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By Leggett-Williams norm-type theorem for coincidences due to O’Regan and Zima, we discuss the existence of positive solutions
to fractional order with periodic boundary conditions at resonance. At last, an example is presented to demonstrate themain results.

1. Introduction

Fractional differential equations are generalizations of ordi-
nary differential equations to an arbitrary order. It has played
a significant role in many fields, such as viscoelasticity,
engineering, physics, and economics; see [1–5]. During the
last ten years, there are a large number of papers dealing
with the existence of solutions boundary value problem for
fractional differential equations; see [6–10].

Recently, there is an increasing tendency on discussion
for the existence of positive solutions to boundary value
problems of fractional differential equations which enriched
many previous results.

In [9], Yang and Wang considered the existence of solu-
tions for the following two-point boundary value problems
for fractional differential equations:

𝐷𝛼0+𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝑡)) , 0 < 𝑡 < 1,
𝑢 (0) = 0,
𝑢 (0) = 𝑢 (1) ,

(1)

where 1 < 𝛼 < 2, 𝐷𝛼0+ denoting the Caputo fractional
derivative. By using the Leggett-Williams norm-type theorem
for coincidences due to O’Regan and Zima, the authors
obtained the existence of positive solutions to the above
problem.

In [10], Hu discussed the existence of positive solutions
for a boundary value problem of fractional differential inclu-
sions with resonant boundary conditions:

𝐷𝛼0+𝑢 (𝑡) ∈ 𝑓 (𝑡, 𝑢 (𝑡)) , 0 ≤ 𝑡 ≤ 1,
𝑢(𝑖) (0) = 0, 𝑖 = 1, 2, . . . , 𝑛 − 1,
𝑢 (0) = 𝑢 (1) ,

(2)

where 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ≥ 2, 𝐷𝛼0+ denotes the Caputo
fractional derivative, 𝑓 : [0, 1] × R → F(R), and F(R)
donates the family of nonempty compact and convex subsets
ofR. By using the Leggett-Williams theorem for coincidences
ofmultivalued operators due toO’Regan andZima, results on
the existence of positive solutions were established.

Periodic boundary value problems have profound prac-
tical background and wide range of applications, such as
mechanics, biology, and engineering; see [11–14]. Recently,
periodic boundary value conditions of fractional order have
been studied by some authors, such as [15–17].

In [16], Chen et al. studied the following periodic bound-
ary value problem for fractional 𝑝-Laplacian equation:

𝐷𝛽
0+
𝜙𝑃 (𝐷𝛼0+𝑥 (𝑡)) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝐷𝛼0+𝑥 (𝑡)) , 𝑡 ∈ [0, 𝑇] ,

𝑥 (0) = 𝑥 (𝑇) ,
𝐷𝛼0+𝑥 (0) = 𝐷𝛼0+𝑥 (𝑇) ,

(3)
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where 0 < 𝛼, 𝛽 ≤ 1,𝐷𝛼0+ is a Caputo fractional derivative, and𝑓 : [0, 𝑇] ×R2 → R is continuous.
In [17], Hu et al. considered the existence of solutions for

the following periodic boundary value problem for fractional
differential equation:

𝐷𝛼0+𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝑡)) , 0 < 𝑡 < 1,
𝑢 (0) = 𝑢 (1) ,
𝑢 (0) = 𝑢 (1) ,

(4)

where 1 < 𝛼 < 2, 𝐷𝛼0+ denotes the Caputo fractional
derivative, and𝑓 : [0, 1]×R2 → R is continuous. By using the
coincidence degree theory, the authors obtained the existence
of solutions.

From the above works, we notice that the study of positive
solutions to periodic boundary value problems of fractional
order at resonance is poor. Now, the question is as follows:
though the existence of solutions to (4) is obtained, how can
we get the positive solutions of it? The aim of this paper is
to fill the gap in the relevant literature. Our main tool is the
recent Leggett-Williams norm-type theorem for coincidences
due to O’Regan and Zima [18].

The rest of this paper is organized as follows. Section 2,
we give some necessary notations, definitions, and lemmas.
In Section 3, we obtain the existence of positive solutions of
(4) byTheorem 9. Finally, an example is given to illustrate our
results in Section 4.

2. Preliminaries

First of all, we present the necessary definitions and lemmas
from fractional calculus theory. For more details, see [1].

