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A hybrid algorithm and regularizationmethod are proposed, for the first time, to solve the one-dimensional degenerate inverse heat
conduction problem to estimate the initial temperature distribution from point measurements.The evolution of the heat is given by
a degenerate parabolic equation with singular potential. This problem can be formulated in a least-squares framework, an iterative
procedure which minimizes the difference between the given measurements and the value at sensor locations of a reconstructed
field. The mathematical model leads to a nonconvex minimization problem. To solve it, we prove the existence of at least one
solution of problem and we propose two approaches: the first is based on a Tikhonov regularization, while the second approach is
based on a hybrid genetic algorithm (married genetic with descent method type gradient). Some numerical experiments are given.

1. Introduction

The inverse problem is expressed when the PDE solution is
measured or specified, and we are interested in determining
some properties: coefficients, forcing term, boundary, or
initial condition from the partial knowledge of the system in
a limited time interval (see [1, 2]).

In the last recent years, an increasing interest has been
devoted to degenerate parabolic equations. Indeed, many
problems coming from physics (boundary layer models in
[3], models of Kolmogorov type in [4], etc.), biology (Wright-
Fisher models in [5] and Fleming-Viot models in [6]),
and economics (Black-Merton-Scholes equations in [7]) are
described by degenerate parabolic equations [8].

The identification of the initial state of nondegenerate
parabolic problems is well studied in the literature (see [9–
11]). However, as far as we know, the degenerate case has not
been analysed in the literature.

In this paper, we are interested in estimating the initial
condition by the variational method in data assimilation of
degenerate/singular parabolic equation:

𝜕𝑡𝜓 − 𝜕𝑥 (𝑎 (𝑥) 𝜕𝑥𝜓 (𝑥)) − 𝜆𝑥𝛽𝜓 = 𝑓, 𝑎 (𝑥) = 𝑥𝛼, (1)

where Ω =]0, 1[, 𝛼 ∈]0, 1[, 𝛽 ∈]0, 2 − 𝛼[, 𝜆 ⩽ 0, and 𝑓 ∈𝐿2(Ω×]0, 𝑇[). With initial and boundary conditions

𝜓 (𝑥, 0) = 𝜓0, 𝜓𝑥=0 = 𝜓𝑥=1 = 0. (2)

Themathematical model leads to a nonconvexminimiza-
tion problem

find 𝜓0 ∈ 𝐴ad

such that 𝐽 (𝜓0) = min
𝑢∈𝐴ad

𝐽 (𝑢) , (3)

where the functional 𝐽 is defined as follows:

𝐽 (𝑢) = 12𝑇 ∫
𝑇

0

𝐶𝜓 (𝑡) − 𝜓obs (𝑡)2𝐿2(Ω) , (4)

subject to𝜓 being the weak solution of the parabolic problem
(1) with initial state 𝑢, 𝜓obs an observation of 𝜓 in Ω×]0, 𝑇[,
and 𝐶 the observation operator. The space 𝐴ad is the set of
admissible initial states.

Problem (3) is ill-posed in the sense of Hadamard. To
solve this problem, we propose two approaches.
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The first approach is based on regularization, for the first
time, applied to solve a degenerate inverse problem. The
problem thus consists of minimizing a functional of the form

𝐽𝑇 (𝑢) = 12𝑇 ∫
𝑇

0

𝐶𝜓 (𝑡) − 𝜓obs (𝑡)2𝐿2(Ω) 𝑑𝑡
+ 𝜀2 𝑢 − 𝜓𝑏

2

𝐿2(Ω)
.

(5)

Here, the last term in (5) stands for the so-called
Tikhonov-type regularization ([12, 13]), 𝜀 being a small
regularizing coefficient that provides extra convexity to the
functional 𝐽𝑇 and 𝜓𝑏 a priori (background) knowledge of the
true state 𝜓exact

0 (the state to estimate). We consider that the
values of 𝜓𝑏 are given in each point of analysis grid-points.

The second approach is applied when there is a partial
knowledge of values of 𝜓𝑏 (example 20%); the regularization
parameter is very difficult to determine. To overcome this
problem, we propose a new approach, based on a hybrid
genetic algorithm (married genetic with descent method
gradient type). Finally, we make a comparison between the
two mentioned approaches (with 20% of 𝜓𝑏).

First of all, we prove that problem (3) has at least one
solution. The gradient of the functional 𝐽 is calculated with
the adjoint method. Numerical experiments are presented to
show the performance of our approaches.

2. Problem Statement and Main Result

Consider the following problem:

𝜕𝑡𝜓 + 𝐴 (𝜓) = 𝑓
𝜓 (0, 𝑡) = 𝜓 (1, 𝑡) = 0 ∀𝑡 ∈ ]0, 𝑇[
𝜓 (𝑥, 0) = 𝜓0 (𝑥) ∀𝑥 ∈ Ω,

(6)

where Ω =]0, 1[, 𝑓 ∈ 𝐿2(Ω×]0, 𝑇[),and 𝐴 is the operator
defined as

𝐴 (𝜓) = −𝜕𝑥 (𝑎 (𝑥) 𝜕𝑥𝜓 (𝑥)) − 𝜆𝑥𝛽𝜓, 𝑎 (𝑥) = 𝑥𝛼, (7)

with 𝛼 ∈]0, 1[, 𝛽 ∈]0, 2 − 𝛼[, and 𝜆 ⩽ 0.
We want to estimate 𝜓0 thanks to an observation𝜓obs(𝑥, 𝑡) of 𝜓(𝑥, 𝑡) in Ω×]0, 𝑇[. The minimization problem

associated with this problem is

find 𝜓0 ∈ 𝐴ad

such that 𝐽 (𝜓0) = min
𝑢∈𝐴ad

𝐽 (𝑢) , (8)

where the functional 𝐽 is as follows:
𝐽 (𝑢) = 12𝑇 ∫

𝑇

0

𝐶𝜓 (𝑡) − 𝜓obs (𝑡)2𝐿2(Ω) , (9)

subject to𝜓 being the weak solution of the parabolic problem
(6) with initial state 𝑢, 𝜓𝑏 the background state, and 𝐶 the

observation operator. The space 𝐴ad is the set of admissible
initial states (will be defined later).

We now specify some notations we shall use. Let us
introduce the following functional spaces (see [14–16]):

𝑉 = {𝑢
∈ 𝐿2 (Ω) , 𝑢 absolutely continuous on [0, 1]} ,

𝑆 = {𝑢 ∈ 𝐿2 (Ω) , √𝑎𝑢𝑥 ∈ 𝐿2 (Ω) , 𝑢 (0) = 𝑢 (1) = 0} ,
𝐻1𝑎 (Ω) = 𝑉 ∩ 𝑆,
𝐻2𝑎 (Ω) = {𝑢 ∈ 𝐻1𝑎 (Ω) , 𝑎𝑢𝑥 ∈ 𝐻1 (Ω)} ,
𝐻1𝛼,0 = {𝑢 ∈ 𝐻1𝛼 | 𝑢 (0) = 𝑢 (1) = 0} ,
𝐻1𝛼 = {𝑢 ∈ 𝐿2 (Ω) ∩ 𝐻1Loc (]0, 1]) | 𝑥𝛼/2𝑢𝑥 ∈ 𝐿2 (Ω)} ,

(10)

with

‖𝑢‖2𝐻1
𝑎
(Ω) = ‖𝑢‖2𝐿2(Ω) + √𝑎𝑢𝑥2𝐿2(Ω) ,

‖𝑢‖2𝐻2
𝑎
(Ω) = ‖𝑢‖2𝐻1

𝑎
(Ω) + (𝑎𝑢𝑥)𝑥2𝐿2(Ω) ,

⟨𝑢, V⟩𝐻1
𝛼

= ∫
Ω
(𝑢V + 𝑥𝛼𝑢𝑥V𝑥) 𝑑𝑥.

