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A six-compartment mathematical model is formulated to investigate the role of media campaigns in Ebola transmission dynamics.
Themodel includes tweets or messages sent by individuals in different compartments.Themedia campaigns reproduction number
is computed and used to discuss the stability of the disease states. The presence of a backward bifurcation as well as a forward
bifurcation is shown together with the existence and local stability of the endemic equilibrium. Results show that messages sent
through media have a more significant beneficial effect on the reduction of Ebola cases if they are more effective and spaced out.

1. Introduction

The world faced one of the most devastating Ebola virus
disease (EVD) outbreaks ever in between 2014 and 2015.
EVD is caused by a virus called Ebola, which was discovered
in the Democratic Republic of Congo in 1976 near a river
called Ebola [1]. There are five known species of Ebola: Zaire
ebolavirus which has caused the 2014 Ebola disease outbreak
[2], Sudan ebolavirus, Cote d’Ivoire ebolavirus, Bundibugyo
ebolavirus (Uganda), and Reston ebolavirus which has not
yet caused disease in humans [3]. This virus lives in animals
like bats and primates, mostly found in Western and Central
Africa.The virus can be transmitted from animals to humans
when an individual comes into contact with an infectious
animal through handling of contaminatedmeat, for example,
and contamination is also possible among animals. Contam-
ination can occur among humans when they have nonpro-
tected contactwith an infectious individual’s fluids like faeces,
vomit, saliva, sweat, and blood [4]. It can also happen in hos-
pitals, where healthcare practitioners paid a heavy price [1].

Symptoms can appear after 2 to 21 days following contam-
ination and the infectious period can last from4 to 10 days [5].
Some contaminated individuals become symptomatic after
21 days [6], whereas others will never develop symptoms
and remain asymptomatic [4, 7, 8]. When the virus gets
into a human body, it rapidly replicates and attacks the

immune system. So, depending on the state of the infected
individual’s immune system, death can directly follow or
recovery can occur after treatment. According to the World
Health Organisation (WHO), a suspected case of EVD is any
person, alive or dead, suffering or having suffered from a
sudden onset of high fever and having had contact with a
suspected or confirmed Ebola case, a dead or sick animal, and
at least three of the following symptoms: headaches, anorexia,
lethargy, achingmuscles or joints, breathing difficulties, vom-
iting, diarrhoea, stomach pain, inexplicable bleeding, or any
sudden inexplicable death [9]. Confirmed cases of EVD are
individuals who would have tested positive for the virus anti-
gen either by detection of virus RNAbyReverse Transcriptase
Polymerase Chain Reaction or by detection of IgM antibodies
directed against Ebola [9]. Ebola seropositive individuals can
be either asymptomatic or symptomatic. Post-Ebola survey
results showed that 71%of seropositive individualsmonitored
were asymptomatic [7]. Symptomless EVD patients have low
infectivity due to their very low viral load whereas the symp-
tomatic cases transmit the disease through their fluids [8].

Media campaigns have been included in mathematical
models in recent years. Exponential functions aremostly used
to represent their impact on people’s behaviour which affects
disease evolution [10, 11].

A model where media coverage influences the trans-
mission rate of a given disease is presented in [12]. An
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exponentially decreasing function is used to describe the
media coverage over time. The results show that media
coverage has a short-term beneficial effect on the targeted
population. A smoking cessation model with media cam-
paign was given in [13] and results showed that the repro-
duction number is suppressed when media campaigns that
focus on smoking cessation are increased. Thus, spreading
information to encourage smokers to quit smoking was an
effective intervention. The impact of Twitter on influenza
was studied in [14]. An exponential term was associated
to model the effect of Twitter messages on reducing the
transmission rate of influenza. It was noted that Twitter can
have a substantial influence on the dynamics of influenza
virus infection and can provide a good real-time assessment
of the current disease condition.

There is no large-scale treatment for EVD as yet, so
stopping the transmission chain remains the only viable
form of control. Media campaigns publicise the means of
contracting the disease and the behaviour to adopt when a
suspected or confirmed Ebola case is detected. The potential
effect of media campaigns on Ebola transmission dynamics
is thus of great interest. This paper is motivated by the
work in [14] and was done as an M.S. research work by
the first author [15]. We use a mathematical model to
describe the transmission dynamics of EVD in the presence
of asymptomatic cases and the impact ofmedia campaigns on
the disease transmission is represented by a linear decreasing
function. The efficacy of media campaigns is a state variable
in this model and a differential equation describing its
variation is given. We examine the long-term dynamics of
EVD and evaluate the potential impact of media campaigns
on reducing the number of Ebola cases.The paper is arranged
as follows: the model formulation is presented in Section 2,
and the model properties and analysis are given in Section 3.
The numerical simulations are presented in Section 4 and we
give concluding remarks in the last section.

2. Model Formulation

A deterministic model with six independent compartments
comprising individuals that are susceptible (𝑆), exposed
(𝐸), infected asymptomatic (𝐼𝑎), infected symptomatic (𝐼𝑠),
recovered (𝑅), and deceased (𝐷) is formulated. The total
population size𝑁 is given by

𝑁(𝑡) = 𝑆 (𝑡) + 𝐸 (𝑡) + 𝐼𝑎 (𝑡) + 𝐼𝑠 (𝑡) + 𝑅 (𝑡) + 𝐷 (𝑡) ,
∀𝑡 ≥ 0. (1)

We only consider the Zaire Ebola virus strain which caused
the 2014 Ebola outbreak inWest Africa.We assume a constant
natural death rate 𝜇 for the whole model. The study is made
over a relatively large period so that those who recover from
EVD gain permanent immunity against the strain.

Recruitment into the susceptibles class is done through
birth or migration at a constant rate Λ and susceptible
individuals become exposed after unsafe contact with Ebola
virus. After contamination, susceptibles move to compart-
ment 𝐸 and, considering 1/𝛾 as the incubation period,
individuals leave the exposed compartment at a rate 𝛾. After
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Figure 1: Flow diagram for EVD.

the incubation period, a proportion 𝑝 of the exposed do
not develop symptoms and become infected asymptomatic
individuals who may recover at a rate 𝛿1. The asymptomatic
individualsmay develop symptoms and become symptomatic
at a rate 𝜃. The rest of the exposed individuals develop symp-
toms and become symptomatic. The infected symptomatic
class is diminished by EVD related deaths at a rate 𝜎 or
recovery at a rate 𝛿2. Recovered individuals can only leave
the compartment through natural death and dead bodies are
disposed of at a rate 𝜌.

The general objective of media campaigns against a
disease is to increase the population’s awareness of the disease
and correct misperceptions about how it is spread and how
it is and is not acquired [18]. The efficacy of messages sent
through media is thus their ability to produce the intended
results. We consider here that Ebola disease related messages
are exchanged by individuals from each of the compartments
at any time 𝑡. After receiving tweets or messages related
to Ebola disease, the population decides on the means of
preventing or even treating the disease.Messages are assumed
to get outdated at a rate 𝜔. 𝑀(𝑡) is defined as the fraction of
effectivemessages sent by individuals of the respective classes
at any time 𝑡. Thus, 𝑀(𝑡) is the ratio of effective messages
to the total messages sent. The contributions to 𝑀 from the
living compartments are, respectively, 𝛼1, 𝛼2, 𝛼3, 𝛼4, and 𝛼5.
The use of the campaigns is to reduce EVD transmission.
We assume here that media campaigns primarily target the
transmission process and 0 < 𝑀(𝑡) ≤ 1, ∀𝑡 ≥ 0.

