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We consider a nonautonomous 2D Leray-a model of fluid turbulence. We prove the existence of the uniform attractor &/“. We also
study the convergence of &/ as «a goes to zero. More precisely, we prove that the uniform attractor &/ converges to the uniform

attractor of the 2D Navier-Stokes system as « tends to zero.

1. Introduction

In the past decades, the study of nonautonomous dynamical
systems has been paid much attention as evidenced by the
references cited in [1-8]. In [9], the author considers some
special classes of nonautonomous dynamical systems and
studies the existence and uniqueness of uniform attractors.
In [10], the authors present a general approach that is well
suited to construct the uniform attractor of some equations
arising in mathematical physics (see also [11, 12]). In this
approach, instead of considering a single process associated
with the dynamical system, the authors consider a family
of processes depending on a parameter (symbol) ¢ in some
Banach space. The approach preserves the leading concept
of invariance, which implies the structure of the uniform
attractors.

In this article, we study the following nonautonomous 2D
Leray-« model:

g—:—vAv+(u-V)v+Vp:gO(x,t),
v=u-o’Au,
V-u=0, O
V-v=0,
v(T) = v,

where u is the velocity vector field, p is the pressure, and v is
the viscosity coefficient. The spatial variable x belongs to the
two-dimensional torus T2 = [0,27L]? and « is a parameter.
Precise assumptions on the external force g, are given below.
Formally, the above system is the 2D Navier-Stokes system
when o = 0.

The 2D Leray-a model has received much attention over
the past years (see [13] and the references therein) because
of its importance in the description of fluid motion and
turbulence. The 3D version of (1), namely, the 3D Leray-«
model, was considered in [14] as a large eddy simulation
subgrid scale model of 3D turbulence. In [15], the authors
studied the relations between the long-time dynamics of the
3D Leray-alpha model and the 3D Navier-Stokes system. They
found that bounded sets of solutions of the 3D Leray-a model
converge to the trajectory attractor of the 3D Navier-Stokes
system as time tends to infinity and « approaches zero. In
particular, they showed that the trajectory attractor of the 3D
Leray-oe model converges to the trajectory attractor of the 3D
Navier-Stokes system. In [16], analogous results were proven
for the 3D Navier-Stokes-a model. In [17], the authors studied
the convergence of the solution of the 2D stochastic Leray-
a model to the solution of the stochastic 2D Navier-Stokes
equations as « approaches 0. In particular, they proved the
convergence in probability with the rate of convergence at
most O(x).

The 2D Leray- model has been studied analytically
in [18] and computationally in [13]. In [18], the authors
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investigated the rate of convergence of four alpha models
(2D Navier-Stokes-a model, 2D Leray-a model, 2D modified
Leray-«a model, and 2D simplified Bardina model) in the 2D
case subject to periodic boundary conditions. In particular,
they showed upper bounds in terms of « for the difference
between solutions of the 2D «-models and solutions of
the 2D Navier-Stokes system. They found that all the four
a-models have the same order of convergence and error
estimates. We also note that the autonomous and nonau-
tonomous 2D Navier-Stokes-« models were considered in
[6, 19]. In [19], they proved that the global attractors of
the 2D Navier-Stokes-« model converge to a subset of the
global attractor of the 2D Navier-Stokes system when «
approaches 0. In [6], the authors studied the convergence
of the uniform attractors of the 2D Navier-Stokes-a« model
when « tends to zero. They found that the uniform attractors
of the 2D Navier-Stokes-o« model converge to the uniform
attractor of the 2D Navier-Stokes system when « approaches
Zero.

The purpose of this paper is to prove analogous results
for the nonautonomous 2D Leray-o model. More precisely,
we prove that the uniform attractors for the 2D Leray-«
model converge to the uniform attractor of the 2D Navier-
Stokes system when « approaches zero (see Theorem 13).
Uniform attractors are not invariant under the family of
processes; this brings about some difficulties in proving upper
semicontinuous property. The proof of the convergence of the
uniform attractors of the 2D Leray-a model uses the structure
of uniform attractors which says that each uniform attractor
is a union of kernels.

The article is structured as follows. In Section 2, we
recall some properties of the uniform attractor for the 2D
Navier-Stokes equations. In Section 3, we prove the existence
and the structure of the uniform attractor of the 2D Leray-
a model. In Section 4, we prove the convergence of the
uniform attractors of the 2D Leray-a model to the uniform
attractor of the 2D Navier-Stokes system as « approaches
zZero.