(11)

We recall that (see [16]) 𝐻1𝑎 is an Hilbert space and it is the
closure of𝐶∞𝑐 (0, 1) for the norm ‖ ⋅ ‖𝐻1𝑎 . If 1/√𝑎 ∈ 𝐿1(Ω) then
the injections

𝐻1𝑎 (Ω) → 𝐿2 (Ω) ,
𝐻2𝑎 (Ω) → 𝐻1𝑎 (Ω) ,
𝐻1 (0, 𝑇; 𝐿2 (Ω)) ∩ 𝐿2 (0, 𝑇;𝐷 (𝐴))
→ 𝐿2 (0, 𝑇;𝐻1𝑎) ∩ 𝐶 (0, 𝑇; 𝐿2 (Ω))

(12)

are compacts.
Firstly, we prove that problem (6) is well-posed, the

functional 𝐽 is continuous, and 𝐽 is 𝐺-derivable in 𝐴ad.
The weak formulation of problem (6) is

∫
Ω
𝜕𝑡𝜓V 𝑑𝑥 + ∫

Ω
(𝑎 (𝑥) 𝜕𝑥𝜓𝜕𝑥V − 𝜆𝑥𝛽𝜓V)𝑑𝑥

= ∫
Ω
𝑓V 𝑑𝑥, ∀V ∈ 𝐻10 (Ω) .

(13)

Let

𝐵 [𝜓, V] = ∫
Ω
(𝑎 (𝑥) 𝜕𝑥𝜓𝜕𝑥V − 𝜆𝑥𝛽𝜓V)𝑑𝑥. (14)

We discuss the following cases.

(1) Noncoercive Case (see [14], 𝜆 = 0). In this case, the bilinear
form 𝐵 becomes

𝐵 [𝜓, V] = ∫
Ω
(𝑎 (𝑥) 𝜕𝑥𝜓𝜕𝑥V) 𝑑𝑥. (15)
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We have 𝑎(𝑥) = 0 at 𝑥 = 0, from where the bilinear form 𝐵
will be noncoercive.

Let
𝐴ad = {𝑢 ∈ 𝐻1𝑎 (Ω) ; ‖𝑢‖𝐻1𝑎 (Ω) ⩽ 𝑟} ,
where 𝑟 is a real strictly positive constant. (16)

We recall the following theorem.

Theorem 1 (see [14, 17, 18]). For all 𝑓 ∈ 𝐿2(Ω×]0, 𝑇[) and𝜓0 ∈ 𝐿2(0, 1), there exists a unique weak solution which solves
problem (6) such that

𝜓 ∈ 𝐶0 ([0, 𝑇] ; 𝐿2 (Ω)) ∩ 𝐿2 (0, 𝑇;𝐻1𝑎) (17)

and there is a constant 𝐶𝑇 such that for any solution of (6)

sup
𝑡∈[0,𝑇]

𝜓 (𝑡)2𝐿2(Ω) + ∫𝑇
0

√𝑎𝜓𝑥 (𝑡)2𝐿2(Ω) 𝑑𝑡
≤ 𝐶𝑇 (𝜓02𝐿2(Ω) + 𝑓2𝐿2(Ω×]0,𝑇[)) ;

(18)

if more 𝜓0 ∈ 𝐻1𝑎(Ω) then
𝜓 ∈ 𝐶0 ([0; 𝑇] ,𝐻1𝑎) ∩ 𝐿2 (0, 𝑇;𝐻2𝑎)

∩ 𝐻1 (0, 𝑇; 𝐿2 (Ω)) (19)

and there is a constant 𝐶𝑇 such that
sup
𝑡∈[0,𝑇]

𝜓 (𝑡)2𝐻1
𝑎

+ ∫𝑇
0
(𝜓𝑡2𝐿2(Ω) + (𝑎𝜓𝑥)𝑥 (𝑡)2𝐿2(Ω)) 𝑑𝑡

⩽ 𝐶𝑇 (𝜓02𝐻1
𝑎

+ 𝑓2𝐿2(Ω×]0,𝑇[)) .
(20)

Theorem 2. Let 𝜓 be the weak solution of (6) with initial state𝜓0. In noncoercive case, the function

𝜑 : 𝐻1𝑎 (Ω) → 𝐶0 ([0, 𝑇] ;𝐻1𝑎 (Ω))
∩ 𝐿2 (0, 𝑇;𝐻2𝑎 (Ω))
∩ 𝐻1 (0, 𝑇; 𝐿2 (Ω))

𝜓0 → 𝜓
(21)

is continuous, and the functional 𝐽 has at least one minimum
in 𝐴𝑎𝑑.
Theorem 3. Let 𝜓 be the weak solution of (6) with initial state𝜓0. The function

𝜑 : 𝐻1𝑎 (Ω) → 𝐶0 ([0, 𝑇] ;𝐻1𝑎 (Ω))
∩ 𝐿2 (0, 𝑇;𝐻2𝑎 (Ω))
∩ 𝐻1 (0, 𝑇; 𝐿2 (Ω))

𝜓0 → 𝜓
(22)

is 𝐺-derivable in 𝐴𝑎𝑑.

(2) Subcritical Potential Case (see [19, 20], 𝜆 ̸= 0). Then the
bilinear form 𝐵 becomes

𝐵 [𝜓, V] = ∫
Ω
(𝑎 (𝑥) 𝜕𝑥𝜓𝜕𝑥V − 𝜆𝑥𝛽𝜓V)𝑑𝑥. (23)

Since 𝑎(𝑥) = 0 at 𝑥 = 0 and lim𝑥→0(𝜆/𝑥𝛽) = +∞, the
bilinear form𝐵 is noncoercive and is noncontinuous at 𝑥 = 0.

Consider the not bounded operator (𝐾,𝐷(𝐾)) where
𝐾𝑢 = (𝑥𝛼𝑢𝑥)𝑥 + 𝜆𝑥𝛽 𝑢, ∀𝑢 ∈ 𝐷 (𝐾) ,
𝐷 (𝑘) = {𝑢 ∈ 𝐻1𝛼,0 ∩ 𝐻2Loc (]0, 1]) | (𝑥𝛼𝑢𝑥)𝑥 + 𝜆𝑥𝛽 𝑢
∈ 𝐿2 (Ω)} .

(24)

Let

𝐴ad = {𝑢 ∈ 𝐿2 (Ω) ; ‖𝑢‖𝐿2(Ω) ⩽ 𝑟} ,
where 𝑟 is a real strictly positive constant. (25)

We recall the following theorem.

Theorem 4 (see [15, 19]). If 𝑓 = 0 then, for all 𝜓0 ∈ 𝐿2(Ω),
problem (6) has a unique weak solution

𝜓 ∈ 𝐶0 ([0, 𝑇] ; 𝐿2 (Ω)) ∩ 𝐶0 (]0, 𝑇] ; 𝐷 (𝐾))
∩ 𝐶1 (]0, 𝑇] ; 𝐿2 (Ω)) ; (26)

if more 𝜓0 ∈ 𝐷(𝐾) then
𝜓 ∈ 𝐶0 ([0, 𝑇] ; 𝐷 (𝐾)) ∩ 𝐶1 ([0, 𝑇] ; 𝐿2 (Ω)) ; (27)

if 𝑓 ∈ 𝐿2(]0, 1[×]0, 𝑇[) then, for all 𝜓0 ∈ 𝐿2(Ω), problem (6)
has a unique solution

𝜓 ∈ 𝐶0 ([0, 𝑇] ; 𝐿2 (Ω)) . (28)

Theorem 5. Let 𝜓 be the weak solution of (6) with initial state𝜓0. In subcritical potential case, the function

𝜑 : 𝐿2 (Ω) → 𝐶([0, 𝑇] ; 𝐿2 (Ω))
𝜓0 → 𝜓 (29)

is continuous, and the functional 𝐽 is continuous in 𝐴𝑎𝑑.
Theorem 6. Let 𝜓 be the weak solution of (6) with initial state𝜓0. The function

𝜑 : 𝐿2 (Ω) → 𝐶([0, 𝑇] ; 𝐿2 (Ω))
𝜓0 → 𝜓 (30)

is 𝐺-derivable in 𝐴𝑎𝑑.
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3. Proof

Proof of Theorem 2. Let 𝛿𝜓0 ∈ 𝐻1𝑎(Ω) be a small variation
such that 𝜓0 + 𝛿𝜓0 ∈ 𝐴ad.

