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This article proposes nonlinear economic dynamics continuous in twodimensions ofKaldor type, the saving rate and the investment
rate, which are functions of ecological origin verifying the nonwasting properties of the resources and economic assumption of
Kaldor. The important results of this study contain the notions of bounded solutions, the existence of an attractive set, local and
global stability of equilibrium, the system permanence, and the existence of a limit cycle.

1. Introduction

The nonlinear complex dynamics have been introduced in
the analysis of the economic phenomena to explain on the
one hand the fluctuations noticed in the study of the chrono-
logical series and on the other hand the economic crisis in
the capitalist system. The economists Goodwin (1967) and
Kaldor (1955-1956) used the dynamic samples to explain that
the graphs of cyclic and chaotic evolution are endogeneous to
the economic system itself.

To simplify things, a great number of these models have
been elaborated withmore restrictive assumption such as lin-
earity. The challenges of structural reforms of dynamics jus-
tify the fact that mathematicians are interested in them. Our
contribution will thus consist in proposing economic models
inspired by the ecological models whose lessons may be
important in terms of analyzing systems and their regulation
in this context of climate protection (cf. [1, 2]).

The basic economic models that we use in this article are
those of Kaldor proposed in the works of Hans-Walter Lorenz
(cf. [3]).

Our study will consist first of modifying the models
of Kaldor conferring them with the ecological properties
adapted to economy.Therefore, we propose a dynamicmodel
typical of Kaldor-Holling-2 and Leslie-Gower with some

modifications. Next, we will study the qualitative comport-
ment of the model at level 2. We set criteria for which we
have on the one hand the marking out of the solutions and
the existence of an attractive set and, on the overhand, the
local stability of the equilibrium and the permanence of the
system.

At last we study the global stability of one interior equi-
librium through the construction of the Lyapunov function.

2. Dynamics of Kaldor Ecologic in
Two Dimensions

2.1. Economic Dynamics of Type Kaldor with the Effective
Growth Rate in Two Dimensions. Let us start by giving the
notations and definitions of the rates of parameters and func-
tions in applied economies.

(1) The productivity of capital is the quotient of the GDP𝑌 by the capital 𝐾. We set that 𝜎 = 𝑌/𝐾.
(2) The rate of investment is the quotient of the invest-

ment 𝐼 by the GDP. We note that 𝑓 = 𝐼/𝑌.
(3) The saving rate of the GDP 𝜙 is the quotient of the

saving 𝑆 by the GDP. We have 𝜙 = 𝑆/𝑌.
(4) The rate accumulation of the capital is denoted by ℎ =𝐼/𝐾 = 𝜎𝑓.
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(5) We design, respectively, by  and 𝛼 the monetary
depreciation rate and the monetary adjustment coef-
ficient.

(6) The ratio saving-capital will be noted as 𝑔 = 𝑆/𝐾 =𝜎𝜙.
Let us consider the original model of Kaldor (cf. [3] page

44):�̇� = 𝛼 [𝐼 (𝑌,𝐾) − 𝑆 (𝑌,𝐾)] ,�̇� = 𝐼 (𝑌,𝐾) − 𝐾,, 𝛼, 𝑌 (0) , 𝐾 (0) ∈ R+, 𝑌, 𝐾 ∈ 𝐶1 ([0; +∞[ ;R+) . (1)

In order to establish a connection between the economic
models of Kaldor and the ecological patterns, let us give up
the coercion of monetary scales by writing investment and
saving functions in relation to the investment rate, of capital
and saving hoarding. Let us also replace the growth rate of
the GDP of model (1) by its effective growth rate (cf. [3, 4]).
Therefore we get the following assumption.

Assumption 1 (Kaldor with effective growth). (1) Effective
growth �̇�/𝑌 = Trend(𝑌)+𝛼((𝐼− 𝑆)/𝑌)with the coefficient of
monetary mending, 𝛼 ≥ 0 and the tendency, Trend(𝑌), such
that Trend(0) ≥ 0.

(2) The ratio saving-capital, 𝑔(𝑌,𝐾), is a function verify-
ing 𝜕𝑔(𝑌,𝐾)/𝜕𝑌 > 0.

(3) The investment rate 𝑓(𝑌,𝐾) is a function verifying𝜕𝑓(𝑌,𝐾)/𝜕𝑌 > 0 and there is a threshold 𝐾𝑠 ≥ 0 so that𝜕𝑓(𝑌,𝐾)/𝜕𝐾 < 0, ∀𝐾 ≥ 𝐾𝑠.
(4) The accumulation rate of the capital ℎ(𝑌,𝐾) is a

function verifying 𝜕ℎ(𝑌,𝐾)/𝜕𝑌 > 0, 𝜕ℎ(𝑌,𝐾)/𝜕𝐾 < 0.
With Assumption 1, we get below the dynamics of Kaldor

with an effective growth rate whose 𝑓(𝑌,𝐾) and 𝑔(𝑌,𝐾) can
have ecological properties.�̇� = Trend (𝑌) 𝑌 + 𝛼𝑓 (𝑌,𝐾) 𝑌 − 𝛼𝑔 (𝑌,𝐾)𝐾,�̇� = ℎ (𝑌,𝐾)𝐾 − 𝐾,, 𝛼, 𝑌 (0) , 𝐾 (0) ∈ R+, 𝑌, 𝐾 ∈ 𝐶1 ([0; +∞[ ;R+) . (2)

Interpretation. The dynamics of Kaldor with an effective
growth rate (2) present some similarities to the classical
ecological dynamics. The function 𝑔𝑌(𝑌,𝐾) = 𝛼[𝑓(𝑌,𝐾) −𝜙(𝑌,𝐾)]𝑌 define the action of the capital𝐾 upon production𝑌. It stimulates the increase of the production when the
investment rate 𝑓 is superior to the saving rate 𝜙 and stops
it in the end.

The function 𝑔𝐾(𝑌,𝐾) = ℎ(𝑌,𝐾)𝐾 defines in its part
the action of the production over the capital. The economic
model alone summarizes two types of ecological interaction
such as mutualising type and the prey-predators type. Let us
consider the economic assumption of ecological inspirations

on investment rate 𝑓, the rate of capital accumulation ℎ, and
the ratio saving-capital 𝑔.
Assumption 2.

𝑓 (𝑌,𝐾) = �̃�1 (𝐾) (1 − 𝑚2𝐾𝑌 + 𝐶2)
with 𝑏1 (𝐾) = 𝑎1𝐾 + 𝑏1, (3)

ℎ (𝑌,𝐾) = 𝑏2 (𝑌) (1 − 𝑚2𝐾𝑌 + 𝐶2)
with �̃�2 (𝑌) = 𝑎2𝑌 + 𝑏2, (4)

𝑔 (𝑌,𝐾) = 𝑚1𝑌𝑌 + 𝐶1 , (5)

where 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑚1, 𝐶1 ∈ R.
Obviously, the investments are first funded by capitals.

We can thus suppose that 𝑓(𝑌,𝐾) = �̃�1(𝐾) > 0. Next, the
investors adjust the rate in relation to the realities for they
hate to invest in vain. However it is not necessary to invest
more when net profit is beyond expectancies. Let us estimate
the losses of the investment by using the function 𝐿𝐺(𝑌,𝐾) =𝑚2𝐾/(𝑌+𝐶2), where𝑚2 is themaximumvalue of the losses of
the investment rate and𝐶2 is themaximum value of the stock
of capital. Then we get 𝑓(𝑌,𝐾) = 𝑏1(𝐾) − 𝐿𝐺(𝑌,𝐾)�̃�1(𝐾) =𝑏1(𝐾)(1−𝑚2𝐾/(𝑌+𝐶2)). For simplicity, we can take �̃�1(𝐾) =𝑎1𝐾 + 𝑏1, where 𝑎1 and 𝑏1 are the constants depending on
the economic policies of investments. Then, we get a rate
of investment that verifies the economic requirements (5) of
Assumption 1.

Concerning the accumulation of capital, it is known thatℎ(𝑌,𝐾) = 𝜎𝑓(𝑌,𝐾) = �̃�2(𝑌)(1 − 𝑚2𝐾/(𝑌 + 𝐶2)) so �̃�2(𝑌) =𝑎1𝑌 + 𝜎𝑏1. If 𝜎 = ((𝑎2 − 𝑎1)𝑌 + 𝑏2)/𝑏1 then �̃�2(𝑌) = 𝑎2𝑌 + 𝑏2
with 𝑎2 the part of GDP converted in the stock of capital and𝑏2 ∈ R.Therefore ℎ(𝑌,𝐾) verifies the economic constraint (11)
of Assumption 1.

Concerning the saving, let us take 𝑆(𝑌,𝐾) = 𝑔(𝑌)𝐾,
where 𝑔(𝑌) = 𝑚1𝑌/(𝑌 + 𝐶1) is the ratio saving-capital. The
function 𝑔 verifies condition (4) of Assumption 1.

Suppose now that the tendency is linear and decreasing:
Trend(𝑌) = 𝑎0(1 − 𝑌/𝐶0). In fact, the tendency of the growth
rate of GDP is at the start, a constant 𝑎0 for a given period
(forthcoming). But it faces some losses due, for example,
to corruption, bribes, slush funds, tax haven, whitening of
fraudulent funds, manipulations of accounts and media, and
any other harmful activity to the growth of the GDP (cf.
[5], pages 11, 15-16, and 35–65). Those losses are estimated to𝑎0𝑌/𝐶0 with 𝐶0 the maximum value (monetary) of the GDP
that we can get from this economy for the given period.