2. The 2D Navier-Stokes System and
Its Uniform Attractor

We consider the nonautonomous 2D Navier-Stokes system
with periodic boundary conditions:

ou

— —7A -V Vp = t,x),
35 vAu+ (u-V)u+Vp = g, (t, x) @
V-u=0.

In (2), u = u(x,t) = (u(x,t),uy(x, 1)) is the unknown
vector field in T describing the motion of the fluid. The scalar
function p(x,t) is the unknown pressure and g,(x,t) is a
given field of external force. Let & be the set of trigonometric
polynomials of two variables with periodic domain T> and
spatial average zero; that is, for every © € &, Lﬂ d(x)dx = 0.
We then set

7 ={0eF:V-0=0}. 3)
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We denote by H and V the closure of 7" in L*(T%*)? and
H 1('|]'2)2, respectively. The norms in H and V are denoted,
respectively, by | - | and || - ||

We denote by & L*(T*)* — H the Helmholtz-
Leray orthogonal projection operator and by A = —-%PA
the Stokes operator, subject to periodic boundary conditions,
with domain D(A) = H*(T?)? N V. We note that in the space
periodic case

A=-PA = -A. (4)

The operator A™" is a self-adjoint positive definite compact
operator from H into H. By 0 < 27/L)*> = A, < A, < ---, we
denote the eigenvalues of A in the 2D case. It is well known
that, in two dimensions, the eigenvalues of operator A satisfy
Weyl’s type formula (see, e.g., [13, 15]); namely, there exists a
constant ¢, > 0 such that

A

iMoo .
— < < fi =1,2,.... 5
o S, %) for ()

By
((u,v)) = (Al/zu,Al/zv) = (Vu,Vv),
lull = |A"2u] (6)

for u,vev,

we denote the scalar product and the norm in V/, respectively.
Let V' be the dual space of V. For every v € V', we denote by
(v, u) the value of the functional v from V' on a vector u € V.
The operator A is an isomorphism from V to V', In particular
(w,u)) = (Aw, u) forall w,u € V.

The Poincaré inequalities read

ul” <Ay ul®, VueV, %)
lulls < A ul®, Yu e H. (8)

For every w;, w, € 7/, we define the bilinear operator
B(w,w,) = P ((w; - V) wy). )

In the following lemma, we list certain relevant inequalities
and properties of B (see, e.g., [11]).

Lemma 1. The bilinear operator B defined in (9) satisfies the
following.

B can be extended as a continuous bilinear map B : V x
V — V', In particular, B satisfies the following inequalities:

[(B (u,v), whyr| < c Ll ull ]| ]2 w) 2
(10)
Yu,v,w €V,
[(B (u, v) s w0y | < c [l el o> )12 o]
(11)
Yu,v,w €V,
(B (u,v), w)| < ¢llullg VI 0],
(12)

Yue D(A), veV, weH,
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(B (4, v) , w)| < clul |Vv] [w],

(13)
VueH, veD(A"?), weH,
(B (1, v) s W) peay| < ¢ lul IVl wll »
(14)
YueH, veV, we D(A).
Moreover, for every w;, w,, w; € V, we have
(B (wl,wz),w3>v, =-(B (wl,w3),w2>V,, (15)
and in particular
(B(w,w,),w,)ys = 0. (16)

We apply the operator &P to both sides of (2) and obtain an
equivalent system:

?3_? +vAu + B(u,u) = g, (x,1). 17)

The initial condition is posed att = 7, T € R:
u(r)=u, € H. (18)

In order to clarify the assumptions on the external force
go» we introduce the following notation. Given a Banach
space X, we denote by LZb(IR; X) the subspace ofooc([R; X) of
translation bounded functions; that is, for ¥(s) € Lzb([R{; X),
we have

t+1

”‘P"im;X) = sup j I¥ (s)[1% ds < co. (19)
teR

t

We now give from [10] the definition and some properties of
translation compact functions.

Definition 2. A function ¥ ¢ L%OC(IR; X) is said to be
translation compact in Lfoc(lR; X) if the set of its translations
{¥(t + h), h € R} is precompact in L%OC(IR;X) for the local
convergence topology.