Consider 𝛿𝜓 = 𝜓𝛿 − 𝜓, with 𝜓 being the weak solution
of (6) with initial state 𝜓0 and 𝜓𝛿 is the weak solution of (6)
with initial state 𝜓𝛿0 = 𝜓0 + 𝛿𝜓0.

Consequently, 𝛿𝜓 is the solution of the variational prob-
lem:

∫
Ω
𝜕𝑡𝛿𝜓V 𝑑𝑥 + ∫

Ω
𝑎 (𝑥) 𝜕𝑥𝛿𝜓 (𝑥) 𝜕𝑥V 𝑑𝑥 = 0

𝛿𝜓 (0, 𝑡) = 𝛿𝜓 (1, 𝑡) = 0 ∀𝑡 ∈ ]0, 𝑇[
𝛿𝜓 (𝑥, 0) = 𝛿𝜓0 (𝑥) ∀𝑥 ∈ Ω.

(31)

Hence, 𝛿𝜓 is the weak solution of (6) with 𝑓 = 0. We
apply the estimate in Theorem 1 with 𝑓 = 0. This gives the
following.

There is a constant 𝐶𝑇 such that

sup
𝑡∈[0,𝑇]

𝛿𝜓 (𝑡)2𝐻1
𝑎
(Ω)

+ ∫𝑇
0
(𝜕𝑡𝛿𝜓2𝐿2(Ω) + 𝜕𝑥 (𝑎𝜕𝑥𝛿𝜓) (𝑡)2𝐿2(Ω)) 𝑑𝑡

⩽ 𝐶𝑇 𝛿𝜓02𝐻1
𝑎
(Ω) ;

(32)

therefore

sup
𝑡∈[0,𝑇]

𝛿𝜓 (𝑡)2𝐻1
𝑎
(Ω) ⩽ 𝐶𝑇 𝛿𝜓02𝐻1

𝑎
(Ω) (33)

𝛿𝜓2𝐶([0,𝑇];𝐻1
𝑎
(Ω)) ⩽ 𝐶𝑇 𝛿𝜓02𝐻1

𝑎
(Ω) . (34)

And from (32) we have

𝛿𝜓 (𝑡)2𝐻1
𝑎
(Ω) + ∫𝑇

0

𝜕𝑥 (𝑎𝜕𝑥𝛿𝜓) (𝑡)2𝐿2(Ω) 𝑑𝑡
⩽ 𝐶𝑇 𝛿𝜓02𝐻1

𝑎
(Ω) , ∀𝑡 ∈ [0, 𝑇]

∫𝑇
0

𝛿𝜓 (𝑡)2𝐻1
𝑎
(Ω) 𝑑𝑡 + 𝑇∫𝑇

0

𝜕𝑥 (𝑎𝜕𝑥𝛿𝜓) (𝑡)2𝐿2(Ω) 𝑑𝑡
⩽ 𝑇𝐶𝑇 𝛿𝜓02𝐻1

𝑎
(Ω)

inf (1, 𝑇) (∫𝑇
0

𝛿𝜓 (𝑡)2𝐻1
𝑎
(Ω) 𝑑𝑡

+ ∫𝑇
0

𝜕𝑥 (𝑎𝜕𝑥𝛿𝜓) (𝑡)2𝐿2(Ω) 𝑑𝑡) ⩽ 𝑇𝐶𝑇 𝛿𝜓02𝐻1
𝑎
(Ω)

∫𝑇
0

𝛿𝜓 (𝑡)2𝐻1
𝑎
(Ω) 𝑑𝑡 + ∫𝑇

0

𝜕𝑥 (𝑎𝜕𝑥𝛿𝜓) (𝑡)2𝐿2(Ω) 𝑑𝑡
⩽ 𝑇𝐶𝑇
inf (1, 𝑇) 𝛿𝜓02𝐻1𝑎 (Ω) .

(35)

Hence,

𝛿𝜓2𝐿2(0,𝑇,𝐻2
𝑎
(Ω)) ⩽ 𝑇𝐶𝑇

inf (1, 𝑇) 𝛿𝜓02𝐻1𝑎 (Ω) . (36)

In addition, from (32) we have

𝛿𝜓 (𝑡)2𝐻1
𝑎
(Ω)

+ ∫𝑇
0

𝜕𝑡𝛿𝜓 (𝑡)2𝐿2(Ω) 𝑑𝑡 ⩽ 𝐶𝑇 𝛿𝜓02𝐻1
𝑎
(Ω) ,
∀𝑡 ∈ [0, 𝑇]

(37)

𝛿𝜓 (𝑡)2𝐿2(Ω) + √𝑎𝜕𝑥𝛿𝜓 (𝑡)2𝐿2(Ω)
+ ∫𝑇
0

𝜕𝑡𝛿𝜓 (𝑡)2𝐿2(Ω) 𝑑𝑡 ⩽ 𝐶𝑇 𝛿𝜓02𝐻1
𝑎
(Ω) ,
∀𝑡 ∈ [0, 𝑇]

(38)

𝛿𝜓 (𝑡)2𝐿2(Ω)
+ ∫𝑇
0

𝜕𝑡𝛿𝜓 (𝑡)2𝐿2(Ω) 𝑑𝑡 ⩽ 𝐶𝑇 𝛿𝜓02𝐻1
𝑎
(Ω) ,
∀𝑡 ∈ [0, 𝑇]

(39)

∫𝑇
0

𝛿𝜓 (𝑡)2𝐿2(Ω) 𝑑𝑡
+ 𝑇∫𝑇
0

𝜕𝑡𝛿𝜓 (𝑡)2𝐿2(Ω) 𝑑𝑡 ⩽ 𝑇𝐶𝑇 𝛿𝜓02𝐻1
𝑎
(Ω)

(40)

𝛿𝜓2𝐻1(0,𝑇;𝐿2(Ω)) ⩽ 𝑇𝐶𝑇
inf (1, 𝑇) 𝛿𝜓02𝐻1𝑎 (Ω) . (41)

Equations (34), (36), and (41) imply the continuity of the
function

𝜑 : 𝐻1𝑎 (Ω) → 𝐶0 ([0, 𝑇] ;𝐻1𝑎 (Ω))
∩ 𝐿2 (0, 𝑇;𝐻2𝑎 (Ω))
∩ 𝐻1 (0, 𝑇; 𝐿2 (Ω))

𝜓0 → 𝜓.
(42)

Hence, the functional 𝐽 is continuous in
𝐴ad = {𝑢 ∈ 𝐻1𝑎 (Ω) ; ‖𝑢‖𝐻1𝑎 (Ω) ⩽ 𝑟} . (43)

We have 1/√𝑎(𝑥) = 𝑥−𝛼/2 ∈ 𝐿1(0, 1), where 𝛼 ∈]0, 1[, which gives 𝐻1𝑎(Ω) →
compact

𝐿2(Ω). Since the set 𝐴ad is

bounded in 𝐻1𝑎(Ω), then 𝐴ad is a compact in 𝐿2(Ω).There-
fore, 𝐽 has at least one minimum in 𝐴ad.
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Proof ofTheorem 3. Let𝜓0 ∈ 𝐴ad and 𝛿𝜓0 such that𝜓0+𝛿𝜓0 ∈𝐴ad; we define the function