The force of infection will be given by

𝜆 (𝑡) = 𝛽𝑐 (1 −𝑀 (𝑡)) (𝐼𝑠 (𝑡) + 𝜂𝐷 (𝑡))
𝑁 (𝑡) , (2)

where 𝛽 is the probability that a contact will result in an
infection and 𝑐 is the number of contacts between susceptible
and infectious individuals.The parameter 𝜂 > 1 describes the
high infectivity of dead bodies.The flow diagram is presented
in Figure 1.
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2.1. Model Equations. The system of differential equations
describing the variation of the state variables within the
model is as follows:

𝑑𝑆 (𝑡)
𝑑𝑡 = Λ − (𝜇 + 𝜆 (𝑡)) 𝑆 (𝑡) , (3)

𝑑𝐸 (𝑡)
𝑑𝑡 = 𝜆 (𝑡) 𝑆 (𝑡) − (𝜇 + 𝛾) 𝐸 (𝑡) , (4)

𝑑𝐼𝑎 (𝑡)𝑑𝑡 = 𝑝𝛾𝐸 (𝑡) − (𝜇 + 𝜃 + 𝛿1) 𝐼𝑎 (𝑡) , (5)

𝑑𝐼𝑠 (𝑡)𝑑𝑡 = (1 − 𝑝) 𝛾𝐸 (𝑡) + 𝜃𝐼𝑎 (𝑡) − (𝜇 + 𝛿2 + 𝜎) 𝐼𝑠 (𝑡) , (6)

𝑑𝑅 (𝑡)
𝑑𝑡 = 𝛿1𝐼𝑎 (𝑡) + 𝛿2𝐼𝑠 (𝑡) − 𝜇𝑅 (𝑡) , (7)

𝑑𝐷 (𝑡)
𝑑𝑡 = 𝜎𝐼𝑠 (𝑡) − 𝜌𝐷 (𝑡) , (8)

𝑑𝑀(𝑡)
𝑑𝑡 = 𝛼1𝑆 (𝑡) + 𝛼2𝐸 (𝑡) + 𝛼3𝐼𝑎 (𝑡) + 𝛼4𝐼𝑠 (𝑡)

+ 𝛼5𝑅 (𝑡) − 𝜔𝑀(𝑡) .
(9)

We set 𝑆(0) > 0, 𝐸(0) ≥ 0, 𝐼𝑎(0) ≥ 0, 𝐼𝑠(0) ≥ 0, 𝑅(0) ≥0, 𝐷(0) ≥ 0, and 𝑀(0) ≥ 0 as the initial values of each of
the state variables 𝑆, 𝐸, 𝐼𝑎, 𝐼𝑠, 𝑅, 𝐷, and𝑀, all assumed to be
positive.

3. Model Properties and Analysis

3.1. Existence and Uniqueness of Solutions. The right hand
side of system (3)–(9) is made of Lipschitz continuous func-
tions since they describe the size of a population. According
to Picard’s Existence Theorem, with given initial conditions,
the solutions of our system exist and they are unique.

Theorem 1. The system makes biological sense in the region

Ω = {(𝑆 (𝑡) , 𝐸 (𝑡) , 𝐼𝑎 (𝑡) , 𝐼𝑠 (𝑡) , 𝑅 (𝑡) , 𝐷 (𝑡) ,𝑀 (𝑡))

∈ 𝑅7 : 𝑁 (𝑡) ≤ Λ
𝜇 , 0 < 𝑀 (𝑡) ≤ 1}

(10)

which is attracting and positively invariant with respect to the
flow of system (3)–(9).

Proof. We first assume that 𝜌 > 𝜇 during the modelling time.
This assumption makes sense since EVD death rate is higher
than the natural death rate in the course of an EVD epidemic.
By adding (3)–(8), we have

𝑑𝑁 (𝑡)
𝑑𝑡 ≤ Λ − 𝜇𝑁 (𝑡) . (11)

Integrating (11) gives the following solution:

0 ≤ 𝑁 (𝑡) ≤ (𝑁 (0) − Λ
𝜇 ) exp [−𝜇𝑡] + Λ

𝜇 , ∀𝑡 ≥ 0. (12)

We have lim𝑡→∞𝑁(𝑡) < Λ/𝜇 when 𝑁(0) ≤ Λ/𝜇. However,
if 𝑁(0) ≥ Λ/𝜇, 𝑁(𝑡) will decrease to Λ/𝜇. So, 𝑁(𝑡) is thus a
bounded function of time.

Together with 𝑀 which is already bounded (see proof
in Appendix A), we can say that Ω is bounded and at
limiting equilibrium lim𝑡→∞𝑁(𝑡) = Λ/𝜇. Besides, any sum
or difference of variables inΩ with positive initial values will
remain inΩ or in a neighbourhood ofΩ.Thus,Ω is positively
invariant and attractingwith respect to the flowof system (3)–
(9).

3.2. Positivity of Solutions

Theorem 2. The existing solutions of system (3)–(9) are all
positive.

Proof. From (3), we can have

𝑑𝑆 (𝑡)
𝑑𝑡 ≥ − (𝜆 (𝑡) + 𝜇) 𝑆 (𝑡) , ∀𝑡 ≥ 0. (13)

Solving for (13) yields

𝑆 (𝑡) = 𝑆 (0) exp [−∫𝑡
0
𝜆 (𝜏) 𝑑𝜏 − 𝜇𝑡] , (14)

which is positive given that 𝑆(0) is also positive.
Similarly, from (4), we have

𝑑𝐸 (𝑡)
𝑑𝑡 ≥ − (𝛾 + 𝜇) 𝐸 (𝑡) , ∀𝑡 ≥ 0, (15)

so that

𝐸 (𝑡) = 𝐸 (0) exp [− (𝛾 + 𝜇) 𝑡] , (16)

which thus shows that 𝐸(𝑡) is positive since 𝐸(0) is also
positive.

Similarly, from (5), we can write

𝑑𝐼𝑎 (𝑡)𝑑𝑡 ≥ − (𝜇 + 𝜃 + 𝛿1) 𝐼𝑎 (𝑡) , ∀𝑡 ≥ 0, (17)

from which we obtain

𝐼𝑎 (𝑡) ≥ 𝐼𝑎 (0) exp [− (𝜇 + 𝜃 + 𝛿1) 𝑡] . (18)

Thus, 𝐼𝑎 is positive since 𝐼𝑎(0) is positive.
The remaining equations yield

𝐼𝑠 (𝑡) ≥ 𝐼𝑠 (0) exp [− (𝜇 + 𝜎 + 𝛿2) 𝑡] ,
𝑅 (𝑡) ≥ 𝑅 (0) exp [−𝜇𝑡] ,
𝐷 (𝑡) ≥ 𝐷 (0) exp [−𝜌𝑡] ,
𝑀 (𝑡) ≥ 𝑀 (0) exp [−𝜔𝑡] .