International Journal of Differential Equations 3

Then, model (2) becomes the economic dynamics:

�̇� = [𝑎0𝑌(1 − 𝑌𝐶0)] + 𝛼 (𝑎1𝐾 + 𝑏1) 𝑌(1 − 𝑚2𝐾𝑌 + 𝐶2)
− [𝛼 𝑚1𝑌𝑌 + 𝐶1 ]𝐾,

�̇� = [(𝑎2𝑌 + 𝑏2) (1 − 𝑚2𝐾𝑌 + 𝐶2)]𝐾 − 𝐾,
𝑌 (0) > 0, 𝐾 (0) > 0, 𝑌,𝐾 ∈ 𝐶1 ([0; +∞[ ;R+) ,

(6)

with (𝑎0, 𝐶0, 𝐶1, 𝐶2, 𝑚1, 𝑚2, 𝛼) ∈ (R∗+)7 and (𝑎1, 𝑎2, 𝑏1, 𝑏2, ) ∈(R+)5. 𝑌 indicates the product and𝐾 the stock of capital, and�̇� and �̇� indicate, respectively, the increasing speed of the
product and the stock of capital.

System (6) defined in this way is a more realistic system.
It takes into account a great deal of economic observations
of interactions between the product (GDP) and the stock of
capital of an economy; namely,

(1) in the absence of the stock of capital, there will not
be any explosion of the GDP because the increase of
GDP becomes logistic so that, despite the technical
progress, the economic production remains limited,

(2) in the absence of the production of the GDP, the
economy will not be in short of capital if 𝑏2 −  > 0
because the evolution is as well logistic due to the
diversification of the economy or the opportunities
to convert a stock of physical capital in the stock of
monetary capital,

(3) when the production (GDP) becomes abundant,
there is a “saturation” of the ratio saving-capital and
of the investment expressing the adoption of a non-
wasting policy of the economic resources,

(4) when the production of the GDP is insufficient,
the ratio saving-capital gets adapted and becomes
proportional to the available GDP in order to avoid
a shortage of production.

2.2. Presentation of Model (6) Reduced. In order to facilitate
the qualitative study of system (6) that possesses 12 parame-
ters (𝑎0, 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝐶0, 𝐶1, 𝐶2, 𝑚1, 𝑚2, 𝛼, ) ∈ (R∗+)12, let us
change variables by reducing the number of parameters to8.
Definition of New Variables𝜏 = 𝑎0𝑡,𝑢 (𝜏) = 𝑌 (𝑡)𝐶0 ,

V (𝜏) = 𝑚2𝐶0 𝐾 (𝑡) . (7)

Definition of the Parameters

𝛽1 = 𝛼𝑎1𝐶0𝑎0𝑚2 ,𝛽2 = 𝑎2𝐶0𝑎0 ,
𝛼1 = 𝛼𝑏1𝑎0 ,
𝛼2 = 𝑏2𝑎0 ,𝑑1 = 𝐶1𝐶0 ,𝑑2 = 𝐶2𝐶0 ;𝛾 = 𝛼 𝑚1𝑎0𝑚2 ,𝛿 = 𝑎0 .

(8)

System (6) becomes then the reduced system:

�̇� (𝜏) = [1 − 𝑢 (𝜏)] 𝑢 (𝜏)
+ (𝛽1V (𝜏) + 𝛼1) (1 − V (𝜏)𝑢 (𝜏) + 𝑑2)𝑢 (𝜏)
− 𝛾𝑢 (𝜏) V (𝜏)𝑢 (𝜏) + 𝑑1 ,

V̇ (𝜏) = (𝛽2𝑢 (𝜏) + 𝛼2) (1 − V (𝜏)𝑢 (𝜏) + 𝑑2) V (𝜏) − 𝛿V,
(𝑢, V) ∈ 𝐶1 (R+,R2) 𝑢 (0) > 0, V (0) > 0,

(9)

with (𝑑1, 𝑑2, 𝛾) ∈ (R∗+)3 and (𝛽1, 𝛽2, 𝛼1, 𝛼2, 𝛿) ∈ (R+)5 so that(𝛽2, 𝛼2) ̸= (0, 0).
3. Boundness of Model (9) and Existence of
a Positively Invariant Attracting Set

In this section, we give the conditions of the boundness of
the capital and the stock of capital justifying the fact that the
economic resources are limited.

Lemma3. The interior int(R2+) and the boundary 𝜕(R2+) of the
positive quadrant are, respectively, unvarying for system (9).
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Proof. Given (𝑢(0), V(0)) ∈ R2+, if 0 ≤ 𝜏 < +∞, due to the
continuity of 𝑢 and V over the compact [0; 𝜏] then we have

𝑢 (𝜏) = 𝑢 (0) exp{∫𝜏
0

[1 − 𝑢 (𝑡) + (𝛽1V (𝑡) + 𝛼1) (1 − V (𝑡)𝑢 (𝑡) + 𝑑2) − 𝛾V (𝑡)𝑢 (𝑡) + 𝑑1 ] 𝑑𝑡} ,
V (𝜏) = V (0) exp{∫𝜏

0

[(𝛽2𝑢 (𝑡) + 𝛼2) (1 − V (𝑡)𝑢 (𝑡) + 𝑑2) − 𝛿] 𝑑𝑡} . (10)

So if (𝑢(0), V(0)) = (0, 0) then (𝑢(𝜏), V(𝜏)) = (0; 0).
If 𝑢(0) > 0 then 𝑢(𝜏) > 0 and if V(0) > 0 then V(𝜏) > 0,∀𝜏 ∈ R+.
Therefore (𝑢(0), V(0)) ∈ 𝜕(R2+) ⇒ (𝑢(𝜏), V(𝜏)) ∈ 𝜕(R2+),∀𝜏 ∈ R+, and (𝑢(0), V(0)) ∈ int(R2+) ⇒ (𝑢(𝜏), V(𝜏)) ∈

int(R2+), ∀𝜏 ∈ R+.

Lemma 4 (cf. [6]). Given (𝐴, 𝐵) ∈ R2+ and 𝜙 continuous and
derivable function so that there is 𝑡0 ≥ 0 verifying 𝜙(𝑡0) > 0,
then, ∀𝑡 ≥ 𝑡0,𝑑𝜙𝑑𝑡 ≤ 𝐵 − 𝐴𝜙 ⇒𝜙 (𝑡) ≤ 𝐵𝐴 − [𝐵𝐴 − 𝜙 (𝑡0)] 𝑒−𝐴(𝑡−𝑡0), (11)

𝑑𝜙𝑑𝑡 ≤ 𝐵 − 𝐴𝜙 ⇒
𝜙 (𝑡) ≤ 𝐵𝐴 [1 + (𝐴𝜙 (𝑡0)𝐵 − 1) 𝑒−𝐴(𝑡−𝑡0)]−1 , (12)

𝑑𝜙𝑑𝑡 ≤ 𝜙 (𝐵 − 𝐴𝜙) ⇒
𝜙 (𝑡) ≤ 𝐵𝐴 [1 + ( 𝐵𝐴𝜙 (𝑡0) − 1) 𝑒−𝐵(𝑡−𝑡0)]−1 , (13)

𝑑𝜙𝑑𝑡 ≥ 𝜙 (𝐵 − 𝐴𝜙) ⇒
𝜙 (𝑡) ≥ 𝐵𝐴 [1 + ( 𝐵𝐴𝜙 (𝑡0) − 1) 𝑒−𝐵(𝑡−𝑡0)]−1 . (14)

Definition 5 (see [7, 8]). A solution (𝑢, V) = 𝜙(𝑡, 𝑡0, 𝑢0, V0) of
(9) is said to be a boundary inR2+, if there is compactA ofR2+
and a time 𝑇 (𝑇 = 𝑇(𝑡0, 𝑢0, V0)) so that ∀(𝑡0, 𝑢0, V0) ∈ R×R2+,
we have (𝑢, V) = 𝜙(𝑡, 𝑡0, 𝑢0, V0) ∈ A for every 𝑡 ≥ 𝑡0.
Theorem 6. Let us suppose that 0 < 𝛽1 < 4. Let us set down𝑀𝑢 = 4𝑑2𝛽1 + (𝛽1𝑑2 + 2𝛼1) 𝛽1𝑑2 + 𝛼21𝛽1𝑑2 (4 − 𝛽1) ,

𝐿1 = (4 + (4 − 𝛽1)𝑀𝑢)216 (4 − 𝛽1)+ (𝑀𝑢 + 𝑑2) (𝛽2𝑀𝑢 + 1 + 𝛼2 − 𝛿)24𝛼2 .
(15)

Let us consider the following set:

A = {(𝑢, V) ∈ R
2

+, 0 ≤ 𝑢 ≤ 𝑀𝑢, 0 ≤ 𝑢 + V ≤ 𝐿1} . (16)

(1) limsup[𝑢(𝑡)] ≤ 𝑀𝑢.
(2) limsup[𝑢(𝑡) + V(𝑡)] ≤ 𝐿1.
(3) A is unvarying for model (9).
(4) A is an attractive region for any solution of model (9)

from the positive quadrant R2+.

