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The 𝑁 person games in which each player maximizes his payoff function are considered. We have studied an interesting question
for the cooperative game theory about the usefulness of uniting the𝑁 players in a union. The aim of such cooperation is for each
player to get a positive increase to his guaranteed payoff. We have obtained some effective sufficient conditions under which the
joining of the players in union is useful for each player. The linear case, specially, is being considered. In the second part of the
paper, we have studied the question about the usefulness of cooperation of the 𝑁 players in the presence of the (𝑁 + 1)th player,
an ill-intentioned destructive player, whose whole aim is not to win but to harm each player individually, and also the union of
these players, for example, global terrorism. It should be noted that the considered situation in the second part is related to A. V.
Kryazhimskiy’s talk delivered in the summer of 2014. We obtain constructive conditions under which the union of the players is
beneficial in this situation as well.

1. Introduction

In the game theory (see, e.g., [1–3]), much attention is given
to the cooperative game theory of 𝑁 person. In [4, 5], we
considered the games of two and three persons from the point
of view of the usefulness of combining them in an alliance
in order to get additional dividends. In the first part of this
paper, we considered 𝑁 person games in terms of usefulness
of uniting players in union in which the choice of strategies
is made in concert in order to maximize the sum of payoffs
of the 𝑁 players. In the second part, 𝑁 players games with
perturbing factors of an ill-intentioned destructive player
are considered. Here we studied the feasibility of joining
(cooperation) the 𝑁 players in union to counter the possible
troubles from the ill-intentioned destructive player. For the
different aspects of the theory of cooperation see, for example,
[6–9].

2. Usefulness of Cooperation in𝑁 Person Game

Let 𝑁 ⩾ 3; in the Euclidean arithmetical spaces R𝑘1 , . . .,
R𝑘𝑁 (𝑘1 ⩾ 1, . . . , 𝑘𝑁 ⩾ 1) (𝑘1, . . . , 𝑘𝑁—dimensions of the

spaces) fixed nonvoid compact set 𝑋1, . . . , 𝑋𝑁, respectively,
and on 𝑋1 × ⋅ ⋅ ⋅ × 𝑋𝑁 we define the continuous scalar
functions 𝑓1(x1, . . . , x𝑁), . . . , 𝑓𝑁(x1, . . . , x𝑁). We denote 𝐼 ={1, 2, . . . , 𝑁}. In the considered game the 𝑖th player chooses
the vector x𝑖 ∈ 𝑋𝑖 and strives to maximize his payoff𝑓𝑖(x1, . . . , x𝑁), 𝑖 ∈ 𝐼. The players make the choice of vectors
x1, . . . , x𝑁 independently of each other. As we know from the
game theory (see, e.g., [1–3]) each 𝑖th player can guarantee a
payoff

𝛾𝑖 = max
x𝑖

minx1,...,x𝑖−1,x𝑖+1 ,...,x𝑁

𝑓𝑖 (x1, . . . , x𝑁) , 𝑖 ∈ 𝐼, (1)

where x1 ∈ 𝑋1, . . . , x𝑁 ∈ 𝑋𝑁 (in this formula, it is
considered that if 𝑖 = 1 the minimization is carried out over
x2, . . . , x𝑁 and if 𝑖 = 𝑁 the minimization is carried out over
x1, . . . , x𝑁−1), if he chooses a vector x∗𝑖 ∈ 𝑋𝑖 according to the
requirement

𝛾𝑖 = minx1,...,x𝑖−1,x𝑖+1,...,x𝑁

𝑓𝑖 (x1, . . . , x𝑖−1, x∗𝑖 , x𝑖+1, . . . , x𝑁) , 𝑖 ∈ 𝐼, (2)

where x1 ∈ 𝑋1, . . . , x𝑁 ∈ 𝑋𝑁 (in this formula, it is considered
that if 𝑖 = 1 the minimization is carried out over x2, . . . , x𝑁
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for x1 = x∗1 and if 𝑖 = 𝑁 the minimization is carried out
over x1, . . . , x𝑁−1 for x𝑁 = x∗𝑁). It is assumed that the payoffs𝑓𝑖(x1, . . . , x𝑁), 𝑖 ∈ 𝐼, are measured in the same physical
units (in economic applications, e.g., payoffs 𝑓𝑖(x1, . . . , x𝑁),𝑖 ∈ 𝐼, are usually measured in monetary units). In this kind
of assumption, the value

