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Finite element solution of unsteady magnetohydrodynamics (MHD) flow of an electrically conducting, incompressible viscous
fluid past through porous medium between two parallel plates is presented in the presence of a transverse magnetic field and Hall
effect.The results obtained from some test cases are then compared with previous publishedwork using the finite differencemethod
(FDM). Numerical examples show that the finite element method (FEM) gives more accurate results in comparison with the finite
difference method (FDM).

1. Introduction

Theoretical study of magnetohydrodynamics (MHD) flow
problems are frequently encountered in cooling systems of
nuclear reactors, MHD generators, blood flow measure-
ments, pumps, and accelerators.

Due to coupling of the equations for electrodynamics
and fluid mechanics, exact solution is possible only for some
simple situations. By using several numerical techniques,
such as finite element method (FEM), finite volume method
(FVM), and boundary element method (BEM), approximate
solution for the MHD flow problems can be obtained.

Gapta and Singh [1] obtained the exact solutions for
unsteady flow in some special cases. Ram and Mishra [2]
investigated the unsteady flow through magnetohydrody-
namic porous media. Singh and Lal [3] studied the FEM
solution of time-dependent MHD flow equations. Ram and
Jain [4] have discussed MHD free convective flow through
a porous medium in a rotating fluid. Reddy and Bathaiah
[5] have analyzed the Hall effects on MHD flow through a
porous straight channel. Lee and Dulikravich [6] proposed
FDM scheme for the 3-dimensional unsteady MHD flow
together with temperature field. Sheu and Lin [7] pre-
sented a convection-diffusion-reaction model for solving the
unsteady MHD flow using a FDM scheme. The stabilized
FEM for solution of the 3-dimensional time-dependentMHD

flow equations was given by Ben Salah and et al. [8].
Chauhan and Rastogi [9] have studied the Hall effects on
MHD slip flow and heat transfer through a porous medium
over an accelerated plate in a rotating system. Saha and
Chakrabarti [10] have investigated the impact of magnetic
field strength on magnetic fluid flow through a channel.
Moniem and Hassanin [11] have developed a solution of
MHD flow past a vertical porous plate through a porous
medium under oscillatory suction. Sa’adAldin and Qatanani
[12] have studied the unsteady MHD flow through two
parallel porous flat plates. Sivaiah and Srinivasa-Raju [13]
have discussed the finite element solution of heat and mass
transfer in MHD flow of a viscous fluid past a vertical
plate under oscillatory suction velocity. Yuksel and Ingram
[14] have investigated the numerical analysis of a finite
element method, Crank-Nicolson discretization for MHD
flows at small magnetic Reynold number. Bég et al. [15] have
developed a finite element and network electrical simulation
of rotatingmagnetofluid flow in nonlinear porousmediawith
inclined magnetic field and Hall currents. Sa’ad Aldin and
Qatanani [16] have studied the analytical and finite difference
methods for solving unsteady MHD flow through porous
medium between two parallel flat plates.

In this work, the finite element solution for the unsteady
magnetohydrodynamics (MHD) flow of an electrically con-
ducting, incompressible viscous fluid past through porous
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Figure 1: Schematic diagram of the system.

medium between two parallel plates in the presence of a
transverse magnetic field and Hall effect is considered. A
comparison study has been carried out between the finite
difference and the finite element solutions. A case study is
analyzed with both the finite element method (FEM) and the
finite difference method (FDM), namely, the implicit scheme
presented in [16]. It was found that the finite element method
(FEM) is more accurate for solving these type of problems.