Proof. Let us consider system (9). Let us set down𝑓1 (𝑢, V) = [1 − 𝑢 (𝜏)] 𝑢 (𝜏)
+ (𝛽1V (𝜏) + 𝛼1) (1 − V (𝜏)𝑢 (𝜏) + 𝑑2)𝑢 (𝜏)
− 𝛾𝑢 (𝜏) V (𝜏)𝑢 (𝜏) + 𝑑1 ,𝑓2 (𝑢, V) = (𝛽2𝑢 (𝜏) + 𝛼2) (1 − V (𝜏)𝑢 (𝜏) + 𝑑2) V (𝜏) − 𝛿V.

(17)

(1) Let us show that limsup[𝑢(𝑡)] ≤ 𝑀𝑢 = (4𝑑2𝛽1 +(𝛽1𝑑2+2𝛼1)𝛽1𝑑2+𝛼21)/𝛽1𝑑2(4−𝛽1). We have 𝑑𝑢/𝑑𝑡 =(1−𝑢)𝑢+(𝛽1V+𝛼1)(1−V/(𝑢+𝑑2))𝑢−𝛾𝑢V/(𝑢+𝑑1) and
maxV{(𝛽1V + 𝛼1)(1 − V/(𝑢 + 𝑑2))𝑢} = 𝑢[𝛽1(𝑢 + 𝑑2) +𝛼1]2/4𝛽1(𝑢 + 𝑑2). Then, 𝑑𝑢/𝑑𝑡 ≤ (𝐵1 − 𝐴1𝑢)𝑢 with𝐵1 = (4𝑑2𝛽1+(𝛽1𝑑2+2𝛼1)𝛽1𝑑2+𝛼21)/4𝛽1𝑑2 and𝐴1 =(4 − 𝛽1)/4. Then through the application property
(13) of Lemma 4, we have ∀𝑡 ≥ 0, 𝑢(𝑡) ≤ 𝑀𝑢[1 +(𝐵1/𝐴1𝑢(0)−1)𝑒−𝐵1𝑡]−1 with𝑀𝑢 = 𝐵1/𝐴1. Therefore,∀𝜀 > 0, ∃𝑇1 > 0 so that ∀𝑡 > 𝑇1, 𝑢(𝑡) ≤ 𝑀𝑢 + 𝜀.

Then lim sup [𝑢 (𝑡)] ≤ 𝑀𝑢
= 4𝑑2𝛽1 + (𝛽1𝑑2 + 2𝛼1) 𝛽1𝑑2 + 𝛼21𝛽1𝑑2 (4 − 𝛽1) .

So ∀𝑡 > 𝑇1, 𝑢 (𝑡) ≤ 𝑀𝑢.
(18)

(2) Let us prove that limsup[𝑢(𝑡) + V(𝑡)] ≤ 𝐿1. Let us set
down 𝑆(𝑡) = 𝑢(𝑡)+V(𝑡). We have 𝑑𝑢/𝑑𝑡 ≤ (𝐵1−𝐴1𝑢)𝑢



International Journal of Differential Equations 5

and 𝑑V/𝑑𝑡 = [𝛽2𝑢+𝛼2−𝛿−(𝛽2𝑢/(𝑢+𝑑2))V−(𝛼2/(𝑢+𝑑2))V]V ≤ [(𝛽2𝑀𝑢 + 𝛼2 − 𝛿) − (𝛼2/(𝑀𝑢 + 𝑑2))V]V;
then, we have 𝑑𝑆/𝑑𝑡 + 𝑆(𝑡) ≤ (1 + 𝐵1 − 𝐴1𝑢)𝑢 + [(1 +𝛽2𝑀𝑢 +𝛼2 −𝛿) − (𝛼2/(𝑀𝑢 +𝑑2))V]V. Now ∀𝑎, 𝑏 ∈ R∗+,
max𝑥≥0(𝑏 − 𝑎𝑥)𝑥 = 𝑏2/4𝑎. Then 𝑑𝑆/𝑑𝑡 + 𝑆(𝑡) ≤ 𝐿1 =(4+(4−𝛽1)𝑀𝑢)2/16(4−𝛽1)+(𝑀𝑢+𝑑2)(𝛽2𝑀𝑢+1+𝛼2−𝛿)2/4𝛼2. Let us set down 𝐴2 = 1 > 0 and 𝐵2 = 𝐿1 > 0
then, 𝑑𝑆/𝑑𝑡 ≤ (𝐵2 − 𝐴2𝑆). Now 𝑆(0) > 0; then,
through the application property (12) of Lemma 4, we
have ∀𝑡 ≥ 0, 𝑆(𝑡) ≤ 𝐿1[1 + (𝑆(0)/𝐿1 − 1)𝑒−𝑡]−1; then∀𝜀 > 0, ∃𝑇2 > 0 so that ∀𝑡 > 𝑇2, 𝑆(𝑡) ≤ 𝐿1 + 𝜀.

So limsup [𝑆 (𝑡)] ≤ 𝐿1.
Consequently ∀𝑡 ≥ 𝑇2, 𝑢 (𝑡) + V (𝑡) ≤ 𝐿1. (19)

(3) Let us show thatA is unvarying for model (9). Given(𝑢(0), V(0)) ∈ A, from Lemma 3, of (18) and (19),∀𝑡 ≥ 𝑇 = max(𝑇1, 𝑇2), (𝑢(0), V(0)) ∈ int(A) ⇒(𝑢(𝑡), V(𝑡)) ∈ A, (𝑢(0), V(0)) ∈ {0} × ]0; 𝐿1] ⇒(𝑢(𝑡), V(𝑡)) ∈ {0} × ]0; 𝐿1] ⊂ A, and (𝑢(0), V(0)) ∈]0;𝑀𝑢] × {0} ⇒ (𝑢(𝑡), V(𝑡)) ∈ ]0;𝑀𝑢] × {0} ⊂ A. So
A is unvarying for model (9).

(4) Let us show that A is an attractive solution of model
(9). Let us show that (𝑢(0), V(0)) ∈ R2+. We deduce
from Lemma 3, (18), and (19) that ∀𝑡 ≥ 𝑇 =
max(𝑇1, 𝑇2), (𝑢(0), V(0)) ∈ int(R2+) ⇒ (𝑢(𝑡), V(𝑡)) ∈
A, and (𝑢(0), V(0)) ∈ 𝜕(R2+) ⇒ (𝑢(𝑡), V(𝑡)) ∈ A,∀𝑡 ≥ 𝑇. Consequently A is an attractive region for
any solution of model (9) from the positive quadrant
R2+.

4. Equilibrium of Model (9)

We are now going to give the conditions of a balanced growth
(stationary) of the product and the stock of capital and the
quantitative values of the parameters in equilibrium.

4.1. Case in Which (𝛽1, 𝛽2) ̸= (0, 0)
4.1.1. Trivial Equilibrium

Proposition 7. (1) If 0 < 𝛼2 ≤ 𝛿 then system (9) admits two
trivial equilibriums: 𝑈∗0 = (0; 0) ,𝑈∗1 = (1 + 𝛼1; 0) . (20)

(2) If 𝛼2 > 𝛿 > 0 then system (9) admits three trivial equi-
libriums: 𝑈∗0 = (0; 0) ,𝑈∗1 = (1 + 𝛼1; 0) ,

𝑈∗2 = (0; (𝛼2 − 𝛿) 𝑑2𝛼2 ) . (21)

4.1.2. Interior Equilibrium

Theorem 8. Let 𝑃(𝑥) = 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 with
𝑎4 = −𝛽22 ,𝑎3 = (1 − 𝑑1) 𝛽22 − 2𝛽2𝛼2 + 𝛽2 (𝛽1𝛿 − 𝛾𝛽2) ,𝑎2 = 2𝛽2𝛼2 (1 − 𝑑1) − 𝛼22 + 𝑑1𝛽22 + 𝛼1𝛿𝛽2 − 𝛾𝛽2𝛼2+ 𝛽1𝛽2𝛿𝑑1 + (𝛽2𝑑2 + 𝛼2 − 𝛿) (𝛽1𝛿 − 𝛾𝛽2) ,𝑎1 = 𝛼1𝛿 (𝛽2𝑑1 + 𝛼2) + (1 − 𝑑1) 𝛼22 + 2𝛽2𝛼2𝑑1+ (𝛽1𝛿 − 𝛾𝛽2) 𝑑2 (𝛼2 − 𝛿)+ (𝛽1𝛿𝑑1 − 𝛾𝛼2) (𝛽2𝑑2 + 𝛼2 − 𝛿) ,𝑎0 = 𝑑1𝛼22 + 𝛼1𝛼2𝛿𝑑1 + (𝛽1𝛿𝑑1 − 𝛾𝛼2) 𝑑2 (𝛼2 − 𝛿) .

(22)

(1) System (9) does not admit the interior equilibrium if𝛽2𝑀𝑢 + 𝛼2 − 𝛿 < 0.
(2) Any interior equilibrium 𝐸∗ = (𝑢∗; V∗) of system (9)

satisfies the following relations:

𝑃 (𝑢∗) = 0,
V∗ = (𝛽2𝑢∗ + 𝛼2 − 𝛿)𝛽2𝑢∗ + 𝛼2 (𝑢∗ + 𝑑2)

𝑤𝑖𝑡ℎ 𝛽2𝑢∗ + 𝛼2 − 𝛿 > 0.
(23)

Proof. Let us consider model (9); then, (𝛽2, 𝛼2) ̸= (0, 0).
Given 𝐸∗ = (𝑢∗; V∗) an equilibrium of the model (9),

(1) if 𝛽2𝑀𝑢∗ + 𝛼2 − 𝛿 < 0 then 𝛽2𝑢∗ + 𝛼2 − 𝛿 < 0 so for
any 𝑢∗ ≥ 0, we have V∗ < 0; therefore the system does
not admit any interior equilibrium.