𝑁∑
𝑖=1

𝑓𝑖 (x1, . . . , x𝑁) (3)

has also a physical sense. If 𝑁 players are joined together in
a union (coalition), then acting concertedly (i.e., choosing(x1, . . . , x𝑁) in𝑋1 × ⋅ ⋅ ⋅ × 𝑋𝑁) they can use the quantity

𝛾𝑁+1 = max
x1,...,x𝑁

( 𝑁∑
𝑖=1

𝑓𝑖 (x1, . . . , x𝑁)) , (4)

where x1 ∈ 𝑋1, . . . , x𝑁 ∈ 𝑋𝑁. It is easy to prove that (see (1))
𝛾𝑁+1 ⩾ 𝛾1 + 𝛾2 + ⋅ ⋅ ⋅ + 𝛾𝑁. (5)

If

𝛾𝑁+1 > 𝛾1 + 𝛾2 + ⋅ ⋅ ⋅ + 𝛾𝑁, (6)

then the joining of the players in a union (coalition) is
advantageous to all players, since the positive quantity

Δ = 𝛾𝑁+1 − (𝛾1 + 𝛾2 + ⋅ ⋅ ⋅ + 𝛾𝑁) (7)

can be distributed in the form of positive addition to
guaranteed payoffs 𝛾1, 𝛾2, . . . , 𝛾𝑁. To know how actually this
distribution is reasonable to do, see, for example, [10, c. 181–
186].

There arises an interesting question for the game theory
and its applications of finding constructive conditions on the
elements of the game considered by us under which strict
inequality (6) holds. We consider two cases, in which it is
possible to indicate such conditions.

2.1. Case A. The continuous functions 𝑓1, 𝑓2, . . . , 𝑓𝑁 have on𝑋1 × 𝑋2 × ⋅ ⋅ ⋅ × 𝑋𝑁 a separated form:

𝑓1 (x1, x2, . . . , x𝑁) = 𝑓11 (x1) + 𝑓12 (x2) + ⋅ ⋅ ⋅
+ 𝑓1𝑁 (x𝑁) ,

𝑓2 (x1, x2, . . . , x𝑁) = 𝑓21 (x1) + 𝑓22 (x2) + ⋅ ⋅ ⋅
+ 𝑓2𝑁 (x𝑁) ,

...
𝑓𝑁 (x1, x2, . . . , x𝑁) = 𝑓𝑁1 (x1) + 𝑓𝑁2 (x2) + ⋅ ⋅ ⋅

+ 𝑓𝑁𝑁 (x𝑁) ,

(8)

where the functions 𝑓1𝑖(x𝑖), 𝑓2𝑖(x𝑖), . . . , 𝑓𝑁𝑖(x𝑖) are continu-
ous on 𝑋𝑖, 𝑖 ∈ 𝐼.

In what follows, let us agree to write operations maxx1 , . . .,
maxx𝑁 instead of the operations maxx1∈𝑋1 , . . . ,maxx𝑁∈𝑋𝑁 ,
respectively. Similarly, we write minx1 , . . . ,minx𝑁 instead of
the operations minx1∈𝑋1 , . . . ,minx𝑁∈𝑋𝑁, respectively. Investi-
gated inequality (6) can be rewritten as

max
x1

[𝑓11 (x1) + 𝑓21 (x1) + ⋅ ⋅ ⋅ + 𝑓𝑁1 (x1)]
+max

x2
[𝑓12 (x2) + 𝑓22 (x2) + ⋅ ⋅ ⋅ + 𝑓𝑁2 (x2)] + ⋅ ⋅ ⋅

+max
x𝑁

[𝑓1𝑁 (x𝑁) + 𝑓2𝑁 (x𝑁) + ⋅ ⋅ ⋅ + 𝑓𝑁𝑁 (x𝑁)]
> (max

x1
𝑓11 (x1) +minx1

𝑓21 (x1) + ⋅ ⋅ ⋅
+minx1

𝑓𝑁1 (x1)) + (max
x2

𝑓22 (x2) +minx2
𝑓12 (x2)

+minx2
𝑓32 (x2) + ⋅ ⋅ ⋅ +minx2

𝑓𝑁2 (x2)) + ⋅ ⋅ ⋅
+ (max

x𝑁
𝑓𝑁𝑁 (x𝑁) +minx𝑁

𝑓1𝑁 (x𝑁) +minx𝑁
𝑓2𝑁 (x𝑁)

+ ⋅ ⋅ ⋅ +minx𝑁
𝑓𝑁−1𝑁 (x𝑁)) .

