 𝑖 = 4, 5, . . . , 𝑛 − 1. By Lemmas 6
and 9,

𝛾 (𝑛) = 2𝑛−3 ⋅ PC [𝐴𝑄3, smd (𝐴𝑄𝑛)] + 2𝑛−4
⋅ PC [smd (𝐴𝑄4) , smd (𝐴𝑄𝑛)] + 2𝑛−5
⋅ PC [smd (𝐴𝑄5) , smd (𝐴𝑄𝑛)] + ⋅ ⋅ ⋅
+ 2𝑛−(𝑛−2) ⋅ PC [smd (𝐴𝑄𝑛−2) , smd (𝐴𝑄𝑛)]
+ 2𝑛−(𝑛−1) ⋅ PC [smd (𝐴𝑄𝑛−1) , smd (𝐴𝑄𝑛)] .

(16)

We precede by mathematical induction on 𝑛. For 𝑛 = 5, it
can be easily seen that 𝛾(5) = 176 by counting. Assuming (15)
holds true, now we consider 𝛾(𝑛+1) as a number of potential
crossing between all of the submatrices𝐴𝑄3 and smd(𝐴𝑄𝑛+1)
and also between smd(𝐴𝑄𝑖) and smd(𝐴𝑄𝑛+1), 𝑖 = 4, 5, . . . , 𝑛.
By the Lemmas 5, 6, 7, 9, 8, and 10,

𝛾 (𝑛 + 1) = 2(𝑛+1)−3 ⋅ PC [𝐴𝑄3, smd (𝐴𝑄𝑛+1)]
+ 2(𝑛+1)−4 ⋅ PC [smd (𝐴𝑄4) , smd (𝐴𝑄𝑛+1)]
+ 2(𝑛+1)−5 ⋅ PC [smd (𝐴𝑄5) , smd (𝐴𝑄𝑛+1)] + ⋅ ⋅ ⋅
+ 2(𝑛+1)−(𝑛−2) ⋅ PC [smd (𝐴𝑄𝑛−2) , smd (𝐴𝑄𝑛+1)]
+ 2(𝑛+1)−(𝑛−1) ⋅ PC [smd (𝐴𝑄𝑛−1) , smd (𝐴𝑄𝑛+1)]
+ 2(𝑛+1)−𝑛 ⋅ PC [smd (𝐴𝑄𝑛) , smd (𝐴𝑄𝑛+1)]
= 2 (2𝑛−3 ⋅ PC [𝐴𝑄3, smd (𝐴𝑄𝑛)] + 2𝑛−4
⋅ PC [smd (𝐴Q4) , smd (𝐴𝑄𝑛)] + 2𝑛−5
⋅ PC [smd (𝐴𝑄5) , smd (𝐴𝑄𝑛)] + ⋅ ⋅ ⋅ + 2𝑛−(𝑛−2)
⋅ PC [smd (𝐴𝑄𝑛−2) , smd (𝐴𝑄𝑛)] + 2𝑛−(𝑛−1)
⋅ PC [smd (𝐴𝑄𝑛−1) , smd (𝐴𝑄𝑛)]) + 2(𝑛+1)−𝑛
⋅ PC [smd (𝐴𝑄𝑛) , smd (𝐴𝑄𝑛+1)] = 2𝛾 (𝑛)
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+ 2(𝑛+1)−𝑛 ⋅ PC [smd (𝐴𝑄𝑛) , smd (𝐴𝑄𝑛+1)]
= 2𝛾 (𝑛) + 2(𝑛+1)−𝑛 ⋅ (2𝑛−12 ) (2𝑛 − 2) = 2𝛾 (𝑛)
+ (2) (2𝑛−1) (2𝑛−1 − 1) = 2𝛾 (𝑛) + 2(2𝑛+14 − 1)

⋅ (2𝑛+14 ) = 2[2𝑛+1

+ 2 𝑛∑
𝑘=5

(2𝑛−𝑘)(2𝑘4 − 1)(2
𝑘

4 )] + 2(2
𝑛+1

4 − 1)

⋅ (2𝑛+14 ) = 2 ⋅ 2𝑛+1 + 2
⋅ 𝑛∑
𝑘=5

(2𝑛+1−𝑘)(2𝑘4 − 1)(2
𝑘

4 ) + 2(2
𝑛+1

4 − 1)

⋅ (2𝑛+14 ) = 2(𝑛+1)+1

+ 2[ 𝑛∑
𝑘=5

(2𝑛+1−𝑘)(2𝑘4 − 1)(2
𝑘

4 )

+ (2(𝑛+1)−(𝑛+1))(2𝑛+14 − 1)(2𝑛+14 )] = 2(𝑛+1)+1

+ 2[𝑛+1∑
𝑘=5

(2(𝑛+1)−𝑘)(2𝑘4 − 1)(2
𝑘

4 )] .
(17)

The next theorem shows how effective the relaxation is.

Theorem 12 (see [8]). Let OPT be the optimal value of the
MAXCUT problem and SDP be the optimal value of the
semidefinite relaxation. Then

1 ≥ OPT
SDP

≥ 0.87856 ⋅ ⋅ ⋅ (18)

Theorem 12 guarantees that the optimal value of the
MAXCUT is close to the optimal value of the semidefinite
relaxation. From (4), we have

AP (]2 (𝑄𝑛)) = 󵄨󵄨󵄨󵄨󵄨𝐸󸀠𝑛󵄨󵄨󵄨󵄨󵄨 − AP (MC (𝑄󸀠𝑛)) , (19)

where |𝐸󸀠𝑛| is a number of potential crossing of 2-page
drawing of 𝑄𝑛. AP(]2(𝑄𝑛)) is an approximation of 2-page
fixed linear crossing number of 𝑄𝑛 and AP(MC(𝑄󸀠𝑛)) is an
approximation of MC(𝑄󸀠𝑛).
Corollary 13. LetAP(]2(𝑄𝑛)) be an approximation of ]2(𝑄𝑛).
Then we have

AP (]2 (𝑄𝑛)) ≤ ]2 (𝑄𝑛) ≤ 𝑘 (𝑛)AP (]2 (𝑄𝑛)) , (20)

where 𝑘(𝑛) is a computable quantity depending on 𝑛.