Definition 1 (see [1]). The Riemann-Liouville fractional inte-
gral of order 𝛼 > 0 of a function 𝑓 : (0,∞) → R is given
by

𝐼𝛼0+𝑓 (𝑡) = 1
Γ (𝛼) ∫

𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑓 (𝑠) 𝑑𝑠, (5)

provided that the right-hand side is pointwise defined on
(0,∞).
Definition 2 (see [1]). The Caputo fractional derivative of
order 𝛼 > 0 of a continuous function 𝑓 : (0,∞) → R is
given by

𝐷𝛼0+𝑓 (𝑡) = 1
Γ (𝑛 − 𝛼) ∫

𝑡

0
(𝑡 − 𝑠)𝑛−𝛼−1 𝑓(𝑛) (𝑠) 𝑑𝑠, (6)

where 𝑛 − 1 < 𝛼 ≤ 𝑛, provided that the right-hand side is
pointwise defined on (0,∞).
Lemma 3 (see [1]). The fractional differential equation

𝐷𝛼0+𝑦 (𝑡) = 0 (7)

has solution𝑦(𝑡) = 𝑐0+𝑐1𝑡+⋅ ⋅ ⋅+𝑐𝑛−1𝑡𝑛−1, 𝑐𝑖 ∈ R, 𝑖 = 0, 1, . . . , 𝑛−
1, and 𝑛 = [𝛼] + 1.

Furthermore, for 𝑦 ∈ 𝐴𝐶𝑛[0, 1],

(𝐼𝛼0+𝐷𝛼0+𝑦) (𝑡) = 𝑦 (𝑡) −
𝑛−1

∑
𝑘=0

𝑦(𝑘) (0)
𝑘! 𝑡𝑘,

(𝐷𝛼0+𝐼𝛼0+𝑦) (𝑡) = 𝑦 (𝑡) .
(8)

Lemma 4 (see [1]). The relation

𝐼𝛼𝑎+𝐼𝛽𝑎+𝑓 (𝑥) = 𝐼𝛼+𝛽𝑎+ 𝑓 (𝑥) (9)

is valid in the following case: 𝛽 > 0, 𝛼 + 𝛽 > 0, and 𝑓(𝑥) ∈
𝐿1(𝑎, 𝑏).

In the following, let us recall some definitions on Fred-
holm operators and cones in Banach space (see [19]).

Let𝑋,𝑌 be real Banach spaces. Consider a linearmapping
𝐿 : dom 𝐿 ⊂ 𝑋 → 𝑌 and a nonlinear operator 𝑁 : 𝑋 → 𝑌.
Assume that

(A1) 𝐿 is a Fredholm operator of index zero; that is, Im 𝐿 is
closed and dim ker 𝐿 = codim Im 𝐿 < ∞.

This assumption implies that there exist continuous projec-
tions 𝑃 : 𝑋 → 𝑋 and 𝑄 : 𝑌 → 𝑌 such that Im𝑃 = ker 𝐿
and ker𝑄 = Im 𝐿. Moreover, since dim Im𝑄 = codim Im 𝐿,
there exists an isomorphism 𝐽 : Im𝑄 → ker 𝐿. Denote
by 𝐿𝑃 the restriction of 𝐿 to ker𝑃 ∩ dom 𝐿. Clearly, 𝐿𝑃 is
an isomorphism from ker𝑃 ∩ dom 𝐿 to Im 𝐿; we denote its
inverse by 𝐾𝑃 : Im 𝐿 → ker𝑃 ∩ dom 𝐿. It is known that the
coincidence equation 𝐿𝑥 = 𝑁𝑥 is equivalent to

𝑥 = (𝑃 + 𝐽𝑄𝑁) 𝑥 + 𝐾𝑃 (𝐼 − 𝑄)𝑁𝑥. (10)

Let 𝐶 be a cone in𝑋 such that

(i) 𝜇𝑥 ∈ 𝐶 for all 𝑥 ∈ 𝐶 and 𝜇 ≥ 0,
(ii) 𝑥, −𝑥 ∈ 𝐶 implies 𝑥 = 𝜃.

It is well known that 𝐶 induces a partial order in𝑋 by

𝑥 ⪯ 𝑦 iff 𝑦 − 𝑥 ∈ 𝐶. (11)

The following property is valid for every cone in a Banach
space𝑋.
Lemma 5 (see [18]). Let 𝐶 be a cone in 𝑋. Then for every 𝑢 ∈
𝐶 \ {0} there exists a positive number 𝜎(𝑢) such that

‖𝑥 + 𝑢‖ ≥ 𝜎 (𝑢) ‖𝑢‖ ∀𝑥 ∈ 𝐶. (12)

Let 𝛾 : 𝑋 → 𝐶 be a retraction, that is, a continuous
mapping such that 𝛾(𝑥) = 𝑥 for all 𝑥 ∈ 𝐶. Set