(9)

We consider separately for 𝑖 ∈ 𝐼 the inequality
max
x𝑖

[𝑓1𝑖 (x𝑖) + 𝑓2𝑖 (x𝑖) + ⋅ ⋅ ⋅ + 𝑓𝑁𝑖 (x𝑖)]
⩾ max

x𝑖
𝑓𝑖𝑖 (x𝑖) +minx𝑖 𝑓1𝑖 (x𝑖) + ⋅ ⋅ ⋅ +minx𝑖 𝑓𝑖−1𝑖 (x𝑖)

+minx𝑖 𝑓𝑖+1𝑖 (x𝑖) + ⋅ ⋅ ⋅ +minx𝑖 𝑓𝑁𝑖 (x𝑖) .
(10)

In this formula, it is considered that the right-hand side if 𝑖 =1 has the form
max
x1

𝑓11 (x1) +minx1
𝑓21 (x1) + ⋅ ⋅ ⋅ +minx1

𝑓𝑁1 (x1) (11)

and if 𝑖 = 𝑁 has the form

max
x𝑁

𝑓𝑁𝑁 (x𝑁) +minx𝑁
𝑓1𝑁 (x𝑁) + ⋅ ⋅ ⋅

+minx𝑁
𝑓𝑁−1𝑁 (x𝑁) . (12)

It is easy to prove the following lemma.

Lemma 1. Under assumptions (8) and (9) for each 𝑖 ∈ 𝐼
inequality (10) holds.

Note that, in general, for each 𝑖 ∈ 𝐼 inequality (10) is not
necessarily fulfilled strictly. However one has the following.

Lemma 2. For a given 𝑖 ∈ 𝐼, there exists a point x∗𝑖 of the set
arg maxx𝑖𝑓𝑖𝑖(x𝑖), which does not belong to at least one of the
sets arg minx𝑖𝑓𝑗𝑖(x𝑖), where 𝑗 ∈ 𝐼 and is not equal to 𝑖. Then
inequality (10) holds in the strict sense.

Proof. It is evident that for a given 𝑖 ∈ 𝐼 the left-hand side of
inequality (10) for x𝑖 = x∗𝑖 is greater than or equal to the value

𝑓1𝑖 (x∗𝑖 ) + 𝑓2𝑖 (x∗𝑖 ) + ⋅ ⋅ ⋅ + 𝑓𝑁𝑖 (x∗𝑖 ) , (13)
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where it is not difficult to see that it is greater than or equal
to the right side of inequality (10). Further, by using the
hypotheses of Lemma 2, it is easy to prove that this value
is strictly greater than the right-hand side of inequality (10).
From what has been said, Lemma 2 follows.

Remark 3. The symbols arg maxx𝑖𝜔𝑗𝑖(x𝑖) and
arg minx𝑖𝜔𝑗𝑖(x𝑖) denote, respectively, the sets of points
of maximum and minimum of the function 𝜔𝑗𝑖(x𝑖) on 𝑋𝑖.

From the above we get the following.

Theorem 4. If at least for one number 𝑖 ∈ 𝐼 the conditions of
Lemma 2 are realized, then one has strict inequality (9) and,
therefore, strict inequality (6).

2.2. Case B (Subcase of CaseA). Thesets𝑋1, 𝑋2, . . . , 𝑋𝑁, con-
vex compact, and the continuous functions 𝑓1(x1, . . . , x𝑁),𝑓2(x1, . . . , x𝑁), . . . , 𝑓𝑁(x1, . . . , x𝑁) have on𝑋1×𝑋2× ⋅ ⋅ ⋅×𝑋𝑁
linear form

𝑓1 (x1, . . . , x𝑁) = ⟨a11, x1⟩ + ⟨a12, x2⟩ + ⋅ ⋅ ⋅
+ ⟨a1𝑁, x𝑁⟩ ,

𝑓2 (x1, . . . , x𝑁) = ⟨a21, x1⟩ + ⟨a22, x2⟩ + ⋅ ⋅ ⋅
+ ⟨a2𝑁, x𝑁⟩ ,

...
𝑓𝑁 (x1, . . . , x𝑁) = ⟨a𝑁1, x1⟩ + ⟨a𝑁2, x2⟩ + ⋅ ⋅ ⋅

+ ⟨a𝑁𝑁, x𝑁⟩ ,

(14)

where a1𝑖, a2𝑖, . . . , a𝑁𝑖 are fixed vectors in R𝑘𝑖 , 𝑖 ∈ 𝐼;
the symbol ⟨⋅, ⋅⟩ denotes the standard scalar product in
R𝑘1 , . . . ,R𝑘𝑁, respectively. As the functions 𝑓1(x1, . . . , x𝑁),𝑓2(x1, . . . , x𝑁), . . . , 𝑓𝑁(x1, . . . , x𝑁) have a separated form (cf.
(8)), you can use the results that we obtained in Case A.
In considered linear Case B, strict inequality (10) can be
rewritten for each 𝑖 ∈ 𝐼 in the form
max
x𝑖