𝜑 (𝜓0) : 𝛿𝜓0 ∈ 𝐴ad → 𝛿𝜓, (44)

where 𝛿𝜓 is the solution of the variational problem

∫
Ω
𝜕𝑡 (𝛿𝜓) V 𝑑𝑥 + ∫

Ω
𝑎 (𝑥) 𝜕𝑥 (𝛿𝜓) 𝜕𝑥V 𝑑𝑥 = 0

∀V ∈ 𝐻10 (Ω)
𝛿𝜓 (0, 𝑡) = 𝛿𝜓 (1, 𝑡) = 0 ∀𝑡 ∈ ]0, 𝑇[
𝛿𝜓 (𝑥, 0) = 𝛿𝜓0 ∀𝑥 ∈ Ω

(45)

and we pose

𝜙 (𝜓0) = 𝜑 (𝜓0 + 𝛿𝜓0) − 𝜑 (𝜓0) − 𝜑 (𝜓0) 𝛿𝜓0. (46)

We want to show that

𝜙 (𝜓0) = 𝑜 (𝛿𝜓0) . (47)

We easily verify that the function𝜙 is solution of the following
variational problem:

∫
Ω
𝜕𝑡𝜙V 𝑑𝑥 + ∫

Ω
𝑎 (𝑥) 𝜕𝑥𝜙𝜕𝑥V 𝑑𝑥 = 0 ∀V ∈ 𝐻10 (Ω)

𝜙 (0, 𝑡) = 𝜙 (1, 𝑡) = 0
∀𝑡 ∈ ]0, 𝑇[

𝜙 (𝑥, 0) = 𝛿𝜓0 − (𝛿𝜓0)2
∀𝑥 ∈ Ω.

(48)

By the same way as that used in the proof of continuity, we
deduce

𝜙2𝐶([0,𝑇],𝐻1
𝑎
(Ω)) ⩽ 𝐶𝑇 𝛿𝜓0 − (𝛿𝜓0)22𝐻1

𝑎
(Ω)
,

𝜙2𝐿2(0,𝑇,𝐻2
𝑎
(Ω)) ⩽ 𝑇𝐶𝑇

inf (1, 𝑇) 𝛿𝜓0 − (𝛿𝜓0)2
2

𝐻1
𝑎
(Ω)
,

𝜙2𝐻1(0,𝑇;𝐿2(Ω)) ⩽ 𝑇𝐶𝑇
inf (1, 𝑇) 𝜓0 − (𝛿𝜓0)2

2

𝐻1
𝑎
(Ω)
.

(49)

Hence, the function 𝜑 : 𝜓0 → 𝜓 is 𝐺-derivable in 𝐴ad
and we deduce the existence of the gradient of the functional𝐽.
Proof ofTheorem 5. Let 𝛿𝜓0 ∈ 𝐿2(Ω) be a small variation such
that 𝜓0 + 𝛿𝜓0 ∈ 𝐴ad.

Consider 𝛿𝜓 = 𝜓𝛿 − 𝜓, with 𝜓 being the weak solution
of (6) with initial state 𝜓0, and 𝜓𝛿 is the weak solution of (6)
with initial state 𝜓𝛿0 = 𝜓0 + 𝛿𝜓0.

Consequently, 𝛿𝜓 is the solution of variational problem

∫
Ω
𝜕𝑡𝛿𝜓V 𝑑𝑥 + ∫

Ω
(𝑎 (𝑥) 𝜕𝑥𝛿𝜓𝜕𝑥V − 𝜆𝑥𝛽 𝛿𝜓V)𝑑𝑥 = 0,

∀V ∈ 𝐻10 (Ω)
𝛿𝜓 (0, 𝑡) = 𝛿𝜓 (1, 𝑡) = 0 ∀𝑡 ∈ ]0, 𝑇[
𝛿𝜓 (𝑥, 0) = 𝛿𝜓0 (𝑥) ∀𝑥 ∈ Ω.

(50)

Take V = 𝛿𝜓; this gives
∫
Ω
𝜕𝑡𝛿𝜓𝛿𝜓𝑑𝑥 + ∫

Ω
(𝑎 (𝑥) (𝜕𝑥𝛿𝜓)2 − 𝜆𝑥𝛽 (𝛿𝜓)2)𝑑𝑥

= 0,
(51)

sinceΩ is independent of 𝑡, which gives

12 𝑑𝑑𝑡 ∫Ω (𝛿𝜓)2 𝑑𝑥 𝑑𝑡
+ ∫
Ω
(𝑎 (𝑥) (𝜕𝑥𝛿𝜓)2 − 𝜆𝑥𝛽 (𝛿𝜓)2)𝑑𝑥 = 0.

(52)

By integrating between 0 and 𝑡 with 𝑡 ∈ [0, 𝑇] we obtain
12 𝛿𝜓 (𝑡)2𝐿2(Ω)
+ ∫𝑡
0
∫
Ω
(𝑎 (𝑥) (𝜕𝑥𝛿𝜓)2 − 𝜆𝑥𝛽 (𝛿𝜓)2)𝑑𝑥𝑑𝑡

= 12 𝛿𝜓 (0)2𝐿2(Ω)
(53)

12 𝛿𝜓 (𝑡)2𝐿2(Ω)
+ ∫𝑡
0
∫
Ω
(𝑎 (𝑥) (𝜕𝑥𝛿𝜓)2 − 𝜆𝑥𝛽 (𝛿𝜓)2)𝑑𝑥𝑑𝑡

= 12 𝛿𝜓02𝐿2(Ω) ,
(54)

and since 𝑎(𝑥) ⩾ 0 and −𝜆/𝑥𝛽 > 0, ∀𝑥 ∈ Ω, we obtain
𝛿𝜓 (𝑡)𝐿2(Ω) ⩽ 𝛿𝜓0𝐿2(Ω) ; (55)

this gives

Sup
𝑡∈[0,𝑇]

𝛿𝜓 (𝑡)𝐿2(Ω) ≤ 𝛿𝜓0𝐿2(Ω) . (56)

From where
𝛿𝜓 (𝑡)𝐶([0;𝑇],𝐿2(Ω)) ≤ 𝛿𝜓0𝐿2(Ω) . (57)

Which gives the continuity of the function

𝜑 : 𝐿2 (Ω) → 𝐶([0, 𝑇] ; 𝐿2 (Ω))
𝜓0 → 𝜓. (58)
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Hence, the functional 𝐽 is continuous in
𝐴ad = {𝑢 ∈ 𝐿2 (Ω) ; ‖𝑢‖𝐿2(Ω) ⩽ 𝑟} . (59)

Proof ofTheorem6. Let𝜓0 ∈ 𝐴ad and 𝛿𝜓0 such that𝜓0+𝛿𝜓0 ∈𝐴ad; we define the function

𝜑 (𝜓0) : 𝛿𝜓0 ∈ 𝐴ad → 𝛿𝜓, (60)

where 𝛿𝜓 is the solution of the variational problem

∫
Ω
𝜕𝑡 (𝛿𝜓) V 𝑑𝑥
+ ∫
Ω
(𝑎 (𝑥) 𝜕𝑥 (𝛿𝜓) 𝜕𝑥V − 𝜆𝑥𝛽 𝛿𝜓V)𝑑𝑥 = 0

∀V ∈ 𝐻10 (Ω)
𝛿𝜓 (0, 𝑡) = 𝛿𝜓 (1, 𝑡) = 0 ∀𝑡 ∈ ]0, 𝑇[
𝛿𝜓 (𝑥, 0) = 𝛿𝜓0 ∀𝑥 ∈ Ω

(61)

and we pose

𝜙 (𝜓0) = 𝜑 (𝜓0 + 𝛿𝜓0) − 𝜑 (𝜓0) − 𝜑 (𝜓0) 𝛿𝜓0. (62)

We want to show that

𝜙 (𝜓0) = 𝑜 (𝛿𝜓0) . (63)

We easily verify that the function 𝜙 is the solution of the
following variational problem:

∫
Ω
𝜕𝑡𝜙V 𝑑𝑥 + ∫

Ω
(𝑎 (𝑥) 𝜕𝑥𝜙𝜕𝑥V − 𝜆𝑥𝛽 𝜙V)𝑑𝑥 = 0

∀V ∈ 𝐻10 (Ω)
𝜙 (0, 𝑡) = 𝜙 (1, 𝑡) = 0 ∀𝑡 ∈ ]0, 𝑇[
𝜙 (𝑥, 0) = 𝛿𝜓0 − (𝛿𝜓0)2 ∀𝑥 ∈ Ω.