The set

FW)=[{¥(E+h), heR): @y (20)

is called the hull of the function V¥ in the space L%OC(IR; X),
where [-]y denotes the closure in the space X. Note that if
Y is translation compact in Lfo (R; X), then its hull Z(\¥) is

compact in L%OC(R; X). The hull Z(g) of g(x,t) in the space
L} (R;H) is

(@) =UgCt+h), heR, @uy- (@D
The following proposition gives the existence and uniqueness

of weak solutions of problems (17)-(18) (see [10] for the
proof).

Proposition 3. Let g, € L}(R; H) and let u, € H. Problems
(17)-(18) have unique solutions u € C(R,;H) N LfOC(RT;V)
and ou/ot € L?oc(IRT; V"), where R, = [1, +00). The following
estimates hold:

P <l @P e 27 (1447 g7
(1) + v[ luu (5)]2 ds (22)

t
<lu@)|+A7" J |90 &) ds,

where A = vA,.

From Proposition 3, we can define a process {Ugo (t, 1)} :
Ugo(t, T)u, = u(t), t > 7, where u(t) is a solution of (17)-(18).

Now, we are given a field external force g, that is
translation compact function in LI;C(IR; H). In particular, g,
is translation bounded in Lfo (R; H).

Let (g,) be the hull of g, € LTOC(IR; H). Consider the
family of Cauchy problems

g—l: +vAu+ B(u,u) = g(x,t),

u(7) = u,, (23)

g€ (go)-

For all g € (g,), problem (23) has a unique solution u(t)
and estimates in (22) hold. Thus the family of processes
{U,(t, 1)}, g € #(go) acting on H corresponds to problem
(23).

We denote by & g the kernel of the process {%Z (t, 7)} with
the external force g € #(g,). Let us recall that %, is the
family of all complete solutions u(t), t € R, of (23) which
are bounded in the norm of H. The set %g(s) = {u(s), u €
H _} C H is called the kernel section at t = s.

The following result gives the existence and the structure
of the uniform attractor of the process {Ugg (t, 1)} (see [10] for
the proof).

Proposition 4. If g, is translation compact function in L} (R;
H), then the process {U,, (&)} corresponding to (17) with
external force g,(x,s) has the uniform (with respect to T €
R) attractor </, that coincides with the uniform (w.r.t g €
(gy)) attractor o g %) of the family of processes {Ug(t, )},
g € #(g,) and

$2{0 = 'Q{%(go) = U ‘%/g (0) > (24)
9EX(go)

where & g is the kernel of the process {U,@, 1)} The kernel & g
is nonempty for all g € F(g,)-



3. The 2D Leray-a Model and
Its Uniform Attractor

3.1. The 2D Leray-o Model. We consider the following system
with periodic boundary conditions:

0
a—:—vAv+(u-V)v+Vp=go(x,t), x €T
v:u—oczAu, (25)
V-u=0,
V-v=0

This system is an approximation of the 2D Navier-Stokes
system discussed in the previous section. The unknown
functions are the vector fields v = v(x,t) = (v',+?) or
u = u(x,t) = (u', u?) and the scalar function p = pxt). In
(25), ais a fixed positive parameter which is called the subgrid
length scale of the model. For a = 0, the function v = u and
we obtain exactly the 2D Navier-Stokes system.

We can rewrite system (25) in an equivalent form using
the standard projector & in H and excluding the pressure as
in the previous section, where all the necessary notations were
defined. We obtain the system

%+vAv+B(u,v):gO(x,t),

(26)
v=u+a’Au
We supplement system (26) with the initial data
v(t)=v, € H. (27)

It follows from the embedding theorem in R? that HX(T?) ¢
L®(T?). In particular, we have the energy inequality

lutlpoogeye < (@) |+ o Aul < c (@) V], (28)

Yu € H* NV, where v = u + a*Au and c(«) is a constant that
depends on «. We obtain from inequality (28) that

1B (u, V)| < cllull oy IV < ¢ (@) [Vl IvI, (29)

where v = u + o” Au.
Consider an arbitrary function v(-) € L* (R;V) N

loc

L®(R_; H). Then, from (29), we conclude that

B(u(),v()) el

loc

(R H). (30)

We study weak solutions v(x,t) of system (25) belonging to
the space LfOC(IRT; V)N L(R,; H). Then
Ave Ll (R;V'),
(D)
dveli (RsV').