(19)

So, 𝐼𝑠(𝑡), 𝑅(𝑡), and 𝑀(𝑡) are all positive for positive initial
conditions. Thus, all the state variables are positive.
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3.3. Steady States Analysis. This model has two steady states:
the disease-free equilibrium (DFE) which describes the total
absence of EVD in the studied population and the endemic
equilibrium (EE) which exists at any positive prevalence of
EVD in the population.This section is dedicated to the study
of local and global stability of these steady states.

3.4. The Disease-Free Equilibrium and 𝑅𝑀. The disease-
free equilibrium is given by (𝑆∗, 𝐸∗, 𝐼∗𝑎 , 𝐼∗𝑠 , 𝑅∗, 𝐷∗,𝑀∗) =(Λ/𝜇, 0, 0, 0, 0, 0, Λ𝛼1/𝜔𝜇). To compute the media campaigns
reproductionnumber𝑅𝑀, we use the next generationmethod
comprehensively discussed in [19].The renewal matrix 𝐹 and
transfer matrix 𝑉 at DFE are

𝐹 =
[[[[[
[

0 0 𝑐𝛽 (1 −𝑀∗) 𝑐𝛽𝜂 (1 −𝑀∗)
0 0 0 0
0 0 0 0
0 0 0 0

]]]]]
]
,

𝑉 =
[[[[[
[

𝑄1 0 0 0
−𝛾𝑝 𝑄2 0 0

(𝑝 − 1) 𝛾 −𝜃 𝑄3 0
0 0 𝜎 −𝜌

]]]]]
]
,

(20)

where
𝑄1 = 𝛾 + 𝜇,
𝑄2 = 𝜇 + 𝜃 + 𝛿1,
𝑄3 = 𝛿2 + 𝜎 + 𝜇.

(21)

The media campaigns reproduction number 𝑅𝑀 is the
spectral radius of the matrix 𝐹𝑉−1 and is given by

𝑅𝑀 = 𝑐𝛽𝛾 (1 −𝑀∗)
𝜌𝑄1𝑄2𝑄3 (𝑝𝜃 + (1 − 𝑝)𝑄2) (𝜌 + 𝜂𝜎) . (22)

We can rewrite 𝑅𝑀 = 𝑅1 +𝑅2 for elucidation purposes where

𝑅1 = 𝑐𝛽𝛾 (1 −𝑀∗)
𝜌𝑄1𝑄3 (1 − 𝑝]) ,

𝑅2 = 𝑐𝛽𝛾 (1 −𝑀∗)
𝜌𝑄1𝑄3 (1 − 𝑝]) 𝜂𝜎,

(23)

and ] = (𝜇 + 𝛿1)/𝑄2.
Note here that 𝛾/𝑄1 is the probability that an individual

in 𝐸 moves either to 𝐼𝑎 or to 𝐼𝑠. 𝜎/𝑄3 is the proportion
of symptomatic individuals who die from EVD. Thus, the
media campaigns reproduction number is a sumof secondary
infections due to infectious individuals in 𝐼𝑠 and the deceased
in𝐷. Notice here the reduction factor 1−𝑀∗which represents
the attenuating effect of media campaigns on the future
number of EVD cases.

Theorem 3. The DFE is globally asymptotically stable when-
ever 𝑅𝑀 < 𝑅𝑐𝑀 < 1, where 𝑅𝑐𝑀 = min(𝑅(𝑀(𝑡)), 𝑅(𝑀, ])) and𝑅(𝑀, ]) will be defined later. When 𝑅𝑐𝑀 < 𝑅𝑀 < 1, the DFE is
locally stable. Otherwise, the DFE is unstable.

Proof. Let us define 𝑉(𝑡) = 𝐸(𝑡) + 𝐼𝑎(𝑡) + 𝐼𝑠(𝑡) + 𝐷(𝑡) as the
Lyapunov function.

𝑉(𝑡) > 0 since 𝐸(𝑡) > 0, 𝐼𝑎(𝑡) > 0, 𝐼𝑠(𝑡) > 0, and𝐷(𝑡) > 0 ∀𝑡 > 0.
𝑉(𝑡) = 0 if 𝐸(𝑡) = 𝐼𝑎(𝑡) = 𝐼𝑠(𝑡) = 𝐷(𝑡) = 0 (at DFE).

Thus, 𝑉 is a positive definite function at the DFE.
The derivative of 𝑉 is given by

�̇� = �̇� + �̇�𝑎 + �̇�𝑠
= (𝑐𝛽 (1 −𝑀) 𝑆

𝑁 − 𝑄3 + 𝜎) 𝐼𝑠 + (𝛾 − 𝑄1) 𝐸
+ (𝜃 − 𝑄2) 𝐼𝑎 − 𝜌𝐷.

(24)

Also, 𝑆/𝑁 ≤ 1 and at equilibrium

𝐸 = 𝑄2𝑝𝛾𝐼𝑎,

𝐼𝑠 = [𝑝𝜃 + (1 − 𝑝)𝑄2]𝑝𝑄3 𝐼𝑎,
𝐷 = 𝜎

𝜌𝐼𝑠.
(25)

Plugging (25) into (24) yields

�̇� ≤ 𝑄1𝑄2𝑄3𝛾 [𝑝𝜃 + (1 − 𝑝)𝑄2] (𝑅 (𝑀 (𝑡)) − 1) 𝐼𝑠 (26)

with

𝑅 (𝑀 (𝑡))
= 𝑐𝛽𝛾 (1 −𝑀 (𝑡))

𝜌𝑄1𝑄2𝑄3 (𝑝𝜃 + (1 − 𝑝)𝑄2) (𝜌 + 𝜂𝜎) . (27)

Thus, �̇� ≤ 0 when 𝑅(𝑀(𝑡)) ≤ 1 and, particularly, �̇� = 0
only if 𝐸 = 𝐼𝑎 = 𝐼𝑠 = 𝐷 = 0. Since 𝑀(𝑡) ≥ 𝑀∗ for all𝑡 > 0 (see proof in Appendix A), we have 𝑅𝑀 < 𝑅(𝑀(𝑡)).
Because the largest invariant set for which �̇� = 0 in Ω is the
DFE and �̇� ≤ 0 if 𝑅(𝑀(𝑡)) ≤ 1, by using the invariance
principle of LaSalle [20], we can conclude that the DFE is
globally asymptotically stable for 𝑅𝑀 < 𝑅(𝑀(𝑡)) < 1.
Together with the existence of a backward bifurcation later
proven, we finally obtain the global stability of the DFE for𝑅𝑀 < 𝑅𝑐𝑀 < 1.
Analysis of the Reproduction Number 𝑅𝑀.𝑅𝑀 is considered as
a reproduction number whose values depend on the fraction
of effective messages on EVD at a given time. Assuming𝑀 to
be constant, Figure 2 graphically describes the relationship
between two concepts: reproduction number and media
campaigns efficacy. It shows the reducing effect of media
campaigns on the number of EVD infected individuals and
indicates as well how we can test the efficacy of Ebola related
messages through the pace of the disease transmission.
In fact, for each value of 𝑀, the corresponding value of
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Figure 2: Time dependent reproduction number. The parameters
values used for this plot are 𝜇 = 0.008, 𝛽 = 0.2, 𝜎 = 0.58, 𝛾 = 0.845,𝑝 = 0.85, 𝜃 = 0.1, 𝛿1 = 0.15, 𝛿2 = 0.6, 𝑐 = 12, 𝜔 = 4 × 10−4,𝛼1 = 9 × 10−7, 𝛼2 = 2 × 10−7, 𝛼3 = 5 × 10−6, 𝛼4 = 8 × 10−5, 𝛼5 = 10−6,𝜌 = 0.97, and 𝜂 = 3.5.