(64)

By the same way as that used in the proof of continuity, we
deduce

𝜙𝐶([0,𝑇],𝐿2(Ω)) ⩽ 𝛿𝜓0 − (𝛿𝜓0)2𝐿2(Ω) . (65)

Hence, in all cases, the function 𝜑 : 𝜓0 → 𝜓 is 𝐺-derivable
in 𝐴ad and we deduce the existence of the gradient of the
functional 𝐽.

Now, we are going to compute the gradient of 𝐽 with the
adjoint state method.

4. Gradient of 𝐽
We define the Gâteaux derivative of 𝜓 at 𝜓0 in the directionℎ ∈ 𝐿2(Ω), by

�̂� = lim
𝜀→0

𝜓 (𝜓0 + 𝜀ℎ) − 𝜓 (𝜓0)𝜀 , (66)

where 𝜓(𝜓0 + 𝜀ℎ) is the weak solution of (6) with initial state𝜓0+𝜀ℎ, and𝜓(𝜓0) is the weak solution of (6) with initial state𝜓0.
We compute the Gâteaux (directional) derivative of (6)

at 𝜓0 in some direction ℎ ∈ 𝐿2(Ω), and we get the so-called
tangent linear model:

𝜕𝑡�̂� + 𝐴�̂� = 0
�̂� (0, 𝑡) = �̂� (1, 𝑡) = 0 ∀𝑡 ∈ ]0, 𝑇[
�̂� (𝑥, 0) = ℎ ∀𝑥 ∈ Ω.

(67)

We introduce the adjoint variable 𝑃, and we integrate

∫1
0
∫𝑇
0
𝜕𝑡�̂� 𝑃 𝑑𝑡 𝑑𝑥 + ∫1

0
∫𝑇
0
𝐴�̂�𝑃𝑑𝑥 = 0

∫1
0
([�̂�𝑃]𝑇0 − ∫𝑇

0
�̂�𝜕𝑡𝑃𝑑𝑡) 𝑑𝑥

+ ∫𝑇
0
⟨𝐴�̂�, 𝑃⟩𝐿2(Ω) 𝑑𝑡 = 0

(68)

∫1
0
[�̂� (𝑇) 𝑃 (𝑇) − �̂� (0) 𝑃 (0)] 𝑑𝑥
− ∫𝑇
0
⟨�̂�, 𝜕𝑡𝑃⟩𝐿2(Ω) 𝑑𝑡 + ∫𝑇

0
⟨𝐴�̂�, 𝑃⟩𝐿2(Ω) 𝑑𝑡 = 0.

(69)

Let us take 𝑃(𝑥 = 0) = 𝑃(𝑥 = 1) = 0; then we may write⟨�̂�, 𝐴𝑃⟩𝐿2(Ω) = ⟨𝐴�̂�, 𝑃⟩𝐿2(Ω).
And with 𝑃(𝑇) = 0 we may now rewrite (69) as

∫1
0
�̂� (0) 𝑃 (0) 𝑑𝑥 + ∫𝑇

0
⟨�̂�, 𝜕𝑡𝑃 − 𝐴𝑃⟩𝐿2(Ω) 𝑑𝑡 = 0; (70)

this gives

∫𝑇
0
⟨�̂�, 𝜕𝑡𝑃 − 𝐴𝑃⟩𝐿2(Ω) 𝑑𝑡 = ⟨−𝑃 (0) , ℎ⟩𝐿2(Ω)

𝑃 (𝑥 = 0) = 𝑃 (𝑥 = 1) = 0,
𝑃 (𝑇) = 0.

(71)

The Gâteaux derivative of the functional

𝐽 (𝜓0) = 12𝑇 ∫
𝑇

0

𝐶𝜓 (𝑡) − 𝜓obs (𝑡)2𝐿2(Ω) 𝑑𝑡 (72)

at 𝜓0 in the direction ℎ ∈ 𝐿2(Ω) is given by

𝐽 (ℎ) = lim
𝜀→0

𝐽 (𝜓0 + 𝜀ℎ) − 𝐽 (𝜓0)𝜀 . (73)
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After some calculations, we arrive at

𝐽 (ℎ) = 1𝑇 ∫
𝑇

0
⟨𝐶∗ (𝐶𝜓 − 𝜓obs) , �̂�⟩

𝐿2(Ω)
𝑑𝑡. (74)

The adjoint model is

𝜕𝑡𝑃 − 𝐴𝑃 = 1𝑇𝐶∗ (𝐶𝜓 − 𝜓obs)
𝑃 (𝑥 = 0) = 𝑃 (𝑥 = 1) = 0 ∀𝑡 ∈ ]0, 𝑇[

𝑃 (𝑇) = 0.
(75)

Problem (75) is retrograde; we make the change of
variable 𝑡 ↔ 𝑇 − 𝑡, which gives

𝜕𝑡𝑃 + 𝐴𝑃 = 1𝑇𝐶∗ (�̃�obs − 𝐶�̃�)
𝑃 (𝑥 = 0) = 𝑃 (𝑥 = 1) = 0 ∀𝑡 ∈ ]0, 𝑇[

𝑃 (0) = 0,
(76)

with �̃�(𝑡) = 𝜓(𝑇 − 𝑡).
From (71), (74), and (75) the gradient of 𝐽 is given by

𝜕𝐽𝜕𝜓0 = −𝑃 (0) . (77)

With the change of variable 𝑡 ↔ 𝑇 − 𝑡, the gradient
becomes

𝜕𝐽𝜕𝜓0 = −𝑃 (𝑇) . (78)

To calculate a gradient of 𝐽, we solve two problems: (6)
and (76). The result solution of (6) is used in the second
member of problem (76).

5. Discretization of Problem

Step 1 (full discretization). To resolve problem (6) and (76),
we use the method 𝜃-schema in time. This method is uncon-
ditionally stable for 1 > 𝜃 ≥ 1/2.

Let ℎ be the steps in space and Δ𝑡 the steps in time.
Let

𝑥𝑖 = 𝑖ℎ, 𝑖 ∈ {0, 1, 2, . . . , 𝑁 + 1} ,
𝑐 (𝑥𝑖) = 𝑎 (𝑥𝑖) ,
𝑡𝑗 = 𝑗Δ𝑡, 𝑗 ∈ {0, 1, 2, . . . ,𝑀 + 1} ,
𝑓𝑗𝑖 = 𝑓 (𝑥𝑖, 𝑡𝑗) ;

(79)

we put

𝜓𝑗𝑖 = 𝜓 (𝑥𝑖, 𝑡𝑗) . (80)

Let

𝑑𝑎 (𝑥𝑖) = 𝑐 (𝑥𝑖+1) − 𝑐 (𝑥𝑖)ℎ ,
𝑏 (𝑥) = − 𝜆𝑥𝛽 .