We now formulate the theorem on the existence and unique-
ness of weak solutions of problems (26)-(27).
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Theorem 5. Let o > 0, let g, € L}(R;H), and let v, € H.

Systems (26)-(27) have unique weak solutions v € C(R_; H) N

ﬁoﬁd(RT;V) and 8,y € L} (R V'). The following estimates
old:

lu @)’ < v

2 -At-1) -1 -1 2 (32)
<v@le +A (1 +A )"gouLg(R;H) >

2 t 2
v ()] +vj Iv ()l ds
! (33)

t
<v@P 427 | gy 0 ds
2 2 [ 2
(-0 @F <C(t-nlv@F. [ lo©F ds), o
where A = vA; and C(z,R,R;) is a monotone continuous

function of z =t — 7,Rand R,.

To prove the estimates in (32)-(34), we will need the
following lemma whose proof is given in [10].

Lemma 6. Let a real function z(t), t >
continuous and satisfy the inequality

0, be uniformly

dz

I +Az(8) < f (1),

t>0, (35)

where A > 0, f(t) > 0forallt >0, and f € L}, (R"). Suppose
also that

rl f(s)ds<M, Vt=>0. (36)

Then z(t) < z(0)e™ + M(1 + A1), Vt > 0.

Proof of Theorem 5. The existence and uniqueness of weak
solutions are quite analogous to the proof of the existence and
uniqueness theorem for the 2D Navier-Stokes system [10]. Let
us prove the estimate in (32). We take the scalar product of
(26) with v and use relation (16); we obtain

L OF v v OF = (9 0).v (1)

2dt
vV 1 2
< v ()1 + 75 g0 Ol (37)
v 2 1 2
— t —_ t) .
< S WO+ 2510 0]

Using Poincaré inequality (7), we arrive at

SO AN OP A gy, G9)
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where A = vA,. Applying Lemma 6 with
2(0) = v(t+ D)

FO=2"g,0|';
t+1 L 5 . 5 (39)
L f(s)ds<A Jt |90 ()| ds <A "%"L@(R;H)

= M,
we get

2 At

v+ <lv@)fe™+A7! (1 +/\71)||g0||ii(R;H); (40)

that is,
@ <lv@P e+ 17 (1427 ||go||]2_i(R;H) . (41
This proves (32). Multiplying (26) by tAv, we have

1d 2 1 2 2
S (L OF) =S v OF + 9 |Av (@) )
+t(Bw,v),Av) =t (g, (), Av).

Recall that
(g0 @ AV < DA OF + gy O . 43)

From (29), we have

|(B (4, v) , Av)| < B (u, V)| |AV] < ¢ () [v] [IV]] | Av|

(44)
SZ'A v+ L )| R
Replacing (43) and (44) in (42), we get
d 2 2
L OrE+ ot 1av @)
(45)

2
chy(“)t WO v O

<O+ 2 gy 0 +

Let us set y(t) = tlv(®)|I* and obtain

dy _ 2¢; ()
vV

YD oy OF + 2 gy OF . (40

Using Gronwall’s lemma, we obtain

o < ([ (I +52 loo < ) ds)
-exp(j0 24 Do) ds)

(47)

5
From the estimate in (33), we deduce from (47) that
! 2
tlvol* < - <|v(0)| +(A7 +2t) L |90 )| ds)
¢ (o)
- ex P( a v ()
(48)
2¢ (@) A~
1V_J 190 5)] ds) < C<t v O)F,
! 2
J |g0 (5)| ds) ,
0
where
1 _
C(z,R,R)) = . (R+ (A ! +2z)R1)
49
2c12 () 2C12 (@) A7 (49)
exp " R+ " R, ).
This ends the proof of Theorem 5. O

Remark 7 We note that the estimates in (32) and (33) are
independent of «. This fact plays the key role in the proof of
the convergence of solutions of the 2D Leray-amodel to the
solution of the 2D Navier-Stokes system as a« — 0.