the reproduction number can be found and then used to
analyse the disease evolution. For instance, when 𝑅𝑀 = 1,
the critical value of media campaigns efficacy 𝑀𝑐 can be
determined. Since the behaviour of the system changes when
the reproduction number crosses the value one,𝑀𝑐 can also
be used as a threshold parameter that indicates a behavioural
change of the system and thus can help in the disease control
for any given set of parameter values.

3.5. Existence and Stability of the Endemic Equilibrium.
In this section, we show the existence of the endemic
equilibrium (EE). We denote the endemic equilibrium by(𝑆∗∗, 𝐸∗∗, 𝐼∗∗𝑎 , 𝐼∗∗𝑠 , 𝑅∗∗, 𝐷∗∗,𝑀∗∗). At equilibrium, (3)–(9)
give

𝑆∗∗ = 1
𝜆∗∗ + 𝜇𝑄1𝑄2𝑄3,

𝐸∗∗ = 𝜆∗∗
(𝜆∗∗ + 𝜇)𝑄2𝑄3,

𝐼∗∗𝑎 = 𝑝𝛾𝜆∗∗
(𝜆∗∗ + 𝜇)𝑄3,

𝐼∗∗𝑠 = 𝛾𝜆∗∗ [𝑝𝜃 + 𝑄2 (1 − 𝑝)]
(𝜆∗∗ + 𝜇) ,

𝑅∗∗ = 𝛾𝜆∗∗ [𝑝 (𝑄3𝛿1 + 𝜃𝛿2) + 𝑄2𝛿2 (1 − 𝑝)]
𝜇 (𝜆∗∗ + 𝜇) ,

𝐷∗∗ = 𝛾𝜆∗∗𝜎 [𝑝𝜃 + 𝑄2 (1 − 𝑝)]
𝜌 (𝜆∗∗ + 𝜇) ,

𝑀∗∗ = 1
𝜇𝜔 (𝜆∗∗ + 𝜇) (𝜙1 + 𝜙2𝜆∗∗) ,

(28)

where

𝜆∗∗ = 𝛽𝑐 (1 −𝑀∗∗) (𝐼∗∗𝑠 + 𝜂𝐷∗∗)
𝑁∗∗ ,

𝜙1 = 𝜇𝑄1𝑄2𝑄3𝛼1,

Table 1: Roots signs.

]2 > 0
]1 > 0 ]1 < 0

]0 > 0
(𝑅𝑀 < 1) ]0 < 0

(𝑅𝑀 > 1) ]0 > 0
(𝑅𝑀 < 1) ]0 < 0

(𝑅𝑀 > 1)
𝜆∗∗1 − − + −
𝜆∗∗2 − + + +

𝜙2 = 𝛾 (𝜇𝛼4 + 𝛼5𝛿2) (𝑝𝜃 + 𝑄2 (1 − 𝑝))
+ 𝑄3 (𝜇 (𝑄2𝛼2 + 𝑝𝛾𝛼3) + 𝑝𝛾𝛼5𝛿1) .

(29)

Set 𝑃(𝜆∗∗) = 𝜆∗∗ − 𝛽𝑐(1 − 𝑀∗∗)((𝐼∗∗𝑠 + 𝜂𝐷∗∗)/𝑁∗∗). By
replacing 𝑀∗∗, 𝐼∗∗𝑠 , 𝐷∗∗, and 𝑁∗∗ by their values expressed
as functions of 𝜆∗∗ and by setting

𝑃 (𝜆∗∗) = 0, (30)

we obtain the following equation:

𝜆∗∗ [(]2 (𝜆∗∗)2 + ]1𝜆∗∗ + ]0)] = 0, (31)

where

]0 = 𝜇2𝜔𝜌𝑄21𝑄22𝑄23 (1 − 𝑅𝑀) ,
]1 = 𝑄1𝑄2𝑄3 (𝜉1 + 𝜉2) 𝜇𝜔 + 𝜉3,
]2 = 𝑄1𝑄2𝑄3 [𝛾 (𝜇 (𝜌 + 𝜎) + 𝜌𝛿2) (𝑝𝜃 + (1 − 𝑝)𝑄2)

+ 𝜌𝑄3 (𝜇𝑄2 + 𝑝𝛾 (𝜇 + 𝛿1))] 𝜔,
(32)

with

𝜉1 = 𝜌 (1 + 𝑄1𝑄2𝑄3 + 𝑄2𝑄3𝜇 + 𝑝𝛾𝑄3𝜇) ,
𝜉2 = (𝑝𝜃 + (1 − 𝑝)𝑄2) (𝜌 (−𝛽𝑐𝛾 + 𝛾𝜇)

+ 𝛾𝜎 (−𝛽𝑐𝜂 + 𝜇)) ,
𝜉3 = 𝛽𝑐𝛾Λ𝜇 (𝑝𝜃 + (1 − 𝑝)𝑄2) (𝜌 + 𝜂𝜎)

⋅ (𝑄3 (𝑄2𝛼2 + 𝑝𝛾𝛼3) + (𝑝𝜃 + (1 − 𝑝)𝑄2) 𝛼4
− (𝑝𝑄3𝛿1 + (𝑝𝜃 + (1 − 𝑝)𝑄2) 𝛿2𝜇 )𝛼5) .

(33)

From (31), 𝜆∗∗ = 0 corresponds to the DFE discussed in the
previous section. The signs of the solutions of the quadratic
equation

]2 (𝜆∗∗)2 + ]1𝜆∗∗ + ]0 = 0 (34)

are given in Table 1.
From Table 1, we notice that, for the existence and

uniqueness of the endemic equilibrium, ]0 must be negative.
This is only possible if 𝑅𝑀 > 1. Thus, we have the following
theorem on the existence of the endemic equilibrium.
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Theorem 4. (i) If 𝑅𝑀 > 1, (34) has a unique positive solution
and system (3)–(9) has a unique endemic equilibrium.

(ii) If 𝑅𝑐𝑀 < 𝑅𝑀 < 1 and ]1 < 0, the roots 𝜆∗∗1 and𝜆∗∗2 are both positive, and system (3)–(9) admits two endemic
equilibria.