(2) Given 𝐸∗ = (𝑢∗; V∗) ∈ (R∗+)2 an interior equilibrium,
then we have

(1 − 𝑢∗) + (𝛽1V∗ + 𝛼1) (1 − V∗𝑢∗ + 𝑑2) − 𝛾V∗𝑢∗ + 𝑑1= 0,
(𝛽2𝑢∗ + 𝛼2) (1 − V∗𝑢∗ + 𝑑2) = 𝛿.

(24)
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Therefore,

(1 − 𝑢∗) (𝛽2𝑢∗ + 𝛼2)2 (𝑢∗ + 𝑑1) + 𝛼1𝛿 (𝛽2𝑢∗ + 𝛼2) (𝑢∗ + 𝑑1) + [𝛽1𝛿 (𝑢∗ + 𝑑1) − 𝛾 (𝛽2𝑢∗ + 𝛼2)] (𝛽2𝑢∗ + 𝛼2 − 𝛿) (𝑢∗ + 𝑑2)(𝛽2𝑢∗ + 𝛼2)2 (𝑢∗ + 𝑑1)= 0,
V∗ = (𝛽2𝑢∗ + 𝛼2 − 𝛿)𝛽2𝑢∗ + 𝛼2 (𝑢∗ + 𝑑2) .

(25)

Posing

𝑎4 = −𝛽22 ,𝑎3 = (1 − 𝑑1) 𝛽22 − 2𝛽2𝛼2 + 𝛽2 (𝛽1𝛿 − 𝛾𝛽2) ,𝑎2 = 2𝛽2𝛼2 (1 − 𝑑1) − 𝛼22 + 𝑑1𝛽22 + 𝛼1𝛿𝛽2 − 𝛾𝛽2𝛼2+ 𝛽1𝛽2𝛿𝑑1 + (𝛽2𝑑2 + 𝛼2 − 𝛿) (𝛽1𝛿 − 𝛾𝛽2) ,

𝑎1 = 𝛼1𝛿 (𝛽2𝑑1 + 𝛼2) + (1 − 𝑑1) 𝛼22 + 2𝛽2𝛼2𝑑1+ (𝛽1𝛿 − 𝛾𝛽2) 𝑑2 (𝛼2 − 𝛿)+ (𝛽1𝛿𝑑1 − 𝛾𝛼2) (𝛽2𝑑2 + 𝛼2 − 𝛿) ,𝑎0 = 𝑑1𝛼22 + 𝛼1𝛼2𝛿𝑑1 + (𝛽1𝛿𝑑1 − 𝛾𝛼2) 𝑑2 (𝛼2 − 𝛿)
(26)

and 𝑃(𝑥) = 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0, we obtain
𝐸∗ = (𝑢∗; V∗) ∈ (R∗+)2 ⇐⇒ {{{{{{{

𝑃 (𝑢∗) = 0,
V∗ = (𝛽2𝑢∗ + 𝛼2 − 𝛿)𝛽2𝑢∗ + 𝛼2 (𝑢∗ + 𝑑2) with 𝛽2𝑢∗ + 𝛼2 − 𝛿 > 0. (27)

Corollary 9. Let us suppose that 𝛼2 − 𝛿 > 0 and considering
the polynomial 𝑃(𝑥) defined inTheorem 8, let us set down 𝑝 =𝑎4𝑎2−3𝑎23/8, 𝑞 = 𝑎33/8−𝑎4𝑎3𝑎2/2+𝑎24𝑎1, 𝑟 = 𝑎33/8−𝑎4𝑎3𝑎2/4+𝑎4𝑎23𝑎2/16−3𝑎33/44,𝐴 = 4𝑟+𝑝2/3, 𝐵 = −𝑞2−2𝑝3/27+8𝑝𝑟/3,
and Δ = 27𝐵2 − 4𝐴3.

System (9) admits a unique interior equilibrium 𝐸∗ =(𝑢∗, V∗) such that𝑃(𝑢∗) = 0 and V∗ = ((𝛽2𝑢∗+𝛼2−𝛿)/(𝛽2𝑢∗+𝛼2))(𝑢∗ + 𝑑2) in each of the following cases:

(a) Δ > 0, 𝑎0 > 0.
(b) Δ = 0 and one of the following conditions is verified:

(i) 𝑎0 > 0, 𝑝 < 0, 𝑞 > 0 and 𝑎3 < 0.
(ii) 𝑎0 < 0, 𝑝 > 0, 𝑞 > 0 and 𝑎3 > 0.
(iii) 𝑎0 < 0, 𝑝 > 0, 𝑞 < 0, 𝑎3 < 0, and 𝑎23/4 <−(2 3√𝐵/2 + 2𝑝/3).
(iv) 𝑎0 > 0, 𝑝 < 0, 𝑞 < 0, 𝑎3 < 0 and −(2 3√𝐵/2 +2𝑝/3) < 𝑎23/4.
(v) 𝑎0 < 0, 𝑝 > 0, 𝑞 < 0, 𝑎3 > 0 and −(2 3√𝐵/2 +2𝑝/3) < 𝑎23/4.

Proof. Given 𝑃(𝑥) = 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 the poly-
nomial is defined in Theorem 8 and 𝐸∗ = (𝑢∗, V∗) ∈ (R∗+)2
such that𝑃(𝑢∗) = 0 and V∗ = ((𝛽2𝑢∗+𝛼2−𝛿)/(𝛽2𝑢∗+𝛼2))(𝑢∗+𝑑2).

Let us pose 𝑥 = (1/𝑎4)(𝑦 − 𝑎3/4); then, the equation𝑃(𝑥) = 0 will be reduced to (𝐸1) : 𝑦4 + 𝑝𝑦2 + 𝑞𝑦 + 𝑟 =0 with 𝑝 = 𝑎4𝑎2 − 3𝑎23/8, 𝑞 = 𝑎33/8 − 𝑎4𝑎3𝑎2/2 + 𝑎24𝑎1,𝑟 = 𝑎33/8 − 𝑎4𝑎3𝑎2/4 + 𝑎4𝑎23𝑎2/16 − 3𝑎33/44. The characteristic
equation of (𝐸1) is (𝐸2) : 𝑢3 − 2𝑝𝑢2 + (𝑝2 − 4𝑟)𝑢 + 𝑞2 = 0.
Let us pose 𝐴 = 4𝑟 + 𝑝2/3, 𝐵 = −𝑞2 − 2𝑝3/27 + 8𝑝𝑟/3,Δ = 27𝐵2 − 4𝐴3. Given, 𝑢1, 𝑢2, 𝑢3 solutions of (𝐸2) certifying√−𝑢1 × √−𝑢2 × √−𝑢3 = −𝑞, then, 𝑦1, 𝑦2, 𝑦3, and 𝑦4, the
solutions inC of (𝐸1), are 𝑦1 = (1/2)(√−𝑢1 +√−𝑢2 +√−𝑢3),𝑦2 = (1/2)(√−𝑢1−√−𝑢2−√−𝑢3),𝑦3 = (1/2)(−√−𝑢1+√−𝑢2−√−𝑢3), 𝑦4 = (1/2)(−√−𝑢1 − √−𝑢2 + √−𝑢3).

So, the roots in C of 𝑃(𝑥) are 𝑥𝑖 = (1/𝑎4)(𝑦𝑖 − 𝑎3/4) for𝑖 ∈ {1, 2, 3, 4}.
The roots 𝑥1, 𝑥2, 𝑥3, and 𝑥4 in C of 𝑃(𝑥) prove the

following system: 𝑥1𝑥2𝑥3𝑥4 = 𝑎0/𝑎4 and 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 =−𝑎3/𝑎4.
By examining the number of positive roots of 𝑃(𝑥) and

knowing that 𝑃(𝑢∗) = 0 and V∗ = ((𝛽2𝑢∗ + 𝛼2 − 𝛿)/(𝛽2𝑢∗ +𝛼2))(𝑢∗ + 𝑑2) > 0 because 𝛼2 − 𝛿 > 0, we get Corollary 9.
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4.2. Case in Which (𝛽1, 𝛽2) = (0, 0). Considering the condi-
tions (𝛽1, 𝛽2) = (0, 0) and 𝛼1 ̸= 0, 𝛼2 ̸= 0 in system (9), we get
the following system:�̇� (𝜏) = [1 − 𝑢 (𝜏)] 𝑢 (𝜏) + 𝛼1 (1 − V (𝜏)𝑢 (𝜏) + 𝑑2)𝑢 (𝜏)

− 𝛾𝑢 (𝜏) V (𝜏)𝑢 (𝜏) + 𝑑1 ,
V̇ (𝜏) = 𝛼2 (1 − V (𝜏)𝑢 (𝜏) + 𝑑2) V (𝜏) − 𝛿V,

(𝑢, V) ∈ 𝐶1 (R+,R2) , 𝑢 (0) > 0, V (0) > 0,
(28)

with (𝑑1, 𝑑2, 𝛼1, 𝛼2, 𝛾) ∈ (R∗+)5 and 𝛿 ∈ R+.
4.2.1. Trivial Equilibrium

Proposition 10. (1) If 𝛼2 ≤ 𝛿, then, system (28) admits two
trivial equilibriums: 𝑈∗0 = (0; 0) ,𝑈∗1 = (1 + 𝛼1; 0) . (29)