3.2. 'The Uniform Attractor o/ of the 2D Leray-o Model. In
this subsection, we prove the existence of the uniform at-
tractor for the 2D Leray-o« model. We consider the process
{%;O(t, 7)}, t > 7, T € R corresponding to problems (26)-
(27). More precisely, the mapping %gﬂ(t, T) : H - His

defined by
‘ZZZO v, =v(t), (50)

forallv, € H, t > 1, T € R, where v is solution of (26)-
(27). It follows from (32) that the process {‘leo (t,7)} has the

uniform (w.r.t. 7 € R) absorbing set
By={veH: |v <2R}}, (51)

where Ré =A11+ )\_l)llgo IIizb(R;H) and the set B is bounded

in H. Therefore, for any bounded (in H) set O, there exists a
time t(O) such that

%Zo (t+71,7)0 C By, (52)
forallt > t(0) and T € R.

Proposition 8. The process {%Zo(t, T)} associated with (26)-

(27) is uniformly compact in H and has a uniformly absorbing
set B, (bounded in V) defined by

B, = Uozzgo (t+1,7) By, (53)
TeR
where B, is given by (51). Moreover, the process {%Zo(t, T)} has
a uniform attractor of* which satisfies

d* C By UB,. (54)



Proof. From (34) and (51), it is clear that B, is bounded in V
and hence is relatively compact in H. From (34), it is also clear
that B, is uniform (with respect to 7 € R) absorbing set for
the process {%ZO (t, 7)}. The rest of the proof of the proposition

follows the general theory on uniform global attractors [10].
This ends the proof of the proposition. O

From the general theory on uniform global attractors in
[10], the global attractor &/* given in Proposition 8 satisfies
the following:

(i) For any bounded (in H) set O, sup, pdist; (%5 (t +
7,7)0,d%) - 0ast — co.

(ii) &% is the minimal set that satisfies (i).

3.3. The Structure of the Uniform Attractor of the 2D Leray-«
Model. We consider the system

ov
— +vAv+ B(u,v) = g,
3 y (u,v) = go
v(T) = v,
v=u+aAu.

We assume that g, is translation compact in the space
L3 (R; H). Let #(g,) be the hull of g, in L}, _(R; H). For all
g € #(g,) the problem

&alt/+vAv+B(u,v):g(t,x),

vV=u-+ ocZAu, (56)

v(T) =",

has a unique solution v(t) and the estimates in (32)-(34) hold.
For g € J(g,), system (56) generates a process {%Z(t, 7)}
that satisfies the same properties as the process {%go(t, )}
The family of processes {%;(t, 1)}, g € #(g), acting on H
corresponds to (56).

Proposition 9. The family of processes {%3(t, )}, g €
Z (g,), corresponding to (56) is uniformly (with respect to g €
H(g,)) bounded, uniformly compact, and (H x F(g,), H)-
continuous.

Proof. The uniform boundedness of the family of processes
{%;(t, 1)}, g € (g,), follows from (32) and the fact that

”g"ii(R;H) < ”gOHii(R;H)’ Vg e (g)- (57)

This estimate also implies that the set B, = {v € H; [v? <
2R(2)}, where R(Z, =AM+ /\_l)llgollii(R;H), is uniformly (with
respect to g € #(g,) absorbing. The set

B, = |J J%,r+1,7)B, (58)

geF (g,) T€R
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is also uniformly absorbing. By (34), the set B, is bounded in
V and therefore, by the compactness of the embedding V' —
H, B, is precompact in H. Hence the family {%;‘(t, T)}, g €
7 (g,), is uniformly compact.

Let us verify the (H x #(g,), H)-continuity of the pro-
cesses {%Z(t, 7)}, g € H(g,). We consider two symbols g,
and g, and the corresponding solutions v; and v, of problem
(56) with initial data v,, and v,,, respectively. Denote

w(t)=v () =v, () = Uy & T) v, = Uy, (6,T) Vyys

59)
9=91~ 92
The function w satisfies the equation
88_1:) +vAw + B (u;,v;) — B(uy,v,) = q. (60)

We take the inner product of (60) with w; we obtain

1d
55mﬁ+wwﬁ+awm—ww»m0=%w» (61)

Using the estimate in (10), we arrive at

|<B (uy =1y, ) ,w>|

1/2 1/2 1/2

l[wll

< cluy =] Juy =] o]

(62)
< clwl? |w"* Jwl"? Jwl ' v, |

<clwlwl va] < 3 1wl + clwf o]

Also we have
4
(gw) < g lwl < VAT Jgl fwl < 7wl + la*. (63)
Using (62) and (63) in (61), we get
d
- lwl® + v wl® < clwl |v,|* +c g (64)

Let us set y(t) = |w(t)|* and we obtain

d
Ey t) <c ||v2||2 y () +¢ |q|2 ) (65)

Using Gronwall’s lemma, we obtain

|wmfsoqu+qu@Wdﬁ

- exp (J clv, )| d5> .