(iii) If 𝑅𝑐𝑀 = 𝑅𝑀, then (34) has a repeated positive root and
a unique endemic equilibrium exists for system (3)–(9).

(iv) If 0 < 𝑅𝑀 < 𝑅𝑐𝑀, then system (3)–(9) does not admit
any endemic equilibrium and only the DFE exists.

Provided ]1 < 0, the existence of two endemic equilibria
for 𝑅𝑀 < 1 suggests the existence of a backward bifurcation
since the DFE also exists in that particular domain. The
coexistence of DFE and endemic equilibrium when 𝑅𝑀 <1 is a well known characteristic of a backward bifurcation

described in [21]. Thus, there exists a critical value of 𝑅𝑀,
denoted by 𝑅𝑐𝑀, for which there is a change in the qualitative
behaviour of our model.

At the bifurcation point, there is an intersection between
the line 𝑅𝑀 = 𝑅𝑐𝑀 and the graph of 𝑃(𝜆∗∗). The discriminantΔ is equal to zero at 𝑅𝑀 = 𝑅(𝑀, ]), which is solution of

]21 − 4𝜔𝑄1𝑄2𝑄3𝜇 (1 − 𝑅 (𝑀, ])) ]2 = 0. (35)

Equation (35) implies

𝑅 (𝑀, ]) = 1 − ]214𝜓]2 . (36)

Considering as well the threshold value of the reproduc-
tion number from Theorem 3, we can conclude that 𝑅𝑐𝑀 =
min(𝑅(𝑀(𝑡)), 𝑅(𝑀, ])). So,

0 < 𝑅𝑀 < 𝑅𝑐𝑀, the DFE is globally stable,
𝑅𝑐𝑀 < 𝑅𝑀 < 1,

the DFE is locally stable and two endemic equilibria exist with one which is stable and the other one unstable.
(37)

The DFE and EE both describe different qualitative behav-
iours of our epidemic. Let us set 𝜙 = 𝑐𝛽(1 − 𝑀∗) as our
bifurcation parameter, so that

𝜙 = 𝜙∗ = 𝜌𝑄1𝑄2𝑄3𝛾 (𝑝𝜃 + (1 − 𝑝)𝑄2) (𝜌 + 𝜂𝜎) ,
for 𝑅𝑀 = 1.

(38)

In order to describe the stability of the endemic equilibrium,
we use the theorem, remark, and corollary in [22] which
are based on the Centre Manifold Theory, and formulated in
Appendix B.

Theorem 5. A unique endemic equilibrium exists when 𝑅𝑀 >1 and is locally asymptotically stable.

Proof. For model (3)–(9), the DFE (𝐸0) is not equal to
zero. According to Remark 1 in [22], we notice that if the
equilibrium of interest in Theorem B.1 is a nonnegative
equilibrium 𝑥0, then the requirement that𝑤 is nonnegative in
Theorem B.1 is not necessary. When some components in 𝑤
are negative, one can still applyTheoremB.1 on condition that

𝑤 (𝑗) > 0, if 𝑥0 (𝑗) = 0,
if 𝑥0 (𝑗) > 0, 𝑤 (𝑗) does not need to be positive, (39)

where𝑤(𝑗) and 𝑥0(𝑗) denote the 𝑗th component of𝑤 and 𝑥0,
respectively.

Firstly, let us rewrite system (3)–(9) introducing
𝑆 = 𝑥1,
𝐸 = 𝑥2,
𝐼𝑎 = 𝑥3,

𝐼𝑠 = 𝑥4,
𝑅 = 𝑥5,
𝐷 = 𝑥6,
𝑀 = 𝑥7,
�̇� = 𝑓1,
�̇� = 𝑓2,
�̇�𝑎 = 𝑓3,
�̇�𝑠 = 𝑓4,
�̇� = 𝑓5,
�̇� = 𝑓6,
�̇� = 𝑓7.

(40)

The equilibrium of interest here is the DFE denoted by 𝐸0 =(𝑆∗, 0, 0, 0, 0, 0,𝑀∗) and the bifurcation parameter is 𝜙∗.
The linearisation matrix 𝐴 of our model at (𝐸0, 𝜙∗) is

𝐴 =

[[[[[[[[[[[[[[
[

−𝜇 0 0 −𝜙∗ 0 −𝜂𝜙∗ 0
0 −𝑄1 0 𝜙∗ 0 𝜂𝜙∗ 0
0 𝑝𝛾 −𝑄2 0 0 0 0
0 (1 − 𝑝) 𝛾 𝜃 −𝑄3 0 0 0
0 0 𝛿1 𝛿2 −𝜇 0 0
0 0 0 𝜎 0 −𝜌 0
𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 0 −𝜔

]]]]]]]]]]]]]]
]

. (41)
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The eigenvalues of 𝐴 are −𝜇 (twice), −𝜔, 0, and the roots of
polynomial (42) below:

𝑄 (𝜍) = 𝜍3 + 𝑑0𝜍2 + 𝑑1𝜍 + 𝑑2, (42)

where

𝑑0 = 𝜌 + 𝑄1 + 𝑄2 + 𝑄3,
𝑑1 = 𝑄1 (𝑄2 + 𝑄3) + 𝑄2𝑄3 + 𝜌 (𝑄1 + 𝑄2 + 𝑄3)

− 𝜙∗ (1 − 𝑝) 𝛾,
𝑑2 = 𝑄1𝑄2𝑄3 + 𝑄2𝑄3𝜌 + 𝑄1 (𝑄2 + 𝑄3) 𝜌

− 𝛾 (𝑝𝜃 + (1 − 𝑝) (𝑄2 + 𝜌 + 𝜂𝜎)) 𝜙∗.

(43)

Our linearisation matrix 𝐴 will thus have zero as simple
eigenvalue. Statement (A1) is verified. We now show that
(A2) is satisfied.

The right eigenvector 𝑊 = [𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5] and the
left eigenvector 𝑉 = [V1, V2, V3, V4, V5, V6] associated with the
eigenvalue 0 such that 𝑉𝑊 = 1 are solutions of the system:

𝐴𝑊 = [0, 0, 0, 0, 0, 0] ,
𝑉𝐴 = [0, 0, 0, 0, 0, 0] ,
𝑉𝑊 = 1.