(2) If 𝛼2 > 𝛿, then, system (28) admits three trivial equi-
libriums: 𝑈∗0 = (0; 0) ,𝑈∗1 = (1 + 𝛼1; 0) ,𝑈∗2 = (0; (𝛼2 − 𝛿) 𝑑2𝛼2 ) . (30)

4.2.2. Interior Equilibrium

Theorem 11. Given that 𝑃(𝑥) = 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 with𝑎2 = −𝛼22 ,𝑎1 = 𝛼22 (1 − 𝑑1) + 𝛿𝛼1𝛼2 − 𝛾𝛼2 (𝛼2 − 𝛿) ,𝑎0 = 𝛼22𝑑1 + 𝛿𝛼1𝛼2𝑑1 − 𝛾𝛼2𝑑2 (𝛼2 − 𝛿) (31)

(1) if 𝛼2 − 𝛿 ≤ 0 then system (28) does not admit any
interior equilibriums,

(2) if𝛼2−𝛿 > 0 then any interior equilibrium𝐸∗ = (𝑢∗; V∗)
of system (28) verifies the following system:𝑃 (𝑢∗) = 0,

V∗ = (𝛼2 − 𝛿)𝛼2 (𝑢∗ + 𝑑2) . (32)

Corollary 12. Let us suppose that 𝛼2 − 𝛿 > 0 and consider
the polynomial 𝑃(𝑥) of Theorem 11. System (28) admits a
unique interior equilibrium 𝐸∗ = (𝑢∗, V∗) so that 𝑢∗ = (𝑎1 +√𝑎21 + 4𝛼22𝑎0)/2𝛼22 and V∗ = ((𝛼2 − 𝛿)/𝛼2)(𝑢∗ + 𝑑2) if one of
the following conditions is verified:

(i) 𝛿 > 𝛼2(𝛾𝑑2 − 𝑑1)/(𝛼1𝑑1 + 𝛾𝑑2).

(ii) 𝛿 < 𝛼2(𝛾𝑑2 − 𝑑1)/(𝛼1𝑑1 + 𝛾𝑑2), 𝑎21 + 4𝛼22𝑎0 = 0, and𝑎1 > 0.
(iii) 𝛿 = 𝛼2(𝛾𝑑2 − 𝑑1)/(𝛼1𝑑1 + 𝛾𝑑2) and 𝑎1 > 0.

Proof. If 𝐸∗ = (𝑢∗, V∗) is an interior equilibrium of (28)
and 𝑃(𝑥) = −𝛼22𝑥2 + 𝑎1𝑥 + 𝑎0, the polynomial, 𝑎0 and 𝑎1
are stipulated in Theorem 11. Then, 𝑃(𝑢∗) = 0 and V∗ =((𝛼2 − 𝛿)/𝛼2)(𝑢∗ + 𝑑2).

We get 𝑎0 = 𝛼22𝑑1 + 𝛿𝛼1𝛼2𝑑1 − 𝛾𝛼2𝑑2(𝛼2 − 𝛿) = 0 ⇔ 𝛿 =𝛼2(𝛾𝑑2 − 𝑑1)/(𝛼1𝑑1 + 𝛾𝑑2).
By examining the number of positive roots of 𝑃(𝑥) in

which 𝑎0 = 0 and 𝑎0 ̸= 0, we obtain researched results.

5. Local Stability and Permanence of Model (9)

In this section, we first define the conditions in which this
balanced growth of the product and the stock of capital of
the economy are stable or unstable. Then, let us examine
the possibility of having permanently those two parameters
of the economy (sustainable development).This permanence
of the product and the stock of capital of the economy are
noticed either through the convergence (of both parameters)
towards a stable equilibrium or through a fluctuation of
both parameters around an unstable equilibrium, that is, the
convergence towards a limited cycle.

5.1. Local Stability of Model (9). In system (9), we pose the
following:𝑓1 (𝑢, V) = [1 − 𝑢 (𝜏)] 𝑢 (𝜏)

+ (𝛽1V (𝜏) + 𝛼1) (1 − V (𝜏)𝑢 (𝜏) + 𝑑2)𝑢 (𝜏)
− 𝛾𝑢 (𝜏) V (𝜏)𝑢 (𝜏) + 𝑑1 ,𝑓2 (𝑢, V) = (𝛽2𝑢 (𝜏) + 𝛼2) (1 − V (𝜏)𝑢 (𝜏) + 𝑑2) V (𝜏)
− 𝛿V.

(33)

We have �̇�(𝜏) = 𝑓1(𝑢, V) and V̇(𝜏) = 𝑓2(𝑢, V).
Let us note that 𝐽(𝐸), the Jacobian matrix of the system,

is linear around 𝐸 = (𝑢, V). Then, we have

𝐽 (𝐸) = (𝜕𝑓1𝜕𝑢 (𝐸) 𝜕𝑓1𝜕V (𝐸)𝜕𝑓2𝜕𝑢 (𝐸) 𝜕𝑓2𝜕V (𝐸)) = (𝐽11 (𝐸) 𝐽12 (𝐸)𝐽21 (𝐸) 𝐽22 (𝐸)) (34)

with 𝜕𝑓1𝜕𝑢 = 1 − 2𝑢 + (𝛽1V + 𝛼1) (1 − V𝑢 + 𝑑2)+ (𝛽1V + 𝛼1) 𝑢V(𝑢 + 𝑑2)2 − 𝛾𝑑1V(𝑢 + 𝑑1)2 ,
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𝜕𝑓1𝜕V = [𝛽1 − 2𝛽1𝑢 + 𝑑2 V − 𝛼1𝑢 + 𝑑2 − 𝛾𝑢 + 𝑑1 ] 𝑢,𝜕𝑓2𝜕𝑢 = [𝛽2 (1 − V𝑢 + 𝑑2) + (𝛽2𝑢 + 𝛼2) V(𝑢 + 𝑑2)2 ] V,
𝜕𝑓2𝜕V = (𝛽2𝑢 + 𝛼2) (1 − 2V𝑢 + 𝑑2) − 𝛿.

(35)

Theorem 13 (local stability). (1) Stability of 𝑈∗0 = (0; 0):
(a) 𝑈∗0 is an unstable node if 𝛼2 > 𝛿.
(b) 𝑈∗0 is an unstable saddle point if 𝛼2 < 𝛿,

(i) repulsive along the direction 𝑢,
(ii) attractive along the direction V.

(2) Stability of 𝑈∗1 = (1 + 𝛼1; 0):
(a) 𝑈∗1 is stable if 𝛼2 + (1 + 𝛼1)𝛽2 < 𝛿.
(b) 𝑈∗1 is an unstable saddle point if 𝛼2 + (1 + 𝛼1)𝛽2 > 𝛿,

(i) attractive along the direction 𝑢,
(ii) repulsive along the direction 𝑤1.

(3) Stability of 𝑈∗2 = (0; (𝛼2 − 𝛿)𝑑2/𝛼2) for 𝛼2 > 𝛿:
(a) 𝑈∗2 is stable if 𝑄(𝛿) < 0.
(b) 𝑈∗2 is an unstable saddle point if 𝑄(𝛿) > 0, repulsive

along the direction𝑤2 and attractive along the direction
V.

(4) Given 𝐸∗ = (𝑢∗; V∗), an interior equilibrium of (9)
verifying system (23) ofTheorem 8, and 𝐽 its associate Jacobian
matrix,

(a) 𝐸∗ is stable (node or a focus) if det(𝐽) > 0 and Tr(𝐽) <0,
(b) 𝐸∗ is marginal or a center if det(𝐽) ≥ 0 and Tr(𝐽) = 0,
(c) 𝐸∗ is unstable if det(𝐽) < 0 or det(𝐽) > 0 andTr(𝐽) > 0;

more precisely,

(i) 𝐸∗ is a node or a focus ifdet(𝐽) > 0 andTr(𝐽) > 0,
(ii) 𝐸∗ is a unstable saddle if det(𝐽) < 0.