With the estimate in (33), we get

(66)

J ||v2 (s)"2 ds < % <|V2 (—r)l2 278 J |92 (3)|2 ds) . (67)

The estimate in (67) proves that _[: v, (s)|%ds is bounded, and
(66) implies the (H x #(g,), H)-continuity of the family of
processes {%g(t, T)}, g € #(g,)- This ends the proof of the
proposition. O
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Theorem 10. If g, is translation compact in L'°(R; H), then
the process {% , (t, T)} corresponding to (55) with external force
go(x, t) has the uniform (with respect to T € R) attractor of*
that coincides with the uniform (with respect to g € (g,))
attractor A%, , of the family of processes {%(t,7)}, g €

7 (go)-
Moreover,

o« g _
A=A gpgy) =

U 750, (68)

9 (go)

where J'; is the kernel of the process { ¢(t, 7)}. The kernel 7
is nonempty for all g € F(g,).

In the next section, we study the asymptotic behavior of
the uniform attractor of the 2D Leray-o model.

4. Convergence of the Uniform
Attractors of the 2D Leray-a Model

In the previous sections, we have proven the existence and the
structure of the uniform attractor:

(a) &/* of the process {CZZZO (t,7)} generated by the solu-
tions of the 2D Leray-a model.

(b) &, of the process {% 5 (6 T)} generated by the solu-
tions of the 2D Navier-Stokes system.

Our aim in this section is to prove the convergence
of the uniform attractors &/* to the uniform attractor
4l as o approaches 0; that is,

lim dist;; (™, /) = 0, (69)

ifa, > 0"
The following proposition is the key.

Proposition11. Let{g,}, g € #(g,), and a sequence of func-
tions v, (t) € ,%’Zz(t) satisfy the following conditions:

(1) o, > 0" asn — co.

(2) g, — gin ¥ (g,) asn — oo.

3) v%(t) — y(t)in H asn — oo.
Then v is a weak solution of the 2D Navier-Stokes system with

external force g; that is, v € ;.

For the proof of this proposition, we need an estimate for
the derivative 0,v in which constants are independent of «
similar to that proven for v in (32)-(33).

Proposition 12. Let g, € Lj(R; H) and let v, € H. Then any
solution v(t) of (26)-(27) satisfies the following inequalities:

T

<J ||8tv(s) 4V/3 ds)
T 2

(] ol as)

3/4
<clv|] + RS, (70)

1/2
<clv| + R, (71)

where ¢ depends on A, v. R, depends on A, v and ”gO”Li(R;H)'
The numbers c and R, are independent of .

Proof. Consider the operator B(u(t), v(t)), where v = u +
o Au. We note that

lul < v|,
(72)
fleell < fIvll -
From inequalities (10) and (72), we get
1B (Wl < clul full vl < c 2 o2 (73)
We deduce that
T 3/4
(j ||B<u(s),v<s>)||‘*v’3ds)
T 3/4
<c <J- |V(s)|2/3 v ()| ds) <c
T 3/4
- ess sup |v(s)|1/2 <J ||v(s)||2 ds>
s€(,T] T
2 AT | -1 . 2 1/4
<c(Iv@Pe™+ 27 (1427 9ol e )
(74)

1 AL (T 3
. (; |v('r)|2 + = J |g0 (s)|2 ds)

T

1/4

<c (lv(r)l2 e M ! (1 + /\71) 90 “i@(R;H))

1 )L71 3/4
2
' (; v (@)* + - T+D “90“@([}&;1{))

<c (lv(r)l2 + A7 (1 + 7\_1) llgollim;m

AT+ ) Gola ) < v OF + (R’

where (R;)2 = c/\‘l(1+/\—1)"go||ii(R;H)+A—1 (T+1)||g0||ii(R;H).
Using the triangle inequality, it follows from (26) that

T
<J ||atv(s) 3,/3 ds>

T
<y (j AV ()12 ds)