(44)

Setting

𝜓1 = (𝑝𝜃 + (1 − 𝑝)𝑄2) 𝛾𝜎,
𝜓2 = −𝜌 (𝜌 + 𝜂𝜎) (𝑄2𝑄3𝜓1𝛾𝜎 + 𝑄1𝑝𝑄3𝜃) + (𝜌2

+ 𝜂𝜎 (𝑄3 + 𝜌)) (𝑄1 (𝑝 − 1)𝑄22 − 𝑝𝑄2𝜃) ,
𝜓3 = 2𝑄1𝑄2𝑄3𝜌 (𝜌 + 𝜂𝜎) 𝜔 (𝜇 (𝑄1𝑄2 + (𝜌 + 𝜎) (𝑝𝜃

+ (1 − 𝑝)𝑄2) + 𝑝𝛾𝑄3𝜌) 𝜔 + 𝜌 (𝜇𝑄2𝑄3𝛼2
+ 𝛾 (𝑝𝑄3𝜇𝛼3 + (𝑝𝜃 + (1 − 𝑝)𝑄2) 𝜇𝛼4
+ (𝜔 + 𝛼5) (𝑝𝑄3𝛿1 + (𝑝𝜃 + (1 − 𝑝)𝑄2) 𝛿2)))) ,

𝜓4 = 𝛾Λ𝜎 (−𝑝𝑄3𝜌2𝜃 − 𝑄2 (𝑝𝜃 + (1 − 𝑝)𝑄2) 𝜌2
+ 𝑄1𝜂 (−𝑝𝑄3𝜃𝜌 − 𝑄2 (𝑄3 + 𝜌) (𝑝𝜃 + (1 − 𝑝)𝑄2))
⋅ 𝜎 − 𝑄2𝑄3 (𝑝𝜃 + (1 − 𝑝)𝑄2) 𝜌 (𝜌 + 𝜂𝜎)) (𝜔
+ 𝛼1)2 ,

𝜓5 = 𝑄2𝑄3𝜌 (−𝑄1𝛼1 + 𝜇𝛼2) + 𝛾𝜌 (𝑝𝑄3 (𝜇𝛼3 + 𝛿1𝛼5)
+ (𝑝𝜃 + (1 − 𝑝)𝑄2) 𝛾𝜌 (𝜇𝛼4 + 𝛿2𝛼5)) ,

(45)

we have

𝑤1 = −𝑄1𝑄2𝑄3𝜌𝜇𝜓1 ,
V1 = 0,
𝑤2 = 𝜌𝑄2𝑄3𝜓1 ,

V2 = −𝜓1 (𝑝𝜃 + (1 − 𝑝)𝑄2) (𝜌 + 𝜂𝜎)
𝜓2 ,

𝑤3 = 𝜌𝛾𝑝𝑄3𝜓1 ,

V3 = −𝜃𝜓1 (𝜌 + 𝜂𝜎)𝑄1𝛾𝜓2 ,
𝑤4 = 𝜌

𝜎 ,
V4 = −𝑄1𝑄2 (𝜌 + 𝜂𝜎)

𝛾𝜓2 ,

𝑤5 = 1
𝜇 (𝑝𝛾𝑄3𝜌𝛿1𝜓1 − 𝜌𝛿2𝜎 ) ,

V5 = 0,
𝑤6 = 1,
V6 = −𝜂𝑄1𝑄2𝑄3𝜓1𝛾𝜓2 ,
𝑤7 = 𝜓5𝜔𝜓1𝜇 ,
V7 = 0.

(46)

We notice that

𝐸0 (𝑥2) = 0, 𝑤2 > 0,
𝐸0 (𝑥3) = 0, 𝑤3 > 0,
𝐸0 (𝑥4) = 0, 𝑤4 > 0,
𝐸0 (𝑥5) = 0, 𝑤5 > 0,
𝐸0 (𝑥6) = 0, 𝑤6 > 0.

(47)

Besides, since 𝐸0(𝑥1) and 𝐸0(𝑥7) are positive, 𝑤1 and 𝑤7
do not need to be positive according to Remark 1 in [22]. So,
statement (A2) is verified.

The formulas of the constants 𝑎 and 𝑏 are
𝑎 = 𝑛∑
𝑘,𝑖,𝑗=1

V𝑘𝑤𝑖𝑤𝑗 𝜕
2𝑓𝑘𝜕𝑥𝑖𝜕𝑥𝑗 (𝐸0, 𝜙

∗) ,

𝑏 = 𝑛∑
𝑘,𝑖=1

V𝑘𝑤𝑖 𝜕
2𝑓𝑘𝜕𝑥𝑖𝜕𝜙 (𝐸0, 𝜙∗) .

(48)
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Figure 3: Forward bifurcation for 𝑅𝑀 = 3.11 in (a) and backward bifurcation for 𝑅𝑀 = 0.95 in (b) with 𝑅𝑐𝑀 = 0.68.

After multiple derivations, we have

𝑎 = 𝜓3𝜓4 < 0,

𝑏 = 𝛾 (𝑝 − 𝜃 + (1 − 𝑝)𝑄2)2 (𝜌 + 𝜂𝜎) 𝜔
−𝜓2 > 0.

(49)

Since 𝑎 < 0 and 𝑏 > 0, by using the fourth item of
Theorem B.1, we can conclude that when 𝜙∗ changes from
negative to positive, 𝐸0 changes its stability from stable to
unstable. Correspondingly, a negative unstable equilibrium
becomes positive and locally asymptotically stable and a
forward bifurcation appears [21].

3.6. Bifurcation Analysis. The study of the DFE and EE led
to the proof of the existence of a backward and a forward
bifurcation for our model. Graphically, they are, respectively,
represented in Figures 3(a) and 3(b) where 𝑅𝑀 is chosen as
the bifurcation parameter. We have shown that a forward
bifurcation exists for values of 𝑅𝑀 greater than one. This
means that EVD will persist as long as secondary infections
will occur and reducing 𝑅𝑀 to values less than one is enough
to eradicate EVD. However, the existence of a backward
bifurcation makes it difficult to control the epidemic. In fact,
the coexistence of the DFE and the EE for 𝑅𝑀 in [𝑅𝑐𝑀, 1]
shows that reducing the number of secondary infections
to less than one is not enough to eradicate EVD. Other
control measures like quarantine and contact tracing should
be implemented together with media campaigns to reach a
globally stable DFE and wipe out EVD.

Figure 4 shows time series plots for the force of infection𝜆 for varying initial conditions. The trajectories converge
to steady states depending on the initial conditions and the
values of 𝑅𝑀. We can observe that when the DFE is asymp-
totically stable (𝑅𝑀 < 𝑅𝑐𝑀), the force of infection reaches
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Figure 4: Time series variation of the force of infection for different
values of the reproduction number.

zero. When the DFE is locally stable and the EE is unstable
(𝑅𝑐𝑀 < 𝑅𝑀 < 1), the force of infection reflects a persistent
infection. When the EE is unstable (𝑅𝑀 > 1), the force of
infection ismaximal.This confirms the results obtained at the
bifurcation analysis and describes the unstable nature of EVD
which can easily become an explosive epidemic after a small
increase in its force of infection as 𝑅𝑀 passes through 1.

4. Numerical Simulations

In this section, we use Matlab to carry out simulations for
our model. We first verify our theoretic conclusions related
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to stability analysis of system (3)–(9) and then we vary our
parameters values to better understand how media cam-
paigns influence the prevalence and transmission of EVD.

It is important to note that the figures chosen are for
illustrative purposes only, as we endeavour to verify the
analytic results.