2. Formulation of the Problem

We consider an unsteady flow of an electrically conducting,
incompressible viscous fluid past through porous medium
between two parallel plates with Hall effect. Let the 𝑥-axis be
taken along the plates and 𝑦-axis be normal to the plates.The
fluid is subjected to a constant transverse magnetic field of
strength 𝐵0 in the 𝑦 direction, with the flow being considered
in the 𝑥 direction, as illustrated in Figure 1. The governing
equations for the unsteady, viscous incompressible flow of
an electrically conducting fluid for the Brinkman-extended
Darcy model are as follows[2]:

Equation of continuity is

∇ ⋅ q = 0. (1)

Equation of motion is

𝜕q
𝜕𝑡 + (q ⋅ ∇) q = −1𝜌∇p +

𝜇
𝜌∇2q −

𝜇
𝜌 q𝑘 + 1𝜌 J × B. (2)

General Ohm’s law is

J + 𝜔𝜏𝐵0 𝐽 × B = 𝜎 [𝐸 + q × B + 1𝜌𝑒𝑛𝑒∇P𝑒] . (3)

Gauss’s law of magnetism is

∇ ⋅ B = 0, (4)

where q is the velocity vector, 𝜌 is the fluid density, p is the
pressure, J is the current density, B is the magnetic vector, 𝜇
is the coefficient of viscosity, 𝜎 is the electrical conductivity, 𝑘
is the permeability of themedium,𝜔 is the electron frequency,𝜏 is the electron collision time, 𝜌𝑒 is the electric charge, 𝑛𝑒 is
the number density of electron, P𝑒 is the electron pressure,
and 𝐸 is the electric field.

We assume 𝐸 to be negligible and the magnetic Reynold’s
number is small so that magnetic induction effect is ignored.
Moreover, in the absence of pressure gradient, the ion-slip
effects and electron pressure gradient, we have

J = 𝜎q × B − 𝑚𝐵0 J × B,
J = (𝑗𝑥, 𝑗𝑦, 𝑗𝑧) , q = (𝑢, 0, 0) , B = (0, 𝐵0, 0) ,

(5)

𝑗𝑥 = 𝑚𝑗𝑧, (6)

𝑗𝑦 = 0, (7)

𝑗𝑧 = 𝜎𝐵0𝑢 − 𝑚𝑗𝑥. (8)

Solving (6) and (8), we have

𝑗𝑥 = 𝜎𝐵0𝑚𝑢(1 + 𝑚2) ,
𝑗𝑧 = 𝜎𝐵0𝑢(1 + 𝑚2) ,

1𝜌 J × B = −1𝜌𝑗𝑧𝐵0.
(9)

As the plates are infinite, there is no 𝑥 dependence.
Consequently, (2) and (3) take the following form:

𝜕𝑢𝜕𝑡 = −1𝜌
𝜕𝑝
𝜕𝑥 + ]

𝜕2𝑢𝜕𝑦2 −
𝜎𝐵20𝑢𝜌 (1 + 𝑚2) − ]

𝑢𝑘 ,
0 = −1𝜌

𝜕𝑝
𝜕𝑦 ,

(10)

where 𝑢 is the axial velocity, ] is the kinematic viscosity, and𝑚 = 𝜔𝜏 is the Hall parameter. The initial and boundary
conditions are given by

𝑢 = 0, 𝑡 ≤ 0,
𝑢 = 0, 𝑦 = ±ℎ, 𝑡 > 0. (11)

Upon introducing the nondimensional quantities,

𝑌 = 𝑦ℎ ,
𝑇 = ]𝑡ℎ2 ,
𝑈 = 𝑢𝑉,
𝑀2 = 𝜎𝐵20ℎ2𝜇 ,
𝐾 = 𝑘ℎ2 ,
𝑃 = 𝑝ℎ𝜇𝑉,
𝑋 = 𝑥ℎ ,

(12)
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where𝑀 is the Hartman number, 𝐾 is the Darcy parameter,
and 𝑉 is the mean velocity of the fluid. Then, the partial dif-
ferential equations (10) togetherwith the initial and boundary
conditions (11) become

𝜕𝑈𝜕𝑇 = − 𝜕𝑃𝜕𝑋 + 𝜕2𝑈𝜕𝑌2 − ( 𝑀2
(1 + 𝑚2) +

1𝐾)𝑈, (13)

0 = 𝜕𝑃𝜕𝑌, (14)

subject to the initial and boundary conditions:

𝑈 = 0, 𝑇 ≤ 0,
𝑈 = 0, 𝑌 = ±1, 𝑇 > 0. (15)