T

3/4

3/4

3/4

' (jT 1B (u(s), v (IS ds>

T
+ (J llgo (s) f,/3 ds)

3/4




3/4

< v(LT v (s)]*> ds>

T 3/4
+ (J 1B (u(s), v ()5 ds)

3/4

-1/2 T 4/3
+A |g0(s)| ds

= (JT v I’ ds)l/z
+ (LT IB (u (s), v ()2 ds)
+A <J-TT |90 ($)|2 ds)

1 AL (T 12
< v(; |v(1')|2 + — J- |g0 (s)|2 ds)

v Jr

3/4

1/2

relv@P +(R))

T+ DA goll 2 e

< cv@P + 27 (T + D[l gol e + (R’

(4 DA gl gy + 1 < v @I + RS,
(75)

where R2 = AT + l)||g0||ii(R;H) + (RY)? + (T + A2
190122 ;ery + 1- This proves (70).

For the proof of (71), we use inequalities (11) and (72) and
we get

IB (4 Wy < ¢ el lual > v) 72 o))

|ul
(76)

1/2 1/2 1/2 1/2
< W 2 M < el vl

We then have

1/2

<J»T IB (1 (s), v (s))lls- ds)

T

1/2

<c <JT lv(s)* ||v(s)||2ds> <c

1/2

ess sup [v(s)| (jT ||v(s)||2ds>

s€[1,T] T
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1/2

<c(w@P e 27 (1427) Jaoligean)

1 AL (T 1
. (; |v(r)|2 + " J |g0 (s)|2 ds)

T

<c (Iv(r)l2 e Mt (1 + /\71) "gOHiZ(R;H))l/Z

1 A 2
2 2

(w2 e vl

<c(W@P+ A" (1447 |0l e

- 2
+A ! (T +1) “gouiﬁb(R;HJ <c |V(T)|2 + (R;) .
(77)
It follows from (26) that

(] 1ok as)

T
<o([ 1avors. as)

T

1/2
1/2

1/2

+ (JT IB (1 (s), v (s))lls- ds)

T

([ oo 9k as)

- 172
< v(j ||v(s)||2ds>

T
. <j 1B (), v (s)IE- ds)

1/2

1/2

1/2

-1/2 T 2
+A (J |90 (5)] ds) (78)

T 1/2
< v(j ||v(s>||2ds>

+ (JT IB (1 (s), v (s))lls- ds)

T

s T 5 1/2
+A |g0 (s)| ds

1 AT 2 12
sv(;|v(r)|2+7j |90 (5)] ds)

1/2

T

!

+elv@f + (R2)2 +(T+1)A2 ||90”L§((R);H)

<c@P + 27 (T + 1) g0l myrn + (R’

T+ DA | goll ey + 1 < v (@ + R,

This ends the proof of the proposition. O
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Proof of Proposition 11. We prove that v is a weak solution
of the 2D Navier-Stokes system on every interval (7, T'). The
function v, satisfies the equation
OV, + VAV, +B (”a,,> van) =g, (79)
From the estimates in (32)-(33) and (71), we have
2
[ro, 0]

< |V(T)|2 e M ) (1 + Ail) “gn"ii(R;H) >

o[ oo, I ds < v <27 [ g, o as,

(I o0

<clv @+ 207 (T + 1) g, s

1/2

2 (80)
v ds>

R;H)
(1427 "gn"ifj(R;H)
+(T+1) /\_1/2 ”gn"Lzb(lR;H) +1

Since each bounded sequence in a reflexive Banach space has
a weakly convergent subsequence (see [20], Theorem 21.D, p.
255), we can choose a subsequence {van(t)} of {van(t)} such
that

Ve, (t) = v(t) in H, (81)
G ¢ inL*(r,T;V'), (82)
ot
Vo — vV in L* (7, T;V), (83)

as n — 00. The convergence (82) uses the fact that the
generalized derivatives are compatible with the weak limits
(see [20], Proposition 23.19, p. 419). From (83), we obtain

Av, — Av in I*(7,T5V'). (84)

[e4

In order to establish the equality, it is sufficient to prove
that the sequence B(u, ,v,,) converges to B(v(-),v(+)) in
D(1,T; V') as n — oo. Notice that

u,, — v weakly in L* (1, T;V). (85)

Indeed, the function u,, satisfies the equation

Uy + ocﬁAu% =V - (86)
Since Uy, is bounded in L? (1,T;V), then, passing to a
subsequence, we may assume that U, convergestoa function

w(-) weakly in Lz(‘r, T;V); that is,

U, —w in L* (1,T;V). (87)

Then the sequence Au, — Aw weakly in L*(r,T; V') and
a,Au, — 0 weakly in L’ (T,T : V’). (88)

Therefore, in equality (86), we may pass to the limit in the
space L*(t,T : V') and obtain that
w= Jim, = lim v, = )

Then, (87) and (89) imply (85).