(81)

Therefore,

𝜕𝑡𝜓 + 𝐴𝜓 = 𝑓 (82)

is approximated by

− 𝜃Δ𝑡ℎ2 𝑐 (𝑥𝑖) 𝜓𝑗+1𝑖−1 + (1 + 2𝜃Δ𝑡ℎ2 𝑐 (𝑥𝑖) + 𝑑𝑎 (𝑥𝑖) 𝜃Δ𝑡ℎ
+ 𝑏 (𝑥𝑖) 𝜃Δ𝑡)𝜓𝑗+1𝑖 − (𝜃Δ𝑡ℎ2 𝑐 (𝑥𝑖) + 𝑑𝑎 (𝑥𝑖) 𝜃Δ𝑡ℎ )
⋅ 𝜓𝑗+1𝑖+1 = (1 − 𝜃) Δ𝑡ℎ2 𝑐 (𝑥𝑖) 𝜓𝑗𝑖−1 + (1
− (1 − 𝜃) Δ𝑡ℎ 𝑑𝑎 (𝑥𝑖) − 2 (1 − 𝜃) Δ𝑡ℎ2 𝑐 (𝑥𝑖)
− (1 − 𝜃) 𝑏 (𝑥𝑖) Δ𝑡)𝜓𝑗𝑖 + ((1 − 𝜃) Δ𝑡ℎ 𝑑𝑎 (𝑥𝑖)
+ (1 − 𝜃) Δ𝑡ℎ2 𝑐 (𝑥𝑖))𝜓𝑗𝑖+1 + Δ𝑡 ⋅ [(1 − 𝜃) 𝑓𝑗𝑖
+ 𝜃𝑓𝑗+1𝑖 ] .

(83)

Let us define

𝑔1 (𝑥𝑖) = −𝜃Δ𝑡ℎ2 𝑐 (𝑥𝑖) ,
𝑔2 (𝑥𝑖) = 1 + 2𝜃Δ𝑡ℎ2 𝑐 (𝑥𝑖) + 𝑑𝑎 (𝑥𝑖) 𝜃Δ𝑡ℎ + 𝑏 (𝑥𝑖) 𝜃Δ𝑡,
𝑔3 (𝑥𝑖) = −𝜃Δ𝑡ℎ2 𝑐 (𝑥𝑖) − 𝑑𝑎 (𝑥𝑖) 𝜃Δ𝑡ℎ ,
𝑘1 (𝑥𝑖) = (1 − 𝜃) Δ𝑡ℎ2 𝑐 (𝑥𝑖) ,
𝑘2 (𝑥𝑖) = 1 − (1 − 𝜃) Δ𝑡ℎ 𝑑𝑎 (𝑥𝑖) − 2 (1 − 𝜃) Δ𝑡ℎ2 𝑐 (𝑥𝑖)

− (1 − 𝜃) 𝑏 (𝑥𝑖) Δ𝑡,
𝑘3 (𝑥𝑖) = (1 − 𝜃) Δ𝑡ℎ 𝑑𝑎 (𝑥𝑖) + (1 − 𝜃) Δ𝑡ℎ2 𝑐 (𝑥𝑖) .

(84)

Letting 𝜓𝑗 = (𝜓𝑗𝑖 )𝑖∈{1,2,...,𝑁}, finally we get

𝐷𝜓𝑗+1 = 𝐵𝜓𝑗 + 𝑉𝑗 avec 𝑗 ∈ {1, 2, . . . ,𝑀}
𝜓0 = (𝜓0 (𝑖ℎ))𝑖∈{1,2,...,𝑁} ,

(85)
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where

𝐷 =

[[[[[[[[[[[[[[[[[
[

𝑔2 (𝑥1) 𝑔3 (𝑥1) 0 0
𝑔1 (𝑥2) 𝑔2 (𝑥2) 𝑔3 (𝑥2) 0
0 𝑔1 (𝑥3) 𝑔2 (𝑥3) 𝑔3 (𝑥3) 0

0 𝑔1 (𝑥4) 𝑔2 (𝑥4) 𝑔3 (𝑥4) 0
0 ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ 0
0 𝑔1 (𝑥𝑁−1) 𝑔2 (𝑥𝑁−1) 𝑔3 (𝑥𝑁−1)0 0 𝑔1 (𝑥𝑁) 𝑔2 (𝑥𝑁)

]]]]]]]]]]]]]]]]]
]

𝐵 =

[[[[[[[[[[[[[[[[[
[

𝑘2 (𝑥1) 𝑘3 (𝑥1) 0 0
𝑘1 (𝑥2) 𝑘2 (𝑥2) 𝑘3 (𝑥2) 0
0 𝑘1 (𝑥3) 𝑘2 (𝑥3) 𝑘3 (𝑥3) 0

0 𝑘1 (𝑥4) 𝑘2 (𝑥4) 𝑘3 (𝑥4) 0
0 ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ 0
0 𝑘1 (𝑥𝑁−1) 𝑘2 (𝑥𝑁−1) 𝑘3 (𝑥𝑁−1)0 0 𝑘1 (𝑥𝑁) 𝑘2 (𝑥𝑁)

]]]]]]]]]]]]]]]]]
]

𝑉𝑗 =

[[[[[[[[[[[[[[[[[[
[

Δ𝑡 ⋅ [(1 − 𝜃) 𝑓 (𝑥1, 𝑡𝑗) + 𝜃𝑓 (𝑥1, 𝑡𝑗 + Δ𝑡)]
Δ𝑡 ⋅ [(1 − 𝜃) 𝑓 (𝑥2, 𝑡𝑗) + 𝜃𝑓 (𝑥2, 𝑡𝑗 + Δ𝑡)]⋅

⋅
⋅
⋅

Δ𝑡 ⋅ [(1 − 𝜃) 𝑓 (𝑥𝑁−1, 𝑡𝑗) + 𝜃𝑓 (𝑥𝑁−1, 𝑡𝑗 + Δ𝑡)]
Δ𝑡 ⋅ [(1 − 𝜃) 𝑓 (𝑥𝑁, 𝑡𝑗) + 𝜃𝑓 (𝑥𝑁, 𝑡𝑗 + Δ𝑡)]

]]]]]]]]]]]]]]]]]]
]

.

(86)

Step 2 (discretization of the functional one has).

𝐽 (𝑢) = 12𝑇 ∫
𝑇

0
∫1
0
(𝐶𝜓 (𝑥, 𝑡) − 𝜓obs (𝑥, 𝑡))2 𝑑𝑥 𝑑𝑡. (87)

We recall that themethod ofThomas Simpson to calculate
an integral is

∫𝑏
𝑎
𝑓 (𝑥) 𝑑𝑥 ≃ ℎ2 [𝑓 (𝑥0) + 2

(𝑁+1)/2−1∑
𝑖=1

𝑓 (𝑥2𝑖)

+ 4(𝑁+1)/2∑
𝑖=1

𝑓 (𝑥2𝑖+1) + 𝑓 (𝑥𝑁+1)] ,
(88)

with 𝑥0 = 𝑎, 𝑥𝑁+1 = 𝑏, 𝑥𝑖 = 𝑎 + 𝑖ℎ, 𝑖 ∈ {1, . . . , 𝑁 + 1}.

Let the functions

𝜑 (𝑥, 𝑡) = (𝐶𝜓 (𝑥, 𝑡) − 𝜓obs (𝑥, 𝑡))2
∀𝑡 ∈ [0, 𝑇] , 𝑥 ∈ Ω,

⌀ (𝑡) = ∫1
0
𝜑 (𝑥, 𝑡) 𝑑𝑥.