(⟨a1𝑖 + a2𝑖 + ⋅ ⋅ ⋅ + a𝑁𝑖, x𝑖⟩)
> max

x𝑖
⟨a𝑖𝑖, x𝑖⟩ +minx𝑖 ⟨a1𝑖, x𝑖⟩ +minx𝑖 ⟨a2𝑖, x𝑖⟩ + ⋅ ⋅ ⋅

+minx𝑖 ⟨a𝑖−1𝑖, x𝑖⟩ +minx𝑖 ⟨a𝑖+1𝑖, x𝑖⟩ + ⋅ ⋅ ⋅
+minx𝑖 ⟨a𝑁𝑖, x𝑖⟩ .

(15)

In what follows we need some auxiliary information.
In the Euclidean space R𝑚 (𝑚 ⩾ 1) we denote 𝜎𝑚 = {k ∈

R𝑚 : |k| = 1}, where |k|mean standard length of the vector k.
The following will be useful.

Definition 5. A nonvoid convex compact set𝐾 ⊂ R𝑚 (𝑚 ⩾ 2)
with nonvoid interior is called an 𝑆-set, if

(1) for any 𝜓 ∈ 𝜎𝑚 in𝐾 there exists only one vector k(𝜓),
maximizing on k ∈ 𝐾 the scalar product ⟨k, 𝜓⟩;

(2) for each boundary point k0 of the compact set𝐾 there
exists only one support hyperplane, passing through
the point k0.

Remark 6. Here and further, we use some notions of convex
analysis (see, e.g., [11, 12]). We note that for each 𝜓 ∈ 𝜎𝑚 the
point k(𝜓) belongs to the boundary of the set 𝐾. Using the
terminology of convex analysis, we can say that the 𝑆-set is a
strictly convex set and also a convex body.

In [4] is proved the following.

Lemma 7. Let the set 𝐾 ⊂ R𝑚 (𝑚 ⩾ 2) be an 𝑆-set, and let
vectors p and q be some nonzero vectors in R𝑚, such that

1|p|p ̸= 1|q| (−q) . (16)

Then,

(⟨k (p) , −q⟩) < (⟨k (−q) , −q⟩) . (17)

Lemma 8. For a given 𝑖 ∈ 𝐼, the set 𝑋𝑖 ⊂ R𝑘𝑖 (𝑘𝑖 ⩾ 2) is an 𝑆-
set, and the vectors a1𝑖, a2𝑖, . . . , a𝑁𝑖 are nonzero and the vector(1/|a𝑖𝑖|)a𝑖𝑖 is not equal to at least one of the vectors

1a𝑗𝑖 (−a𝑗𝑖) , (18)

where 𝑗 ∈ 𝐼 and 𝑗 is not equal to 𝑖. Then for this number 𝑖 one
has strict inequality (15).

Proof. Under the above assumptions, for a given 𝑖 ∈ 𝐼, the
vector x𝑖(a𝑖𝑖) that is maximizing the function ⟨x𝑖, a𝑖𝑖⟩ on x𝑖 ∈𝑋𝑖 is uniquely defined. Thus,

argmax
x𝑖

⟨x𝑖, a𝑖𝑖⟩ = {x𝑖 (a𝑖𝑖)} . (19)

Let the vector (1/|a𝑖𝑖|)a𝑖𝑖 be not equal to the vector(1/|a𝑘𝑖|)(−a𝑘𝑖), where 𝑘 ∈ 𝐼 and 𝑘 is not equal to 𝑖. From
Lemma 7 we obtain the following inequality:

(⟨x𝑖 (a𝑖𝑖) , −a𝑘𝑖⟩) < (⟨x𝑖 (−a𝑘𝑖) , −a𝑘𝑖⟩) , (20)

where x𝑖(−a𝑘𝑖)means themaximizer of the function ⟨x𝑖 , −a𝑘𝑖⟩
for x𝑖 ∈ 𝑋𝑖.