In virtue of (14), the pressure is independent of 𝑌; then it
is a function of 𝑇 only. In this case, we can take the pressure
gradient as a constant quantity; that is,

𝜕𝑃𝜕𝑋 = −𝑃0, (16)

where 𝑃0 > 0; thus (13) becomes

𝜕𝑈𝜕𝑇 = 𝑃0 + 𝜕
2𝑈𝜕𝑌2 − 𝑎𝑈 (17)

subject to the initial and boundary conditions:

𝑈 = 0, 𝑇 ≤ 0,
𝑈 = 0, 𝑌 = ±1, 𝑇 > 0, (18)

where 𝑎 = (𝑀2/(1 + 𝑚2) + 1/𝐾).
3. Finite Element Method

3.1. Variational Formulations and Galerkin Approximation.
The dimensionless partial differential equation (17) subject
to the initial and boundary conditions (18) is solved by
weighted residual Galerkin finite element method. The stan-
dard approach to deriving a Galerkin scheme is to multiply
both sides of (17) by a test function 𝜓 ∈ 𝐻10 [−1, 1] and
integrate over the domain

∫1
−1

𝜕𝑈𝜕𝑇𝜓𝑑𝑥 = ∫
1

−1
𝑃0𝜓𝑑𝑥 + ∫1

−1

𝜕2𝑈𝜕𝑌2 𝜓𝑑𝑥
− 𝑎∫1
−1
𝑈𝜓𝑑𝑥,

(19)

where

𝐻10 fl {𝜓 ∈ 𝐿2 [−1, 1] , 𝜕𝜓𝜕𝑌 ∈ 𝐿2 [−1, 1] , 𝜓 (−1)
= 𝜓 (1) = 0} .

(20)

Integrating by parts, we obtain

⟨𝜕𝑈𝜕𝑇 , 𝜓⟩ = ⟨𝑃0, 𝜓⟩ − ⟨𝜕𝑈𝜕𝑌 ,
𝜕𝜓
𝜕𝑌⟩ − ⟨𝑎𝑈, 𝜓⟩ , (21)

where ⟨⋅, ⋅⟩ denotes the 𝐿2-inner product and ⟨𝑈, 𝜓⟩ = 0 for𝑇 ≤ 0.
We shall approximate the solution of (21) by assuming

that 𝑈 and 𝜓 lie in finite dimensional subspace of 𝐻10 [−1, 1]
for each 𝑇. Let 𝜑𝑖 ∈ 𝐻10 [−1, 1] for 𝑖 = 1, . . . ,𝑊 and assume
that the set 𝜑1, . . . , 𝜑𝑊 is linearly independent. Further, let 𝑆ℎ
be a partition of the interval [−1, 1] into subintervals −1 =𝑌0 < 𝑌1 < ⋅ ⋅ ⋅ < 𝑌𝑊 < 𝑌𝑊+1 = 1. Now we define the finite
dimensional space 𝑉ℎ spanned by 𝜑1, . . . , 𝜑𝑊 as

𝑉ℎ fl {V ∈ 𝐻10 [−1, 1] ,
V is piecewise linear function on 𝑆ℎ} .

(22)

To this end, the approximate solution 𝑢ℎ is
𝑢ℎ =

𝑊∑
𝑖=1

𝑢𝑖 (𝑇) 𝜑𝑖 (𝑌) . (23)

Inserting (23) into (21) and selecting as trial function 𝜓 the
basis function of 𝑢ℎ, we obtain a system of ODEs:

𝐵𝑢̇ = 𝑃 − 𝐴𝑢 − 𝐵𝑎𝑢, (24)

where 𝑢̇ = (𝜕𝑢1/𝜕𝑇, . . . , 𝜕𝑢𝑊/𝜕𝑇)𝑇 and 𝑢 = (𝑢1, . . . , 𝑢𝑤)𝑇.
Here𝐴 is the Stiffnessmatrix and𝐵 is theMasmatrix defined,
respectively, as