With Tr(𝐽) the trace and det(𝐽) the determinant of 𝐽, the
polynomial 𝑄(𝑥) = −𝑑2𝛽1𝑑1𝑥2 + [𝛾𝛼2𝑑2 + 𝑑2𝑑1𝛽1𝛼2 +𝑑1𝛼1𝛼2]𝑥+𝛼22[𝑑1−𝛾𝑑2], the vectors𝑤1 = ((1+𝛼1)[𝛽1−𝛼1/(1+𝛼1 + 𝑑2) − 𝛾/(1 + 𝛼1 + 𝑑1)]; (1 + 𝛼1)(𝛽2 + 1) + 𝛼2 − 𝛿), and𝑤2 = (𝑄(𝛿)/𝑑1𝛼22 + 𝛼2 − 𝛿; [𝛽2𝑑2𝛿 + 𝛼2(𝛼2 − 𝛿)](𝛼2 − 𝛿)/𝛼22).
Proof. Given 𝐽𝑘, the Jacobian matrix of the system, is linear
around the equilibrium 𝑈∗𝑘 for 𝑘 ∈ {0, 1, 2} and 𝐽 of 𝐸∗ =(𝑢∗, V∗), we have the following:

(1) Stability of 𝑈∗0 = (0; 0):

We have 𝑈∗0 = (0; 0) ⇒
𝐽0 = (1 + 𝛼1 00 𝛼2 − 𝛿) . (36)

The numbers 𝜆1 = 1 + 𝛼1 > 0 and 𝜆2 = 𝛼2 − 𝛿
are the eigenvalues of 𝐽0. Eigenspace associated with𝜆1 is 𝐸(0)𝜆1 = ⟨(1; 0)⟩, where ⟨{𝑟𝑘}1≤𝑘≤𝑁⟩ indicates the
vectorial subspace generated by the family: {𝑟𝑘}1≤𝑘≤𝑁∗
with 𝑁 ∈ N. The eigenspace associated with 𝜆2 is𝐸(0)
𝜆2

= ⟨(0; 1)⟩. We have the following:

(a) If 𝛼2 > 𝛿 then 𝜆1 > 0 and 𝜆2 > 0; then 𝑈∗0
is an unstable node and its unstable manifold is𝐸𝑢 = ⟨(1; 0), (0; 1)⟩ = R2.

(b) If 𝛼2 < 𝛿 then 𝜆1 > 0 and 𝜆2 < 0; then 𝑈∗0 is an
unstable saddle point, the unstable manifold of
which is 𝐸𝑢 = ⟨(1; 0)⟩ and the stable manifold is𝐸𝑠 = ⟨(0; 1)⟩.

(c) If 𝛼2 = 𝛿 then 𝜆1 > 0 and 𝜆2 = 0; therefore𝑈∗0 is an equilibrium the unstable manifold of
which is 𝐸𝑢 = ⟨(1; 0)⟩ and of central manifold is𝐸𝑐 = ⟨(0; 1)⟩.

(2) Stability of 𝑈∗1 = (1 + 𝛼1; 0):
We have𝐽1

= (− (1 + 𝛼1) (1 + 𝛼1) [𝛽1 − 𝛼11 + 𝛼1 + 𝑑2 − 𝛾1 + 𝛼1 + 𝑑1 ]0 (1 + 𝛼1) 𝛽2 + 𝛼2 − 𝛿 ) . (37)

So 𝜆1 = −(1 + 𝛼1) < 0 and 𝜆2 = (1 + 𝛼1)𝛽2 + 𝛼2 − 𝛿
are the eigenvalues of 𝐽1.
The eigenspace associated with 𝜆1 is 𝐸(1)𝜆1 = ⟨(1; 0)⟩.
Note that𝑤1 = ((1+𝛼1)[𝛽1 −𝛼1/(1+𝛼1 +𝑑2) −𝛾/(1+𝛼1 + 𝑑1)]; (1 + 𝛼1)(𝛽2 + 1) + 𝛼2 − 𝛿).
The eigenspace associated with 𝜆2 is 𝐸(1)𝜆2 = ⟨𝑤1⟩.
We get the following:

(a) If 𝛼2 + (1 + 𝛼1)𝛽2 < 𝛿 then 𝜆1 < 0 and 𝜆2 < 0;
then 𝑈∗1 is stable and its stable manifold is 𝐸𝑢 =
R2.

(b) If 𝛼2 + (1 + 𝛼1)𝛽2 > 𝛿 then 𝜆1 < 0 and 𝜆2 > 0;
then𝑈∗1 is an unstable saddle point of which the
stable manifold is 𝐸𝑠 = ⟨(1; 0)⟩ and the unstable
manifold is 𝐸𝑢 = ⟨𝑤1⟩.

(c) If 𝛼2 + (1 + 𝛼1)𝛽2 = 𝛿 then 𝜆1 < 0 and𝜆2 = 0; consequently 𝑈∗1 is an equilibrium the
stable manifold of which is 𝐸𝑠 = ⟨(1; 0)⟩ and the
central manifold is 𝐸𝑐 = ⟨𝑤1⟩.

(3) Stability of 𝑈∗2 = (0; (𝛼2 − 𝛿)𝑑2/𝛼2):
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We have𝐽2
= ( 𝑄(𝛿)𝑑1𝛼22 0[𝛽2𝑑2𝛿 + 𝛼2 (𝛼2 − 𝛿)] (𝛼2 − 𝛿)𝛼22 − (𝛼2 − 𝛿)) . (38)

So 𝜆1 = 𝑄(𝛿)/𝑑1𝛼22 and 𝜆2 = −(𝛼2 − 𝛿) are the
eigenvalues of 𝐽2.
Let us note that 𝑤2 = (𝑄(𝛿)/𝑑1𝛼22 + 𝛼2 − 𝛿; [𝛽2𝑑2𝛿 +𝛼2(𝛼2 − 𝛿)](𝛼2 − 𝛿)/𝛼22).
The eigenspace associated with 𝜆1 is 𝐸(2)𝜆1 = ⟨𝑤2⟩.
The eigenspace associated with 𝜆2 is 𝐸(2)𝜆2 = ⟨(0, 1)⟩.
We get the following:

(a) If 𝑄(𝛿) < 0 then 𝜆1 < 0 and 𝜆2 < 0; then, 𝑈∗2 is
stable and its stable manifold is 𝐸𝑠 = R2.

(b) If 𝑄(𝛿) ≥ 0 then 𝜆1 < 0 and 𝜆2 ≥ 0; then 𝑈∗2
is an unstable saddle the unstable manifold of
which is 𝐸𝑢 = ⟨𝑤2⟩ and the stable manifold of
which is 𝐸𝑠 = ⟨(0, 1)⟩.

(4) Stability of 𝐸∗ = (𝑢∗; V∗):
Let 𝜆∗1 and 𝜆∗2 be the eigenvalues of 𝐽. Thus, let us
note Tr(𝐽) = 𝜆∗1 + 𝜆∗2 its trace and det(𝐽) = 𝜆∗1𝜆∗2
its determinant. The eigenspace associated with 𝜆∗1 is𝐸∗𝜆1 = ⟨(𝐽12; 𝜆∗1 − 𝐽11)⟩ and the eigenspace associated
with 𝜆∗2 is 𝐸∗𝜆2 = ⟨(𝐽21; 𝜆∗2 − 𝐽22)⟩.
(a) If det(𝐽) > 0 and Tr(𝐽) < 0 then Re[𝜆∗1] < 0

and Re[𝜆∗2] < 0. So, 𝐸∗ is stable (stable node or
stable focus).

(b) If det(𝐽) ≥ 0 and Tr(𝐽) = 0 then 𝜆∗1 , 𝜆∗2 ∈ 𝑖R.
Therefore 𝐸∗ is a marginal or a center.

(c) If det(𝐽) < 0 or det(𝐽) > 0 and Tr(𝐽) > 0 then𝐸∗ is unstable. In fact,
(i) if det(𝐽) > 0 and Tr(𝐽) > 0 then Re[𝜆∗1] > 0

andRe[𝜆∗2] > 0 or𝜆∗1 and𝜆∗2 are conjugated
complexes. So, 𝐸∗ is node or an unstable
center,

(ii) if det(𝐽) < 0 then 𝐸∗ is an unstable saddle.

5.2. Permanence of Model (9)

Definition 14 (see [8]). Given solution 𝑢 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) of
a differential system �̇� = 𝑓 (𝑡, 𝑢) , (39)

(1) a component 𝑥𝑖 of the solution 𝑢 of (39) is said to be
weakly persistent if lim sup[𝑥𝑖(𝑡)] > 0,

(2) a component 𝑥𝑖 of the solution 𝑢 of (39) is said to be
highly persistent if lim inf[𝑥𝑖(𝑡)] > 0,

(3) a component 𝑥𝑖 of the solution 𝑢 of (39) is said
to be uniformly persistent if there is 𝜀 such that
lim inf[𝑥𝑖(𝑡)] ≥ 𝜀 > 0,

(4) System (39) is said to be dissipative as for any compo-
nent 𝑥𝑖 of the solution there is a constant𝑀𝑖 > 0 such
that lim sup[𝑥𝑖(𝑡)] ≥ 𝑀𝑖 > 0,

(5) System (39) is said to be permanent if it is uniformly
persistent and dissipative.

Let Ω be complete metric space and Ω for an open set
such thatΩ = Ω ∪ 𝜕Ω. Further, we shall takeΩ = int(R2+).
Definition 15 (see [8]). A flow or semiflow onΩ under whichΩ and 𝜕Ω are forward invariant is said to be permanent if it
is dissipative and if there is a number 𝜀 > 0 such that any
trajectory starting inΩwill be at least at a distance 𝜀 from 𝜕Ω
for all sufficiently large 𝑡.
Definition 16 (see [8]). (1) The 𝜔-limit set 𝜔(𝜕Ω) is said to be
isolated if it has a covering𝑀 = ⋃𝑁𝑘=1𝑀𝑘 of pairwise disjoint
sets 𝑀𝑘 which are isolated and invariant with respect to the
flow or the semiflow both on 𝜕Ω and onΩ = Ω ∪ 𝜕Ω.

(2) The set 𝜔(𝜕Ω) is said to be acyclic if there exists an
isolated covering𝑀 = ⋃𝑁𝑘=1𝑀𝑘 such that no subset of𝑀𝑘 is
a cycle.