(89)

This gives

⌀ (𝑡) ≃ ℎ2 [𝜑 (0, 𝑡) + 2
(𝑁+1)/2−1∑
𝑖=1

𝜑 (𝑥2𝑖, 𝑡)

+ 4(𝑁+1)/2∑
𝑖=1

𝜑 (𝑥2𝑖+1, 𝑡) + 𝜑 (1, 𝑡)] ,
(90)
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where

∫𝑇
0
∫1
0
(𝐶𝜓 (𝑥, 𝑡) − 𝜓obs (𝑥, 𝑡))2 𝑑𝑥 𝑑𝑡 ≃ ∫𝑇

0
⌀ (𝑡) 𝑑𝑡

≃ 𝑑𝑡2 [[
⌀ (0) + 2(𝑀+1)/2−1∑

𝑗=1

⌀ (𝑡2𝑗)

+ 4(𝑀+1)/2∑
𝑗=1

⌀ (𝑡2𝑗+1) + ⌀ (𝑇)]]
,

(91)

with 𝑡0 = 0, 𝑡𝑀+1 = 𝑇, 𝑡𝑗 = 𝑗𝑑𝑡, 𝑗 ∈ {1, . . . ,𝑀 + 1}.
Therefore,

𝐽 (𝑢) ≃ 12𝑇 𝑑𝑡2 [[
⌀ (0) + 2(𝑀+1)/2−1∑

𝑗=1

⌀ (𝑡2𝑗)

+ 4(𝑀+1)/2∑
𝑗=1

⌀ (𝑡2𝑗+1) + ⌀ (𝑇)]]
.

(92)

Step 3 (discretization of ∇𝐽). The adjoint problem (76) is
discretized as (85), so,

∇𝐽 ≃ −𝑃𝑀+1. (93)

6. Numerical Experiments and Results

In this section, we discuss two cases:
In case we have a priori knowledge 𝜓𝑏 of 𝜓exact

0 in
each point of analysis grid-points, we apply the Tikhonov
approach to solve the minimization problem (8). The data𝜓𝑏 is assumed to be corrupted by measurement errors, which
we will refer to as noise. In particular, we suppose that 𝜓𝑏 =𝜓exact
0 +𝑒. Here, we study the impact of err (err = ‖𝑒‖2) on the

construction of the solution.
In case we have a partial knowledge of values of 𝜓𝑏

(example 20%): firstly, we apply the hybrid approach to
rebuild the initial state. Secondly, we make a comparison
between both hybrid and Tikhonov approaches.

The tests have been performed in Matlab 2012A, on a
Windows 7 platform.

6.1. Regularization Approach. The differentiability and conti-
nuity in 𝐴ad of the functional,

𝐽𝑇 (𝜓0) = 12𝑇 ∫
𝑇

0

𝐶𝜓 (𝑡) − 𝜓obs (𝑡)2𝐿2(Ω) 𝑑𝑡
+ 𝜀2 𝜓0 − 𝜓𝑏

2

𝐿2(Ω)
,

(94)

is deduced from the differentiability and continuity of the
functional 𝐽, and we have

𝜕𝐽𝑇𝜕𝜓0 = −𝑃 (𝑇) + 𝜀 (𝜓0 − 𝜓𝑏) , (95)

where 𝑃 is the solution of (76).
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Figure 1: Initial temperature. This figure shows that we can rebuild
the initial state.

The main steps for descent method at each iteration are
the following:

(i) Calculate 𝜓𝑘 solution of (6) with initial condition 𝜓0.
(ii) Calculate 𝑃𝑘 solution of (76).
(iii) Calculate the descent direction 𝑑𝑘 = −∇𝐽𝑇(𝜓0).
(iv) Find 𝑡𝑘 = argmin𝑡>0𝐽𝑇(𝜓0 + 𝑡𝑑𝑘)
(v) Update the variable 𝜓0 = 𝜓0 + 𝑡𝑘𝑑𝑘.

The algorithm ends when |𝐽𝑇(𝜓0)| < 𝜇, where 𝜇 is a given
small precision.𝑡𝑘 is chosen by the inaccurate linear search by Rule
Armijo-Goldstein as follows:

let 𝛼𝑖, 𝛽 ∈ [0, 1[ and 𝛼 > 0
if 𝐽𝑇(𝜓𝑘0 + 𝛼𝑖𝑑𝑘) ⩽ 𝐽𝑇(𝜓𝑘0 ) + 𝛽𝛼𝑖𝑑𝑇𝑘𝑑𝑘𝑡𝑘 = 𝛼𝑖 and stop
if not
𝛼𝑖 = 𝛼𝛼𝑖.

We do all the tests on Pc with the following configura-
tions: Intel Core i3 CPU 2.27GHz; RAM=4GB (2.93 usable).

In all figures, the observed function is drawn in red and
built function in blue.

Let 𝑁 be number of points in space and 𝑀 number of
points in time.

6.1.1. The Noncoercive Case. Let 𝛼 = 1/2, 𝜆 = 0 and param-
eters𝑁 = 100,𝑀 = 100.
(i) Tests with 𝑒𝑟𝑟 = 0. See Figures 1, 2, 3, and 4.

(ii) Tests with 𝑒𝑟𝑟 ̸= 0. In Figures 5, 6, 7, and 8,𝜓exact
0 is drawn

in red and 𝜓0 (rebuilt initial condition) in blue.

6.1.2. SubCritical Potential Case. Let𝛼 = 1/2,𝜆 = −(1−𝛼)2/4,𝛽 = 3/4 and the parameters𝑁 = 100,𝑀 = 100.
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Figure 2: Final temperature.
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Figure 4: Norm of gradient of 𝐽.
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Figure 5: Initial temperature in err = 2% ‖𝜓exact
0 ‖2 case. This figure

shows that we can rebuild the true state.
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Figure 6: Initial temperature in err = 5% ‖𝜓exact
0 ‖2 case. The recon-

structed initial condition is not far from the true state.
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Figure 7: Initial temperature in err = 10% ‖𝜓exact
0 ‖2 case.The recon-

structed initial condition begins to move away from the true state.
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Figure 8: Initial temperature in err = 20% ‖𝜓exact
0 ‖2 case.This figure

shows that we cannot rebuild the true state.
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Figure 9: Initial temperature. This figure shows that we can rebuild
the initial state.

(i) Tests with 𝑒𝑟𝑟 = 0. See Figures 9, 10, 11, and 12.

(ii) Tests with 𝑒𝑟𝑟 ̸= 0. See Figures 13, 14, 15, and 16.

6.2. Hybrid Algorithm. The genetic algorithms (GA) are
adaptive search and optimization methods that are based on
the genetic processes of biological organisms.Their principles
have been first laid down by Holland. The aim of GA is
to optimize a problem-defined function, called the fitness
function. To do this, GAmaintain a population of individuals
(suitably represented candidate solutions) and evolve this
population over time. At each iteration, called generation, the
new population is created by the process of selecting individ-
uals according to their level of fitness in the problem domain
and breeding them together using operators borrowed from
natural genetics, as, for instance, crossover and mutation. As
the population evolves, the individuals in general tend toward
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Figure 10: Final temperature.
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Figure 12: Norm of gradient of 𝐽.
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Figure 13: Initial temperature in err = 2% ‖𝜓exact
0 ‖2 case. This figure

shows that we can rebuild the true state.
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Figure 14: Initial temperature in err = 5% ‖𝜓exact
0 ‖2 case.The recon-

structed initial condition is not far from the true state.
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Figure 15: Initial temperature in err = 10% ‖𝜓exact
0 ‖2 case.The recon-

structed initial condition began to move away from the true state.
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Figure 16: Initial temperature in err = 20% ‖𝜓exact
0 ‖2 case.This figure

shows that we cannot rebuild the true state.

the optimal solution [21–24]. The basic structure of a GA is
the following:

(1) Initialize a population of individuals;
(2) Evaluate each individual in the population;
(3)While the stop criterion is not reached do
{
(4) Select individuals for the next population;
(5) Apply genetic operators (crossover, mutation) to
produce new individuals;
(6) Evaluate the new individuals;
}
(7) return the best individual.