𝐴 = (𝐴 𝑖𝑗) = ∫1
−1
𝜑󸀠𝑖 (𝑌) 𝜑󸀠𝑗 (𝑌) 𝑑𝑌, 𝑖, 𝑗 = 1, 2, . . . , 𝑤,

𝐵 = (𝐵𝑖𝑗) = ∫1
−1
𝜑𝑖 (𝑌) 𝜑𝑗 (𝑌) 𝑑𝑌, 𝑖, 𝑗 = 1, 2, . . . , 𝑤,

𝑃 = (𝑃𝑖) = ∫1
−1
𝑃0𝜑𝑖 (𝑌) 𝑑𝑌, 𝑖 = 1, 2, . . . , 𝑤,

(25)

with 𝜑𝑖(𝑌𝑖) = 𝛿𝑖𝑗 being the usual finite element basis
corresponding to the partition 𝑆ℎ. Thus, to compute the
entries of the Stiffness matrix 𝐴, next, we need to determine𝜑󸀠𝑖 (𝑌).

Here

𝜑𝑖 (𝑌) =
{{{{{{{{{{{

𝑌 − 𝑌𝑖−1ℎ𝑖 , 𝑌𝑖−1 ≤ 𝑌 ≤ 𝑌𝑖,
𝑌𝑖+1 − 𝑌ℎ𝑖+1 , 𝑌𝑖 ≤ 𝑌 ≤ 𝑌𝑖+1,
0, elsewhere,

(26)

and then

𝜑󸀠𝑖 (𝑌) =
{{{{{{{{{{{

1ℎ𝑖 , 𝑌𝑖−1 ≤ 𝑌 ≤ 𝑌𝑖,
− 1ℎ𝑖+1 , 𝑌𝑖 ≤ 𝑌 ≤ 𝑌𝑖+1,
0, elsewhere,

(27)

where ℎ𝑖 = 𝑌𝑖 − 𝑌𝑖−1.
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Using (26) and (27), with a uniform mesh ℎ𝑖 = ℎ, we get

𝐴 = 1ℎ

[[[[[[[[[[
[

2 −1 0 ⋅ ⋅ ⋅ 0
−1 d d d

...
0 d d d 0
... d d d −1
0 ⋅ ⋅ ⋅ 0 −1 2

]]]]]]]]]]
]

, (28)

𝐵 = ℎ

[[[[[[[[[[[[[
[

23 16 0 ⋅ ⋅ ⋅ 0
16 d d d

...
0 d d d 0
... d d d

16
0 ⋅ ⋅ ⋅ 0 16 23

]]]]]]]]]]]]]
]

, (29)

𝑃 = ℎ𝑃0

[[[[[[[[[[[[
[

1
...
...
...
1

]]]]]]]]]]]]
]

. (30)

Scheme (24) is called semidiscretization, since 𝑢ℎ is still a
continuous function of 𝑇 [17].

3.2. Time Stepping. In this section, we consider the semidis-
cretization in time. We first discretize the time interval (0, 𝑇)
into a uniform grid with size 𝑘 = 𝑇/𝑁. Approximating the
derivative in (24) at time level 𝑇𝑛 by the Crank-Nicolson
scheme with 𝑢0 = 0, we have

𝐵(𝑢𝑛 − 𝑢𝑛−1𝑘 ) = 𝑃 − 𝐴(𝑢𝑛 + 𝑢𝑛−12 )

− 𝐵𝑎(𝑢𝑛 + 𝑢𝑛−12 ) .
(31)

Then, we rewrite the Crank-Nicolson method as

(𝐵 + 𝑘2 (𝐴 + 𝐵𝑎)) 𝑢𝑛

= (𝐵 − 𝑘2 (𝐴 + 𝐵𝑎)) 𝑢𝑛−1 + 𝑘𝑃.
(32)

Thus, we have the full discretization which is simply a
combination of discretization in space and time:

𝑈 = 𝑢𝑛ℎ. (33)

4. Numerical Results and Discussion

To show the efficiency of the FEM described in the previous
parts and to draw a comparison with the FDM, we present
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Figure 2: The exact, FEM, and FDM values for the velocity.
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Figure 3:The absolute error resulted from the FEM approximation.

some examples. These tests are chosen such that there exist
analytical solutions for them to give an obvious overview of
the methods presented in this work.