We can show that

minx𝑖 ⟨x𝑖, a𝑘𝑖⟩ = − ⟨x𝑖 (−a𝑘𝑖) , −a𝑘𝑖⟩ . (21)

From relations (20) and (21) we obtain the inequality

(⟨x𝑖 (a𝑖𝑖) , a𝑘𝑖⟩) > minx𝑖 ⟨x𝑖, a𝑘𝑖⟩ . (22)

Hence it follows that

x𝑖 (a𝑖𝑖) ∉ argmin
x𝑖

⟨x𝑖, a𝑘𝑖⟩ . (23)

From the above and Lemma 2, it follows that strict inequality
(15) holds.
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On the basis of the above, we obtain the following
theorem.

Theorem 9. If for at least one number 𝑖 ∈ 𝐼 the conditions of
Lemma8 are realized, then for the functions𝑓𝑗 (x1, . . . , x𝑁), 𝑗 =1, . . . 𝑁, one has strict inequality (9) and hence strict inequality
(6).

Remark 10. The payoff functions, having a separated form
(see (8)), are often considered in the game theory (see, e.g.,
[10]).

3. Usefulness of Cooperation in 𝑁 Person
Game in Presence of an Ill-Intentioned
Destructive Player

In this part, we briefly studied some more general game
models than in the first part which considers the existence
of the (𝑁 + 1)th player, an ill-intentioned destructive player.
The statement of the considered problem here was motivated
by A. V. Kryazhimskiy’s talk.

We consider the𝑁 person game in a formalmost classical,
where 𝑁 ⩾ 3. The payoff function of the 𝑖th player is a
continuous function

𝑓𝑖 (x1, . . . , x𝑁, y) , 𝑖 ∈ 𝐼, (24)

where x1 ∈ 𝑋1, . . . , x𝑁 ∈ 𝑋𝑁, y ∈ 𝑌 and 𝑋1, . . . , 𝑋𝑁,𝑌 are nonvoid compact sets in the corresponding finite
dimensional Euclidean spaces. The 𝑖th player selects x𝑖 ∈ 𝑋𝑖
within order to maximize

𝑓𝑖 (x1, . . . , x𝑁, y) , 𝑖 ∈ 𝐼. (25)

The vector y ∈ 𝑌 is selected by the ill-intentioned destructive
player, whose objectives are not to win, but to harm the
players. We want to prove that sometimes it is advantageous
for the players to be united in a coalition and fight together
with the possible actions of the ill-intentioned destructive
player.

We will study the game, for which

max
x1,...,x𝑁

miny ( 𝑁∑
𝑖=1

𝑓𝑖 (x1, . . . , x𝑁, y))
> max

x1
minx2,...,x𝑁,y

𝑓1 (x1, . . . , x𝑁, y)
+max

x2
minx1,x3,...,x𝑁,y

𝑓2 (x1, . . . , x𝑁, y) + ⋅ ⋅ ⋅
+max

x𝑁
minx1,...,x𝑁−1,y

𝑓𝑁 (x1, . . . , x𝑁, y) .

(26)

Here and further in similar inequalities x1 ∈ 𝑋1, . . . , x𝑁 ∈𝑋𝑁, y ∈ 𝑌.
Note that when inequality (26) is fulfilled, it is advanta-

geous for the players to be united in a coalition in order to
get greater payoff through bargaining than in a two-person
zero-sum game. In fact, in inequality (26) we use the notion

of the characteristic function from cooperative game theory.
Our study is greatly simplified if

𝑓1 (x1, . . . , x𝑁, y) = 𝑓11 (x1, . . . , x𝑁) + 𝑓12 (y) ,
𝑓2 (x1, . . . , x𝑁, y) = 𝑓21 (x1, . . . , x𝑁) + 𝑓22 (y) ,

...
𝑓𝑁 (x1, . . . , x𝑁, y) = 𝑓𝑁1 (x1, . . . , x𝑁) + 𝑓𝑁2 (y) ,

(27)

where the functions 𝑓11, 𝑓21, . . . , 𝑓𝑁1 are continuous on𝑋1 ×𝑋2 × ⋅ ⋅ ⋅ × 𝑋𝑁, while the functions 𝑓12, 𝑓22, . . . , 𝑓𝑁2 are
continuous on 𝑌.