Table 1: The numerical results of the approximation of 2-page fixed
linear crossing number of 𝑄𝑛, AP(]2(𝑄𝑛)) for 𝑛 = 4, 5, 6.
𝑛 AP(MC(𝑄󸀠𝑛)) |𝐸󸀠𝑛| AP(]2(𝑄𝑛))
4 35 40 5
5 207 256 48
6 1034 1344 310

Table 2: The computable quantity 𝑘(𝑛), the bound of ]2(𝑄𝑛), and
the upper bound of cr(𝑄𝑛) for 𝑛 = 4, 5, 6.
𝑛 𝑘(𝑛) AP(]2(𝑄𝑛)) 𝑘(𝑛)AP(]2(𝐺)) Upper bound

of cr(𝑄𝑛)
4 1.91 5 9.55 8
5 1.55 48 74.36 56
6 1.43 310 444.42 352

Proof. From (4), (18), and (19), we have

]2 (𝑄𝑛)
AP (]2 (𝑄𝑛)) =

󵄨󵄨󵄨󵄨󵄨𝐸󸀠𝑛󵄨󵄨󵄨󵄨󵄨 −MC (𝑄󸀠𝑛)󵄨󵄨󵄨󵄨𝐸󸀠𝑛󵄨󵄨󵄨󵄨 − AP (MC (𝑄󸀠𝑛))
≤
󵄨󵄨󵄨󵄨󵄨𝐸󸀠𝑛󵄨󵄨󵄨󵄨󵄨 − 0.87856AP (MC (𝑄󸀠𝑛))󵄨󵄨󵄨󵄨𝐸󸀠𝑛󵄨󵄨󵄨󵄨 − AP (MC (𝑄󸀠𝑛)) .

(21)

Let 𝑘(𝑛) = (|𝐸󸀠𝑛| − 0.87856AP(MC(𝑄󸀠𝑛)))/(|𝐸󸀠𝑛| −
AP(MC(𝑄󸀠𝑛))) be the computable quantity depending on 𝑛.

Then,

]2 (𝑄𝑛)
AP (]2 (𝑄𝑛)) ≤ 𝑘 (𝑛)

]2 (𝑄𝑛) ≤ 𝑘 (𝑛) ⋅ AP (]2 (𝑄𝑛)) .
(22)

Corollary 13 shows that the upper bound of ]2(𝑄𝑛) is𝑘(𝑛) ⋅ AP(]2(𝑄𝑛)), where 𝑘(𝑛) is the computable quantity
depending on 𝑛.
3.2. Experimental Results. In this section, we consider the
hypercube graph 𝑄𝑛 for 𝑛 = 4, 5, 6. Then, we give some
examples for approximating the problems of the semidefinite
relaxation in the form (8). We approximate this problem via
MATLAB program together with an optimization toolbox
called “SeDuMi.” The SeDuMi is a package for solving opti-
mization problems with linear, quadratic, and semidefinite
constraints.

In Table 1, the second column shows numerical results for
the approximation of theMAXCUTon the associated conflict
graph𝑄󸀠𝑛 by using the semidefinite relaxation. It is well known
that this problem can be solved in a polynomial time. The
third column displays the numbers of potential crossing of 2-
page drawing of𝑄𝑛 referring to our fixed vertex ordering that
we evaluate from (14). Notice that this potential crossing of 2-
page drawing of𝑄𝑛 is the exact value. From (19), we calculate
the approximation of 2-page fixed linear crossing number of𝑄𝑛 for 𝑛 = 4, 5, 6. The results are shown in the last column.

In Table 2, we present the lower bound of ]2(𝑄𝑛),
AP(]2(𝑄𝑛)) and the upper bound of ]2(𝑄𝑛), 𝑘(𝑛)AP(]2(𝐺)).
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The second column shows the values of 𝑘(𝑛) for 𝑛 = 4, 5, 6.
We see that as 𝑛 get larger the values of 𝑘(𝑛) tend to decline
continuously. It is interesting to study the behavior of 𝑘(𝑛) as𝑛 → ∞. It does not surprise to see that our approximation is
strictly larger than the upper bound of cr(𝑄𝑛) (14) since the
latter one does not have a restriction that all vertices must be
placed on a line. However, it is surprising to see that these
numbers are not so different from each other.

4. Concluding Remarks

In this paper, given graph 𝐺, we show how the associating
conflict graph 𝐺󸀠 is constructed. We recharacterize the
problem of finding the crossing number of graph 𝐺 to the
MAXCUT problem of 𝐺󸀠. We approximate the MAXCUT
problem by the semidefinite relaxation which can be solved
easily by a standard optimization package; in this case, we
use SeDuMi 1.02. The numerical results show reasonable
outcome. Clearly, another relaxationmethod can be explored.
Moreover, it would be quite interesting to see the behavior of𝑘(𝑛) as 𝑛 get larger. One can further study how to estimate𝑘(𝑛) for a larger 𝑛.
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