4.1. Parameters’ Estimation. The parameters used in the sim-
ulations are either obtained from the literature or estimated.
Since the mean infectious period is set to be from 4 to
10 days, the highest recovery rate 𝛿2 is set to 1/4. The
recovery rate of asymptomatic individuals is assumed to be
greater than the one of the symptomatic individuals since
the former have stronger resistance to EVD. Without any
reliable source for EVD media related data, we assume that
individuals can send EVD related messages through media
independently of their disease status. At the beginning of the
epidemic, there is neither a recovered nor an asymptomatic
infected individual since only symptomatic persons transmit
the disease. We also assume that messages are transmitted
through media at time 𝑡 = 0, at least for preventive purpose.
The setting of the initial conditions is driven by the fact
that the population of Nzérékoré, the region where this 2014
Ebola disease outbreak started in Guinea, is estimated to
be 1,663,582 individuals [23]. We consider the introduction
of infectives in the population and high infectivity of dead
bodies (𝜂 = 1.5). The initial conditions are then

𝑆0 = 990000,
𝐸0 = 8000,
𝐼𝑎0 = 0,
𝐼𝑠0 = 2000,
𝑅0 = 0,
𝐷0 = 0,
𝑀0 = 0.4.

(50)

Table 2 gives the description of parameters and their values.

4.2. Sensitivity Analysis. In mathematical modelling, param-
eters whose values are not precisely known are often used
and may vary within some ranges. Numerical methods
used to solve equations derived from models may introduce
numerical errors in the results. The effects of such errors
or uncertainties in the model’s parameters are quantified
through sensitivity analysis. The aim of sensitivity analysis
is to quantify the influence of parameters variation on
calculated results [24].

Sensitivity indices allow us tomeasure the relative change
in a state variable when a parameter changes.The normalized
forward sensitivity index of a variable to a parameter is the
ratio of the relative change in the variable to the relative
change in the parameter.When the variable is a differentiable
function of the parameter, the sensitivity index may be
alternatively defined using partial derivatives (see [25]).

Table 2: Parameter values and their description.

Parameters Description (per day) Range Source
Λ Recruitment rate 20000 Estimated

𝛽 Probability for a contact
to be infectious [0.02, 1] [7]

𝑐 Number of contacts [1, 500] Estimated

𝛾 Rate of exposed
individuals becoming

infectious
[0.04, 0.5] [5]

𝜇 Natural death rate 0.2 Estimated

𝑝 Proportion of
asymptomatic infected

individuals
[0.15, 0.7] [7]

𝜃 Rate of asymptomatic
individuals becoming

symptomatic
0.12 [6]

𝜎 Disease related death rate [0.2, 0.9] [1]

𝜌 Disposal rate of dead
bodies 0.497 [16]

𝛿1 Recovery rate of
asymptomatic individuals [0, 0.6] Estimated

𝛿2 Recovery rate of
symptomatic individuals [0, 0.25] [5]

𝛼1 Rate of messaging by
susceptible individuals [0, 10−1] Estimated

𝛼2 Rate of messaging by
exposed individuals [0, 10−1] Estimated

𝛼3
Rate of messaging by
infected asymptomatic

individuals
[0, 10−1] Estimated

𝛼4
Rate of messaging by
infected symptomatic

individuals
[0, 10−1] Estimated

𝛼5 Rate of messaging by
recovered individuals [0, 10−1] Estimated

𝜔 Outdating rate of media
campaigns [0.2, 0.5] [17]

Definition 6. The normalized forward sensitivity index of a
variable, 𝑢, that depends differentiably on a parameter, 𝑝, is
defined as

Υ𝑢𝑝 fl 𝜕𝑢
𝜕𝑝 × 𝑝

𝑢 . (51)

Media campaigns in this paper contribute to the limita-
tion of the disease transmission. The reproduction number𝑅𝑀 is an important concept when it comes to the disease
transmission, because it helps to determine EVD incidence.
The normalized forward sensitivity indices of 𝑅𝑀 with
respect to each parameter 𝑢 in expression (22) are given by

Υ𝑅𝑀𝑢 fl
𝜕𝑅𝑀𝜕𝑢 × 𝑢

𝑅𝑀 . (52)

Table 3 represents the numerical values of the sensitivity
indices of the reproduction number 𝑅𝑀 for the parameters
used in the model. The most important parameters are
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Table 3: Sensitivity indices for EVD reproduction number.

Parameter Sensitivity index
𝜔 +1.5
𝜇 +1.37
𝛽 +1
𝑐 +1
𝜂 +0.613
𝛾 +0.074
𝜃 +0.037
Λ −1.5
𝛼1 −1.5
𝜌 −0.613
𝜎 −0.347
𝑝 −0.05
𝛿1 −0.022
𝛿2 −0.002

those with the highest absolute values. Negative and positive
correlations of the parameters to the reproduction number
are indicated by negative and positive signs. The parametersΛ and 𝛼1 have the largest absolute negative numerical values
with negative sensitivity index values. Thus, increasing their
values will decrease EVD incidence. This result can be
explained by the fact that any increase in the two parameters
leads to an increase in the efficacy ofmedia campaigns. So, the
more the media campaigns are efficacious, the less the value
of the reproduction number is. Another important parameter
with a negative index is 𝜌, which is an expected result since
burials of EVDdead bodies limit the disease transmission due
to infected corpses. The outdating rate of media campaigns𝜔 has the most positive influence on EVD reproduction
number. This means that the more frequently the messages
spread by media on EVD are updated, the lower the number
of new infections is. The larger the values of 𝜔 and 𝜇 are, the
less the efficacy of the messages is and the more the disease
spreads. The parameters 𝛽 and 𝑐 form the transmission rate
and their increase will directly contribute to an increase in the
number of EVD cases.

4.3. Simulations Results and Interpretation. Figures 5(a) and
5(b) confirm the results on stability analysis. It follows that
when 𝑅𝑀 < 1, the epidemic dies out and, for 𝑅𝑀 > 1, EVD
becomes endemic. This is a graphical description of the fact
that the DFE is locally stable for 𝑅𝑀 < 1 and the EE is locally
stable whenever 𝑅𝑀 > 1.

The media campaigns reproduction number 𝑅𝑀 is made
of parameters which differently influence its values in a
variety of ways. The relationship between those parameters
can be evaluated through contour plots. We chose two
parameters, 𝛼1 and 𝜔, whose influence on the reproduction
number is clearly significant as shown in the expression of𝑅𝑀. Figure 6 shows that 𝛼1 largely influences 𝑅𝑀 when
compared to 𝜔. Increasing the values of 𝛼1 decreases 𝑅𝑀.
Thus, in order to eradicate EVD, the exchange of EVD related
messages is critical in eradicating the epidemic.

5. Discussion and Conclusion

To model the potential effect of media campaigns on Ebola
transmission, we used a deterministic model, with compart-
ments comprising individuals with different EVD infection
status, who send EVD related messages through media. The
effect of media campaigns on people’s behaviour is repre-
sented by a reduction factor which decreases the number of
new EVD cases. Stability analysis was presented in terms of
the model reproduction number 𝑅𝑀. It was shown that the
disease-free and the endemic equilibria are locally stable if𝑅𝑀 < 1 and 𝑅𝑀 > 1, respectively. The inclusion of the
asymptomatic infected class resulted in the model exhibiting
a backward bifurcation, emphasizing the necessity of intense
efforts against EVD as a result of undetected asymptomatic
cases. The existence of a backward bifurcation has important
implications in the design of policies and strategies to erad-
icate or control an epidemic. In the presence of a backward
bifurcation, classical policies on disease eradication need to
be changed as EVD can persist even when the threshold
parameter 𝑅𝑀 is less than one.