The hybrid methods combine principles from genetic
algorithms and other optimization methods. In this
approach, we will combine the genetic algorithm with
method descent (steepest descent algorithm (FP)).

We assume that we have a partial knowledge of back-
ground state 𝜓𝑏 at certain points (𝑥𝑖)𝑖∈𝐼, 𝐼 ⊂ {1, 2, . . . , 𝑁 + 1}.

We assume the individual is a vector 𝜓0; the population is
a set of individuals.

The initialization of individual is as follows:

for 𝑖 = 1 to 𝑁 + 1
if 𝑖 ∈ 𝐼
𝜓0 (𝑥𝑖) is chosen in the vicinity of 𝜓𝑏 (𝑥𝑖)

else

𝜓0 (𝑥𝑖) is chosen randomly

end if

end for.

(96)

Starting by initial population, we apply genetic operators
(crossover, mutation) to produce a new population in which
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Figure 17: Hybrid algorithm.

each individual is an initial point for the descentmethod (FP).
When a specific number of generations is reached without
improvement of the best individual, only the fittest individ-
uals (e.g., the first 10% fittest individuals in the population)
survive.The remaining die and their place is occupied by new
individuals with new genetic (45% are chosen randomly; the
other 45%are chosen as (96)). At each generationwe keep the
best. The algorithm ends when |𝐽(𝜓0)| < 𝜇 or generation ⩾
Maxgen, where 𝜇 is a given precision (see Figure 17).

The main steps for descent method (FP) at each iteration
are the following:

(i) Calculate 𝜓𝑘 solution of (6) with initial condition 𝜓0.
(ii) Calculate 𝑃𝑘 solution of (76).
(iii) Calculate the descent direction 𝑑𝑘 = −∇𝐽(𝜓0).
(iv) Find 𝑡𝑘 = argmin𝑡>0𝐽(𝜓0 + 𝑡𝑑𝑘).
(v) Update the variable 𝜓0 = 𝜓0 + 𝑡𝑘𝑑𝑘.

The algorithm endswhen |𝐽(𝜓0)| < 𝜇, where𝜇 is a given small
precision.𝑡𝑘 is chosen by the inaccurate linear search by Rule
Armijo-Goldstein as follows:

let 𝛼𝑖, 𝛽 ∈ [0, 1[ and 𝛼 > 0.
if 𝐽(𝜓𝑘0 + 𝛼𝑖𝑑𝑘) ⩽ 𝐽(𝜓𝑘0 ) + 𝛽𝛼𝑖𝑑𝑇𝑘𝑑𝑘𝑡𝑘 = 𝛼𝑖 and stop
if not
𝛼𝑖 = 𝛼𝛼𝑖.

Table 1: Results on the Tikhonov approach. Comparison between
different values of regularizing coefficient 𝜀. The smallest value of 𝐽
is reached when 𝜀 = 10−06.
𝜀 Minimum value of 𝐽 Elapsed time (seconds)
10−08 1.106317 ⋅ 10−02 8.3810−07 1.092014 ⋅ 10−02 24.4710−06 6.630517 ⋅ 10−03 23.1110−05 7.752620 ⋅ 10−03 21.5010−04 7.857129 ⋅ 10−03 22.6410−03 8.510799 ⋅ 10−03 18.9510−02 8.733989 ⋅ 10−03 15.0110−01 1.018406 ⋅ 10−02 17.331 1.552344 ⋅ 10−02 6.04

Table 2: Results on the hybrid method.

Minimum value of 𝐽 Elapsed time
6.581908 ⋅ 10−03 1min5.850810 ⋅ 10−03 2min3.362100 ⋅ 10−04 7min1.071378 ⋅ 10−04 11min8.739839 ⋅ 10−05 23min5.958016 ⋅ 10−05 6 h 43min6.175260 ⋅ 10−06 11 h 20min

Consider we know 20% of values of background state
(𝜓𝑏), in this test we try to build the solution with the hybrid
method.

In the figures below, the observed function is drawn in red
and built function in blue.

Let 𝑁 be number of points in space and 𝑀 number of
points in time.

6.2.1. The Noncoercive Case. Let 𝛼 = 1/2, 𝜆 = 0 and
parameters𝑁 = 100,𝑀 = 100, number of individuals = 30,
and number of generations = 2000.

The test with simple descent gives Figure 18.
The test with genetic algorithm gives Figure 19.
Now we turn the hybrid algorithm.This gives Figure 20.

6.2.2. Subcritical Potential Case. Let 𝛼 = 1/2, 𝜆 = −(1−𝛼)2/4,𝛽 = 3/4 and parameters 𝑁 = 100, 𝑀 = 100, number of
individuals = 30, and number of generations = 2000.

The test with simple descent gives Figure 21.
The test with genetic algorithm gives Figure 22.
Now we turn the hybrid algorithm.This gives Figure 23.

6.3. Comparison between Hybrid Approach and Tikhonov
Approach. Here, we assume that we know 20% of values of
background state (𝜓𝑏).
(i) Noncoercive Case. see Tables 1 and 2.

The minimum value of 𝐽 reached by the Tikhonov
algorithm was 6.630517 ⋅ 10−03, whereas with the hybrid
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Figure 18: This figure shows that we cannot rebuild the solution.
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Figure 19: This figure shows that we cannot rebuild the solution.
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Figure 20: This figure shows that we can rebuild the solution.
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Figure 21: This figure shows that we cannot rebuild the solution.
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Figure 22: This figure shows that we cannot rebuild the solution.
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Figure 23: This figure shows that we can rebuild the solution.
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Table 3: Results on the Tikhonov aporoach. Comparison between
different values of regularizing coefficient 𝜀. The smallest value of 𝐽
is reached when 𝜀 = 10−03.
𝜀 Minimum value of 𝐽 Elapsed time (seconds)
10−08 1.113538 ⋅ 10−02 10.91
10−07 1.188092 ⋅ 10−02 8.68
10−06 1.099187 ⋅ 10−02 8.75
10−05 1.267204 ⋅ 10−02 7.91
10−04 9.648060 ⋅ 10−03 11.17
10−03 7.320995 ⋅ 10−03 11.61
10−02 9.188603 ⋅ 10−03 10.20
10−01 9.799159 ⋅ 10−03 9.57
1 1.042463 ⋅ 10−02 9.66

Table 4: Results on the hybrid method.

Minimum value of 𝐽 Elapsed time
7.605018 ⋅ 10−03 1min
7.505279 ⋅ 10−03 2min
1.762564 ⋅ 10−03 4min
9.407809 ⋅ 10−04 43min
2.981666 ⋅ 10−05 1 h 56min
1.378356 ⋅ 10−05 6 h 43min
8.203546 ⋅ 10−06 13 h 40min

algorithm it was possible to reach the value 6.175260⋅10−06 in
11 h and 20min with knowledge of 20% of𝜓𝑏; if we take more
than 20%, we got less than elapsed time.

(ii) Subcritical Potential Case. see Tables 3 and 4.
The minimum value of 𝐽 reached by the Tikhonov algo-

rithmwas 7.320995⋅10−03, whereas with the hybrid algorithm
it was possible to reach the value 8.203546 ⋅ 10−06 in 13 h
and 40min with knowledge of 20% of 𝜓𝑏; if we take more
than 20%, we got less than elapsed time.

7. Conclusion

In this paper, we have presented the regularization method
and the hybrid method which are applied to determine an
initial state from the point of measurements of parabolic
degenerate/singular problem. These methods have proven
efficiency to rebuild the solution. The proposed reconstruc-
tion algorithms are easily implanted.

The elapsed time of the hybridmethod is long enough. To
reduce it, in our coming work we will use the multiprogram-
ming to run two approaches of parallelism.
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