Lemma 17 (see [8]). Suppose that a semiflow on Ω leaves
both Ω and 𝜕Ω forward invariant, maps bounded sets in Ω to
precompact set for 𝑡 > 0, and it is dissipative. If in addition

(1) 𝜔(𝜕Ω) is isolated and acyclic,
(2) 𝐸𝑠[𝑀𝑘] ∩ Ω = 0 for all 𝑘 ∈ {1; 2; . . . ; 𝑁}, where𝑀 = ⋃𝑁𝑘=1𝑀𝑘 is the isolated covering used in the

definition of acyclicity of 𝜔(𝜕Ω) and 𝐸𝑠 denotes the
stable manifold,

then the semiflow is permanent.

Theorem 18. Let us assume that 0 < 𝛽1 < 4 and 𝛼2 > 𝛿; then
we pose

𝑀𝑢 = 4𝑑2𝛽1 + (𝛽1𝑑2 + 2𝛼1) 𝛽1𝑑2 + 𝛼21𝛽1𝑑2 (4 − 𝛽1) ;
𝐿1 = (4 + (4 − 𝛽1)𝑀𝑢)216 (4 − 𝛽1)

+ (𝑀𝑢 + 𝑑2) (𝛽2𝑀𝑢 + 1 + 𝛼2 − 𝛿)24𝛼2 ;
𝑚𝑢 = −𝛽1𝑑2 𝐿21 − (𝛼1𝑑2 + 𝛾𝑑1)𝐿1 + 1 + 𝛼1;
𝑚V = (𝛼2 − 𝛿) 𝑑2𝛽2𝑑2 + 𝛼2 ;
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𝑄 (𝑥) = −𝑑2𝛽1𝑑1𝑥2+ [𝛾𝛼2𝑑2 + 𝑑2𝑑1𝛽1𝛼2 + 𝑑1𝛼1𝛼2] 𝑥+ 𝛼22 [𝑑1 − 𝛾𝑑2] .
(40)

Let us consider the following assumptions:

(𝐻1) − 𝛽1𝑑2 𝐿21 − (𝛼1𝑑2 + 𝛾𝑑1)𝐿1 + 1 + 𝛼1 > 0;
(𝐻2) 𝑄 (𝛿) > 0. (41)

Under the assumptions (𝐻1) and (𝐻2), model (9) is permanent
and any positive solution (𝑢, V) of (9) verifies𝑚𝑢 ≤ 𝑢 ≤ 𝑀𝑢;𝑚V ≤ V ≤ 𝐿1 − 𝑚𝑢. (42)

Proof. Given Ω = int(R2+) and 𝜕Ω = ⟨(1; 0)⟩ ∪ ⟨(0; 1)⟩, its
frontier, and Ω = Ω ∪ 𝜕Ω, we know that Ω and 𝜕Ω are
invariants formodel (9) (cf. Lemma 3) and thatA is attractive
bounded for any trajectory from Ω = R2+ (cf. Theorem 6).
Let us assume that 0 ≤ 𝛽1 < 4 and 𝛼2 > 𝛿 and let us apply
Lemma 17:

(1) Let us justify the fact that model (9) is dissipative overΩ = R2+:

(a) Let us show that lim inf[𝑢(𝑡)] ≥ 𝑚𝑢 = −(𝛽1/𝑑2)𝐿21−(𝛼1/𝑑2+𝛾/𝑑1)𝐿1+1+𝛼1. Posing𝐴1 = 1
and 𝐵1 = 1 + 𝛼1 − 𝐿1(𝛽1𝐿1 + 𝛼1)/𝑑2 − 𝛾𝐿1/𝑑1,
we have 𝑑𝑢/𝑑𝑡 ≥ (𝐵1 − 𝐴1𝑢)𝑢 and 𝑢(0) > 0.
So, from property (14) of Lemma 4, we have
lim inf[𝑢(𝑡)] ≥ 𝑚𝑢 = −(𝛽1/𝑑2)𝐿21 − (𝛼1/𝑑2 +𝛾/𝑑1)𝐿1 + 1 + 𝛼1.

(b) Let us show that lim inf[V(𝑡)] ≥ 𝑚V = (𝛼2 −𝛿)𝑑2/(𝛽2𝑑2+𝛼2). Posing 𝐵3 = (𝛼2−𝛿) and𝐴3 =(𝛽2 +𝛼2/𝑑2), then, we have 𝑑V/𝑑𝑡 ≥ (𝐵3 −𝐴3V)V
and V(0) > 0. We get lim inf[V(𝑡)] ≥ 𝑚V =(𝛼2 − 𝛿)𝑑2/(𝛽2𝑑2 + 𝛼2) > 0 for 𝛼2 > 𝛿.

(c) We deduce thatmodel (9) is dissipative overΩ =
R2+ as soon as the assumption (𝐻1) is verified.

(2) Let us prove that 𝜔(𝜕Ω) is isolated and acyclic. We
have 𝜕Ω = ⟨(1; 0)⟩ ∪ ⟨(0; 1)⟩. On the one hand,𝜔[⟨(1; 0)⟩] = {𝑈∗0 ; 𝑈∗1 } ⊂ ⟨(1; 0)⟩; now the stable
manifold𝑈∗1 is 𝐸𝑠[𝑈∗1 ] = ⟨(1, 0)⟩ if 𝛼2+(1+𝛼1)𝛽2 > 𝛿
and 𝑈∗0 is unstable if 𝛼2 ≥ 𝛿. Then any trajectory
from ⟨(1; 0)⟩ other than 𝑈∗0 approaches 𝑈∗1 if 𝛼2 ≥ 𝛿
for 𝛼2 ≥ 𝛿 ⇒ 𝛼2 + (1 + 𝛼1)𝛽2 > 𝛿. On the other
hand, 𝜔[⟨(0; 1)⟩] = {𝑈0; 𝑈2} ⊂ ⟨(0; 1)⟩; now the stable
manifold of 𝑈∗2 is 𝐸𝑠[𝑈∗2 ] = ⟨(0, 1)⟩ if 𝑄(𝛿) > 0 and𝑈∗0 is unstable if 𝛼2 ≥ 𝛿; then any trajectory from⟨(0; 1)⟩ other than 𝑈∗0 approaches 𝑈∗2 if 𝛼2 ≥ 𝛿 and𝑄(𝛿) > 0. Given that 𝛼2 > 𝛿 then we deduce that𝜔[𝜕Ω] = {𝑈0; 𝑈1; 𝑈2} ⊂ 𝜕Ω is isolated and acyclic if𝑄(𝛿) > 0 (if the assumption (𝐻2) is verified).

(3) Let us justify that 𝐸𝑠[𝜔(𝜕Ω)] ∩ Ω = 0. We have𝜔[𝜕Ω] = {𝑈0; 𝑈1; 𝑈2} and Ω = int(R2+). If 𝛼2 ≥ 𝛿,𝛼2+(1+𝛼1)𝛽2 > 𝛿, and𝑄(𝛿) > 0 then𝐸𝑠[𝜔(𝜕Ω)]∩Ω =0; now 𝛼2 > 𝛿. So 𝐸𝑠[𝜔(𝜕Ω)] ∩ Ω = 0 if 𝑄(𝛿) > 0.
Definitively, system (9) is permanent.

5.3. Limit Cycle of Model (9). The theorem below presents the
conditions for a cyclic growth of the product and the stock of
capital of the economy.

Theorem 19. Let us recall the notations of Theorem 13. Let us
suppose that the assumptions of Theorem 18 are verified and
that model (9) admits a unique interior equilibrium 𝐸∗ =(𝑢∗; V∗). If det(𝐽) > 0 and Tr(𝐽) > 0 then model (9) admits
a limit cycle contained in the attractive regionA.

Proof. Under the assumption ofTheorem 18,model (9) is per-
manent and if det(𝐽) > 0 and Tr(𝐽) > 0 then the unique inte-
rior equilibrium𝐸∗ = (𝑢∗; V∗) is unstable somodel (9) admits
a limit cycle contained in the compact and bounded regionA
(from Poincaré-Beddicton’s theorem).

6. Global Stability of Model (9)

We now define the conditions in which stability of the prod-
uct and the stock of capital of the economy are global; that is,
they do not depend on the quantities produced and the level
of the stock at the initial period. For this study, we define
appropriate Lyapunov function.

Theorem 20. Posing 𝑀𝑢 = (4𝑑2𝛽1 + (𝛽1𝑑2 + 2𝛼1)𝛽1𝑑2 +𝛼21)/𝛽1𝑑2(4 − 𝛽1) and 𝐿1 = (4 + (4 − 𝛽1)𝑀𝑢)2/16(4 − 𝛽1) +(𝑀𝑢+𝑑2)(𝛽2𝑀𝑢+1+𝛼2−𝛿)2/4𝛼2, let us consider the following
assumptions:

0 < 𝛽1 < 4,𝛼2 > 𝛿. (43)

(9) admits a single point of interior equilibrium 𝐸∗= (𝑢∗; V∗) , (44)

𝛽1𝐿21 + 𝛼1𝐿1𝑑22 + 𝛾𝐿1𝑑21 < 1. (45)

0 < 𝛽1 < 𝛼1𝑀𝑢 + 𝑑2 + 𝛾𝑀𝑢 + 𝑑1 . (46)

Under assumptions (43)–(46), the unique interior equilibrium
of model (9) is globally and asymptotically stable.