By using (27) relation (26) can be rewritten in the form

max
x1 ,...,x𝑁

[𝑓11 (x1, . . . , x𝑁) + 𝑓21 (x1, . . . , x𝑁) + ⋅ ⋅ ⋅
+ 𝑓𝑁1 (x1, . . . , x𝑁)] +miny [𝑓12 (y) + 𝑓22 (y) + ⋅ ⋅ ⋅
+ 𝑓𝑁2 (y)] > max

x1
minx2,x3,...,x𝑁

𝑓11 (x1, . . . , x𝑁)
+max

x2
minx1,x3,...,x𝑁

𝑓21 (x1, . . . , x𝑁) + ⋅ ⋅ ⋅
+max

x𝑁
minx1,...,x𝑁−1

𝑓𝑁1 (x1, . . . , x𝑁) +miny 𝑓12 (y)
+miny 𝑓22 (y) + ⋅ ⋅ ⋅ +miny 𝑓𝑁2 (y) .

(28)

Note that the following inequality holds:

max
x1,...,x𝑁

[𝑓11 (x1, . . . , x𝑁) + 𝑓21 (x1, . . . , x𝑁) + ⋅ ⋅ ⋅
+ 𝑓𝑁1 (x1, . . . , x𝑁)]
⩾ max

x1
minx2,x3,...,x𝑁

𝑓11 (x1, . . . , x𝑁)
+max

x2
minx1,x3,...,x𝑁

𝑓21 (x1, . . . , x𝑁) + ⋅ ⋅ ⋅
+max

x𝑁
minx1,...,x𝑁−1

𝑓𝑁1 (x1, . . . , x𝑁) .

(29)

Proof of Inequality (29). We have

𝑓11 (x1, . . . , x𝑁) + 𝑓21 (x1, . . . , x𝑁) + ⋅ ⋅ ⋅
+ 𝑓𝑁1 (x1, . . . , x𝑁)

⩾ minx2,x3,...,x𝑁
𝑓11 (x1, . . . , x𝑁)

+ minx1 ,x3,...,x𝑁
𝑓21 (x1, . . . , x𝑁) + ⋅ ⋅ ⋅

+ minx1 ,...,x𝑁−1
𝑓𝑁1 (x1, . . . , x𝑁) .

(30)

Applying to both parts of the operation maxx1,x2,...,x𝑁 we
obtain the required inequality.

From (29) it follows that for the fulfillment of inequality
(28) it is sufficient to guarantee the inequality

miny [𝑓12 (y) + 𝑓22 (y) + ⋅ ⋅ ⋅ + 𝑓𝑁2 (y)]
> miny 𝑓12 (y) +miny 𝑓22 (y) + ⋅ ⋅ ⋅ +miny 𝑓𝑁2 (y) . (31)
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Note that in the general case

miny [𝑓12 (y) + 𝑓22 (y) + ⋅ ⋅ ⋅ + 𝑓𝑁2 (y)]
⩾ miny 𝑓12 (y) +miny 𝑓22 (y) + ⋅ ⋅ ⋅ +miny 𝑓𝑁2 (y) . (32)

Therefore, for inequality (31) to be realized, it is necessary that
inequality (32) must become strict.

It is proved by contradiction that strict inequality (31)
holds if

argmin
y∈𝑌

𝑓12 (y) ∩ argmin
y∈𝑌

𝑓22 (y) ∩ ⋅ ⋅ ⋅
∩ argmin

y∈𝑌
𝑓𝑁2 (y) = ⌀. (33)

Note that the fulfillment of condition (33) is inde-
pendent of the choice of the functions 𝑓11(x1, . . . , x𝑁),𝑓21(x1, . . . , x𝑁), . . . , 𝑓𝑁1(x1, . . . , x𝑁).Thus, it follows from the
above that, for strict inequality (28) to be fulfilled, it is
sufficient that relation (33) is fulfilled.

4. Conclusion

This article relates to the theme of the theory of 𝑁 person
games. In this theory, a distinction of noncooperative and
cooperative games is made. The formulations of considered
problems are related to the cooperative games theory (see,
e.g., [1–3]). Note that the problems we are studying are
directly related to the study of the properties of the character-
istic function of 𝑁 person cooperative games theory, where
all the players formed a union.The specific participants of the
unionmay be firms, states, and so forth. In the article we have
considered the general case of nonlinear payoff functions in
the separable form and a subcase of these functions in the
linear form. Effective sufficient conditions which ensure the
usefulness of the union of all the players in coalition have
been obtained. A method of studying (𝑁 + 1)-person games
has also been proposed in which𝑁 players are active and the(𝑁+1)th player is an ill-intentioned destructive player, whose
aim is not to win, but to harm others.
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