Numerical Example 1. As an application to the FEM and
FDM, we consider the following test case with the values𝑀 = 1, 𝑚 = 1, 𝐾 = 0.1, 𝑃0 = 1, 𝑇 = 0.25 fixed, and𝑌 ∈ [−1, 1]. Next the computed matrices 𝐴, 𝐵, and 𝑃 given
in (28), (29), and (30), respectively, are used in (32) to obtain
the velocity 𝑈(𝑌, 𝑇).

Table 1 compares the exact values for the velocity 𝑈(𝑌, 𝑇)
with both the FEM and the FDM values (for more details on
the exact and FDM solutions, see [16]). A further comparison
between the exact, FEM, and FDM values for the velocity
can be observed in Figure 2. A plot of the absolute error
that resulted from the FEM can be seen in Figure 3. Figure 4
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Table 1: The exact, (FEM) and (FDM) solutions of the velocity 𝑈.
𝑌 Exact solution 𝑈𝐸 FEM solution 𝑈FE |𝑈𝐸 − 𝑈FE| by FEM FDM solution 𝑈FD |𝑈𝐸 − 𝑈FD| by FDM−0.8 0.0439256214739 0.0439263413482 7.1987427380237 × 10−7 0.0439284690437 0.2847569757748 × 10−5
−0.6 0.0662966816784 0.0662977446546 1.0629762063479 × 10−6 0.0662354201183 0.6126156005674 × 10−4
−0.4 0.0773731593814 0.0773743987214 1.2393400675991 × 10−6 0.0772434172904 0.1297420909940 × 10−3
−0.2 0.0824053505275 0.0824066768827 1.3263552283981 × 10−6 0.0822283020686 0.1770484588176 × 10−3
0 0.0838631333124 0.0838644864314 1.3531190140581 × 10−6 0.0836692897549 0.1938435575730 × 10−3
0.2 0.0824792484052 0.0824805760964 1.3276912429471 × 10−6 0.0823013886500 0.1778597551711 × 10−3
0.4 0.0775578709141 0.0775591133358 1.2424216914302 × 10−6 0.0774266269162 0.1312439979023 × 10−3
0.6 0.0666815959272 0.0666826648556 1.0689283097276 × 10−6 0.0666185173810 0.6307854626647 × 10−4
0.8 0.0446904326399 0.0446911643550 7.3171502338459 × 10−7 0.0446921159260 0.1683286084617 × 10−5
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Figure 4: The absolute error resulted from the FEM and FDM
approximations.

compares the absolute errors obtained from the FEM and the
FDM solutions.

Numerical Example 2. As for another test case, we take𝑀 =2, 𝑚 = 1, 𝐾 = 0.3, 𝑃0 = 1, 𝑌 = 0.5 fixed, and 𝑇 ∈ [0, 1].
Figure 5 compares the exact, FEM, and FDM values for the
velocity. Figure 6 presents a plot of the absolute error that
resulted from the FEM. A comparison between the absolute
errors obtained from the FEM and the FDM solutions can be
seen in Figure 7.

5. Conclusions

MHD flow problems, which have a very important place in
physics and engineering, are usually hard to solve analytically.
Therefore, it is required to obtain approximate solutions
using computational methods. In this work, the problem of
unsteadyMHDflow through porousmedium in the presence
of magnetic field between two parallel flat plates has been
investigated and solved using the FEM.

U
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Figure 5: The exact, FEM, and FDM values for velocity case 2.
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Figure 6:The absolute error resulted fromFEMapproximation case
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Figure 7: The absolute error that resulted from FEM and FDM
approximations case 2.

A comparison between FFM and FDM has been carried
out.The exact results and the numerical results using the FEM
have shown to be in closed agreement.This can clearly be seen
in Figures 2, 3, 5, and 6.The results of the numerical examples
indicate that the FFM is more accurate than the FDM (see
Figures 4 and 7). This asserts the ability and reliability of the
FEM for solving these types of problems.
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