To be able to control EVD, governments and interna-
tional stakeholders should implement feasible campaigns
taking into account the social, economic, and mainly the
cultural realities of the affected countries. Interventions from
these campaigns should target the affected populations and
help them to understand the disease, comply with control
measures, which sometimes seem severe, and change their
behaviour in order to stop the disease transmission chain [1].
The best way to contain this outbreak is to jointly implement
case isolation, contact tracing with quarantine, and sanitary
funeral practices as suggested in [26].

Thismodel is not without shortcomings. People’s reaction
to media campaigns does not always lead to a reduction in
the number of future contamination cases. So, a function rep-
resenting the influence of media campaigns on individuals’
behaviour which takes into account the different cultural set-
tings would be an innovative and informative addition to this
model. Aspects of quarantine, contact tracing, and case iden-
tification initiatives are possible additions that can make this
model more reliable. Despite these shortcomings, this model
provides a good description of EVD outbreak. The model
investigates a very important aspect in disease control in our
times, that is, the use of social media in spreading messages.

Appendix

A. Differential Inequalities

Corollary A.1. Let 𝑥0 and 𝑦0 be real numbers, 𝐼 = [𝑥0, +∞),
and 𝑎, 𝑏 ∈ 𝐶(𝐼). Suppose that 𝑦 ∈ 𝐶1(𝐼) satisfies the following
inequality:

𝑦 (𝑥) ≤ 𝑎 (𝑥) 𝑦 (𝑥) + 𝑏 (𝑥) , 𝑥 ≥ 𝑥0, 𝑦 (𝑥0) = 𝑦0. (A.1)

Then,

𝑦 (𝑥) ≤ 𝑦0 exp [∫𝑥
𝑥0

𝑎 (𝑡) 𝑑𝑡]
+ ∫𝑥
𝑥0

𝑏 (𝑠) exp [∫𝑥
𝑠
𝑎 (𝑡) 𝑑𝑡] 𝑑𝑠, 𝑥 ≥ 𝑥0.

(A.2)
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Figure 6: Reproduction number contour plot.

If the converse inequality holds in (A.1), then the converse
inequality holds in (A.2) too.

Let us prove that𝑀(𝑡) is bounded.
Proof. From (9), we have

𝑑𝑀 (𝑡)
𝑑𝑡 ≥ 𝛼1𝑆 (𝑡) − 𝜔𝑀(𝑡) . (A.3)

For system (3)–(9), 𝑀(𝑡) ≥ 𝛼1𝑆 − 𝜔𝑀. By applying
Corollary A.1, we have

𝑀(𝑡) ≥ 𝑀 (0) exp [∫𝑡
0
(−𝜔) 𝑑𝑢]

+ ∫𝑡
0
𝛼1𝑆 exp [∫𝑡

𝑧
(−𝜔) 𝑑V] 𝑑𝑧, ∀𝑡 ≥ 0,

(A.4)

which yields

𝑀(𝑡) ≥ exp [−𝜔𝑡] (𝑀 (0) − 𝛼1𝑆𝜔 ) + 𝛼1𝑆𝜔 . (A.5)

Before the disease is spread, we assume that𝑀 is at the steady
state level. So,𝑀(0) = 𝛼1𝑆/𝜔 which is equivalent to𝑀(0) =𝑀∗ and (A.5) will give

𝑀(𝑡) ≥ 𝛼1𝑆𝜔 . (A.6)

Together with the assumption 0 < 𝑀 ≤ 1, we thus have
𝑀∗ ≤ 𝑀(𝑡) ≤ 1. (A.7)

B. An Approach to Determine the Direction of
the Bifurcation

Theorem B.1. Consider a general system of ordinary differen-
tial equations with a parameter 𝜙:
𝑑𝑥
𝑑𝑡 = 𝑓 (𝑥, 𝜙) ,

𝑓 : 𝑅𝑛 × 𝑅 → 𝑅𝑛, 𝑓 ∈ 𝐶2 (𝑅𝑛 × 𝑅) .
(B.1)

Without loss of generality, it is assumed that 0 is an
equilibrium for system (B.1) for all values of the parameter 𝜙;
that is, 𝑓(0, 𝜙) ≡ 0 for all 𝜙.

Assume that
(A1) 𝐴 = 𝐷𝑥𝑓(0, 0) = ((𝜕𝑓𝑖/𝜕𝑥𝑗)(0, 0)) is the linearisation

matrix of system (B.1) around equilibrium 0 with 𝜙
evaluated at 0. Zero is a simple eigenvalue of𝐴 and all
other eigenvalues of 𝐴 have negative real parts;
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(A2) matrix 𝐴 has a nonnegative right eigenvector 𝑤
and a left eigenvector V corresponding to the zero
eigenvalue. Let 𝑓𝑘 be the 𝑘th component of 𝑓 and

𝑎 = 𝑛∑
𝑘,𝑖,𝑗=1

V𝑘𝑤𝑖𝑤𝑗 𝜕
2𝑓𝑘𝜕𝑥𝑖𝜕𝑥𝑗 (0, 0) ,

𝑏 = 𝑛∑
𝑘,𝑖=1

V𝑘𝑤𝑖 𝜕
2𝑓𝑘𝜕𝑥𝑖𝜕𝜙 (0, 0) .

(B.2)

The local dynamics of (B.1) around 0 are totally determined
by 𝑎 and 𝑏.

(1) 𝑎 > 0, 𝑏 > 0. When 𝜙 < 0 with |𝜙| ≪ 1,0 is locally asymptotically stable, and there exists a
positive unstable equilibrium; when 0 < 𝜙 ≪ 1,0 is unstable and there exists a negative and locally
asymptotically stable equilibrium.

(2) 𝑎 < 0, 𝑏 < 0. When 𝜙 < 0 with |𝜙| ≪ 1, 0 is unstable;
when 0 < 𝜙 = 1, 0 is locally asymptotically stable, and
there exists a positive unstable equilibrium.

(3) 𝑎 > 0, 𝑏 < 0. When 𝜙 < 0 with |𝜙| ≪ 1, 0
is unstable, and there exists a locally asymptotically
stable negative equilibrium; when 0 < 𝜙 ≪ 1, 0 is
stable, and a positive unstable equilibrium appears.

(4) 𝑎 < 0, 𝑏 > 0. When 𝜙 changes from negative to
positive, 0 changes its stability from stable to unsta-
ble. Correspondingly, a negative unstable equilibrium
becomes positive and locally asymptotically stable.

Corollary B.2. When 𝑎 > 0 and 𝑏 > 0, the bifurcation at𝜙 = 0 is subcritical or backward.
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