Proof. Let us consider system (9). Let us suppose that
assumption (44) is verified; then, model (9) admits a unique
interior equilibrium 𝐸∗ = (𝑥∗, 𝑦∗).
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Let us note that 𝜆 = 𝛽1(𝑢 + 𝑑2)/2(𝛽2𝑢 + 𝛼2). We have𝑉1 : R2 → R and 𝑉2 : R2 → R such that𝑉1 (𝑢, V) = [𝑢 − 𝑢∗ − ln( 𝑢𝑢∗ )] = ∫𝑢
𝑢∗

[1 − 𝑢∗𝑥 ] 𝑑𝑥,
𝑉2 (𝑢, V) = 𝜆 [V − V∗ − ln( V

V∗
)]

= 𝜆∫V

V∗
[1 − V∗𝑥 ] 𝑑𝑥.

(47)

We have the Lyapunov function 𝑉 : R2 → R such that𝑉(𝑢, V) = 𝑉1(𝑢, V) + 𝑉2(𝑢, V).
Then, 𝑑𝑉/𝑑𝑡 = 𝑑𝑉1/𝑑𝑡 + 𝑑𝑉2/𝑑𝑡 = (𝑑𝑉1/𝑑𝑢)�̇� +(𝑑𝑉2/𝑑V)V̇ = (𝑢 − 𝑢∗)(�̇�/𝑢) + 𝜆(V − V∗)(V̇/V). Now�̇�𝑢 = [1 − 𝑢 + (𝛽1V + 𝛼1) − V (𝛽1V + 𝛼1)𝑢 + 𝑑2 − 𝛾V𝑢 + 𝑑1] ,
V̇
V
= [(𝛽2𝑢 + 𝛼2 − 𝛿) − (𝛽2𝑢 + 𝛼2)𝑢 + 𝑑2 V] , (48)

and 𝐸∗ = (𝑢∗; V∗) ∈ (R∗+)2, a unique interior equilibrium of
(9); then,1 = 𝑢∗ − (𝛽1V∗ + 𝛼1) (1 − V∗𝑢∗ + 𝑑2) + 𝛾V∗𝑢∗ + 𝑑1 ;𝛼2 − 𝛿 = −𝛽2𝑢∗ + (𝛽2𝑢∗ + 𝛼2) V∗𝑢∗ + 𝑑2 . (49)

Therefore,�̇�𝑢 = (𝑢 − 𝑢∗) [−1 + 𝛽1V2 + 𝛼1V(𝑢∗ + 𝑑2) (𝑢 + 𝑑2)+ 𝛾V(𝑢∗ + 𝑑1) (𝑢 + 𝑑1)] + (V − V∗) [𝛽1
− 𝛽1 (V + V∗) + 𝛼1(𝑢∗ + 𝑑2) − 𝛾(𝑢∗ + 𝑑1)] ;

V̇
V
= (𝑢 − 𝑢∗) [−𝛽2 − 𝛽2V∗𝑢∗ + 𝑑2 + (𝛽2𝑢 + 𝛼2) V(𝑢∗ + 𝑑2) (𝑢 + 𝑑2)]− (𝛽2𝑢 + 𝛼2)𝑢∗ + 𝑑2 (V − V∗) .

(50)

Let us pose the following:𝑔 (𝑢, V)
= −1 + 𝛽1V2 + 𝛼1V(𝑢∗ + 𝑑2) (𝑢 + 𝑑2) + 𝛾V(𝑢∗ + 𝑑1) (𝑢 + 𝑑1) ;ℎ (𝑢, V)
= 12 [𝛽1 − 𝛽1 (V + V∗) + 𝛼1(𝑢∗ + 𝑑2) − 𝛾(𝑢∗ + 𝑑1)]+ 𝜆2 [−𝛽2 − 𝛽2V∗𝑢∗ + 𝑑2 + (𝛽2𝑢 + 𝛼2) V(𝑢∗ + 𝑑2) (𝑢 + 𝑑2)] .

(51)

Consequently, 𝑑𝑉/𝑑𝑡 = 𝑔(𝑢, V)(𝑢−𝑢∗)2+2ℎ(𝑢, V)(𝑢−𝑢∗)(V−
V∗)−𝜆((𝛽2𝑢+𝛼2)/(𝑢∗+𝑑2))(V−V∗)2.Then, 𝑑𝑉/𝑑𝑡 ≤ [𝑔(𝑢, V)+ℎ(𝑢, V)](𝑢−𝑢∗)2 +[ℎ(𝑢, V)−𝜆((𝛽2𝑢+𝛼2)/(𝑢∗ +𝑑2))](V− V∗)2.
Thus, 𝑑𝑉/𝑑𝑡 < 0 if 𝑔(𝑢, V) < 0 and ℎ(𝑢, V) < 0, ∀(𝑢, V) ∈ R2.

Let us determine the conditions on the control param-
eters of model (9) such that 𝑔(𝑢, V) < 0 and ℎ(𝑢, V) < 0,∀(𝑢, V) ∈ R2 (cf. [9], pages 110-111).

(1) Let us overestimate 𝑔(𝑢, V). We have 𝑔(𝑢, V) = −1 +(𝛽1V2 + 𝛼1V)/(𝑢∗ + 𝑑2)(𝑢 + 𝑑2) + 𝛾V/(𝑢∗ + 𝑑1)(𝑢 +𝑑1). Then 𝑔(𝑢, V) ≤ −1 + (𝛽1𝐿21 + 𝛼1𝐿1)/𝑑22 + 𝛾𝐿1/𝑑21.
Therefore 𝑔(𝑢, V) < 0, ∀(𝑢, V) ∈ R2 if −1 + (𝛽1𝐿21 +𝛼1𝐿1)/𝑑22 + 𝛾𝐿1/𝑑21 < 0.

(2) Let us overestimate ℎ(𝑢, V). We have 𝜕ℎ/𝜕V = (−(𝑢 +𝑑2)𝛽1 + 𝜆(𝛽2𝑢 + 𝛼2))/2(𝑢∗ + 𝑑2)(𝑢 + 𝑑2). Now 𝜆 =𝛽1(𝑢+𝑑2)/2(𝛽2𝑢+𝛼2); then, 𝜕ℎ/𝜕V = −𝛽1/4(𝑢∗+𝑑2) <0. Consequently, ℎ(𝑢, V) ≤ ℎ(𝑢, 0), ∀V ≥ 0. Then,ℎ(𝑢, V) ≤ (1/2)[𝛽1 − 𝛼1/(𝑢∗ + 𝑑2) − 𝛾/(𝑢∗ + 𝑑1)] +(𝜆/2)[−𝛽2 − 𝛽2V∗/(𝑢∗ + 𝑑2)]. Therefore, ℎ(𝑢, V) ≤ 0,∀(𝑢, V) ∈ R2, if 𝛽1 < 𝛼1/(𝑀𝑢 + 𝑑2) + 𝛾/(𝑀𝑢 + 𝑑1).
(3) Let us deduce that 𝑑𝑉/𝑑𝑡 < 0. We know that (𝛽1𝐿21 +𝛼1𝐿1)/𝑑22 + 𝛾𝐿1/𝑑21 < 1 ⇒ 𝑔(𝑢, V) < 0, ∀(𝑢, V) ∈ R2,

and 𝛽1 < 𝛼1/(𝑀𝑢 + 𝑑2) + 𝛾/(𝑀𝑢 + 𝑑1) ⇒ ℎ(𝑢, V) ≤ 0,∀(𝑢, V) ∈ R2. Now 𝑑𝑉/𝑑𝑡 < 0, ∀(𝑢, V) ∈ R2, if𝑔(𝑢, V) < 0 and ℎ(𝑢, V) < 0, ∀(𝑢, V) ∈ R2. Then,𝑑𝑉/𝑑𝑡 < 0, ∀(𝑢, V) ∈ R2, if assumptions (43)–(46)
are verified.Therefore the unique interior equilibrium
of model (9) is globally and asymptotically stable if
assumptions (43)–(46) are verified.

7. Conclusion

Our work used the Kaldor model as basic economic model.
By including it at the level of the investment rate and saving
rate compatible ecological functions, we encourage the eco-
nomic actors to adopt a behaviour permitting very rapidly
entering a stability area (attracting set A). This stability can
be noticed on the one hand in the form of stationary growth
of the stock of capital and the product (stable interior equi-
librium) and on the other hand in the form of cyclic growth
of the capital and the product (limit cycle). We therefore
guarantee, under certain conditions, the permanence of the
stock of capital,𝐾, and that of the product,𝑌, in the economy
avoiding, in that way, a shortage of the stock of capital or the
production in the long term. Under certain conditions, this
stability of the financial system (in relation to the capital and
the product) is global; that is, it does depend on the level of
the stock of capital and the level of production at the initial
period.

In the first consideration, the model can be applied to a
state, regional organisation, or to an enterprise. In the case of
an enterprise, the product 𝑌 refers to the monetary value of
the production. We can then infuse the existing production
functions such as Cobb-Douglas, Leontief, and CES. In that
case, we can substitute the saving with the quantity of work
and the tendency will show a technical progress.
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Secondly, the model can also be applied as an ecological
model of two species where one of the species (e.g., man)
“cultivate” the other species for its survival or to prevent the
loss of that species through a culture rate (investment rate)
which is nonnull.
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