From (71), the sequences 0,v, and 0,u, are bounded
in L*(7,T;V'). Then the Aubin compactness theorem [21]
implies that, passing to a subsequence, we may assume that
v, and u, converge to v(-) strongly in L*(7, T; H). Therefore,
we may assume that

Vg, (X, 1) — v(x,1) for ae. (x,t) € T2 x |7, T,

(90)
uy (x,t) — v(x,t) forae. (xt)€ T x|, T].
We recall that
2 .
B (uan, van) = @Za,. (u;n V%) . (91)
i=1
It follows from (90) that
ufxn (x,1) Ve, (x,t) — v (x,t) v(x,t)
(92)

for ae. (x,t) € T2 x |7, T[.

Using the estimate in (11), we deduce that

ul v, is bounded in L*(r,T;H), L* (TTZ X ]T,T[)z. (93)

an

Applying the known lemma on weak convergence from [21],
we conclude from (92) and (93) that

Uy v — Vv (94)

weakly in L*(T?*x]7, T[)* and weakly in L*(t, T; H). We then
deduce from (91) that

B (u%, v%) — B(»,v) weakly in L? (‘r, T V’). (95)

We have then proven that v(-) is a weak solution of the 2D
Navier-Stokes equations with external force g. This completes
the proof of the proposition. O

Now we present and prove the main result of this paper.

Theorem13. Let o/ be the uniform attractor of the 2D Leray-
o model and let o/, be the uniform attractor of the 2D Navier-
Stokes system. Then one has

A converges to o, as n approaches co;  (96)

that is,

lim disty; (o/, ) = 0. (97)



10

Remark 14. In (97), dist;; denotes the Hausdorft semidistance
defined by

disty (X,Y) = supinf |x - . (98)

Proof of Theorem 13. Assume that disty (o™, &/;) -+ O.
Hence, by the compactness of &/, we can choose a positive
constant 8 > 0 and a subsequence {m} of {n} and y,, € o/
satisfying

disty (v, 4y) =6, Ym > 1. (99)
We recall that
“m p— “m
=) 7). (100)
g€ (9o)

Therefore, since y,, € o/*", there exist 0,, € #(g,) and v,, €

F o such that y,, = v,,(0).
Since (t — v, (t + h)) € %ﬁ:(.+h) Vh € R, it follows that

v,,(t) € % C B, Vt € R. Since B, is an absorbing set for the

process %g:: (t, 7) (see (51)), we have
v, ()] < 2RZ, @101)

. 2
where R, is independent of m and « (IIamIILzh(R;H) <

IIgollii(R;H)). Also, since #'(g,) is compact in L%OC(IR; H) and
{o,,} € F(g,), there exists a subsequence of v,, and g €
7 (g,) such that

o,—9g inZ(g,)- (102)
Using the fact that each bounded sequence in a reflexive
Banach space has a weakly convergent subsequence (see [20],
Theorem 21.D, p. 255) and the boundedness (101), we deduce
that

v, (t) converges weakly in H. (103)

Then, using the standard Cantor diagonal procedure as in [8,
15, 16], we can deduce a function ¢(s), s € R, and a sequence
{m]-} such that

Vin, (t) = ¢(t) weaklyin Has j— oo. (104)

From Proposition 11, we have that ¢ is a weak solution of the
2D Navier-Stokes equations. For t = 0, we have

Y, = $(0)

Using the fact that &/*" c B,, where B is given by (53) (B, is
uniformly absorbing set), we have

Y, — $(0)

in H. (105)

in H, (106)
since v, is bounded in V. Also, since & = [y, F 4(0)>
we get ¢(0) € .%g(O) C 4. Passing to the limit in (99), we
obtain = 0; and this contradicts the fact that & > 0. This
ends the proof of the theorem. O
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