Ψ fl 𝑃 + 𝐽𝑄𝑁 + 𝐾𝑃 (𝐼 − 𝑄)𝑁,
Ψ𝛾 fl Ψ ∘ 𝛾. (13)

We use the following result due to O’Regan and Zima.
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Theorem 6 (see [18]). Let 𝐶 be a cone in 𝑋 and let Ω1, Ω2 be
open bounded subsets of𝑋withΩ1 ⊂ Ω2 and𝐶∩(Ω2\Ω1) ̸= 0.
Assume (A1) and the following assumptions hold:

(A2) 𝑄𝑁 : 𝑋 → 𝑌 is continuous and bounded and 𝐾𝑃(𝐼 −𝑄)𝑁 : 𝑋 → 𝑋 is compact on every bounded subset of
𝑋.

(A3) 𝐿𝑥 ̸= 𝜆𝑁𝑥 for all 𝑥 ∈ 𝐶 ∩ 𝜕Ω2 ∩ Im 𝐿 and 𝜆 ∈ (0, 1).
(A4) 𝛾maps subsets of Ω2 into bounded subsets of 𝐶.
(A5) deg{[𝐼 − (𝑃 + 𝐽𝑄𝑁)𝛾]|ker𝐿, ker 𝐿 ∩ Ω2, 0} ̸= 0.
(A6) There exists 𝑢0 ∈ 𝐶 \ {0} such that ‖𝑥‖ ≤ 𝜎(𝑢0)‖Ψ𝑥‖

for 𝑥 ∈ 𝐶(𝑢0) ∩ 𝜕Ω1, where 𝐶(𝑢0) = {𝑥 ∈ 𝐶 : 𝜇𝑢0 ⪯𝑥 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜇 > 0} and 𝜎(𝑢0) such that ‖𝑥 + 𝑢0‖ ≥𝜎(𝑢0)‖𝑥‖ for every 𝑥 ∈ 𝐶.
(A7) (𝑃 + 𝐽𝑄𝑁)𝛾(𝜕Ω2) ⊂ 𝐶.
(A8) Ψ𝛾(Ω2 \ Ω1) ⊂ 𝐶.
Then the equation 𝐿𝑥 = 𝑁𝑥 has a solution in the set 𝐶 ∩

(Ω2 \ Ω1).

3. Main Results

In this section, we give the existence theorems for problem
(4). We write Banach space 𝑋 = 𝑌 = 𝐶[0, 1] with the norm
‖𝑥‖ = max𝑡∈[0,1]|𝑥(𝑡)|.

Define the operator 𝐿 : dom 𝐿 → 𝑋 by

𝐿𝑢 = 𝐷𝛼0+𝑢, (14)

where

dom 𝐿 = {𝑥 ∈ 𝑋 : 𝐷𝛼0+𝑢 (𝑡) ∈ 𝑌, 𝑢 (0) = 𝑢 (1) , 𝑢 (0)
= 𝑢 (1)} .

(15)

Define the operator

𝑁 : 𝑋 → 𝑌 (16)

by

𝑁𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝑡)) . (17)

Then problem (4) can be written by 𝐿𝑢 = 𝑁𝑢, 𝑢 ∈ dom 𝐿.
Let

𝐺 (𝑡, 𝑠)

=
{{{{{
{{{{{{

1 + (𝑡 − 𝑠)𝛼−1 (1 − 𝑠)2−𝛼(𝛼 − 1) Γ (𝛼) − Γ (𝛼) (1 − 𝑠)𝛼
(𝛼 − 1) Γ (2𝛼 − 1) +

(1 − 𝑠) (1 − 𝛼𝑡)
(𝛼 − 1) Γ (𝛼 + 1) −

𝑡𝛼
Γ (𝛼 + 1) +

Γ (𝛼)
Γ (2𝛼) −

1
𝛼Γ (𝛼 + 1) +

𝑡
Γ (𝛼 + 1) , 0 ≤ 𝑠 < 𝑡 ≤ 1,

1 − Γ (𝛼) (1 − 𝑠)𝛼
(𝛼 − 1) Γ (2𝛼 − 1) +

(1 − 𝑠) (1 − 𝛼𝑡)
(𝛼 − 1) Γ (𝛼 + 1) −

𝑡𝛼
Γ (𝛼 + 1) +

Γ (𝛼)
Γ (2𝛼) −

1
𝛼Γ (𝛼 + 1) +

𝑡
Γ (𝛼 + 1) , 0 ≤ 𝑡 < 𝑠 ≤ 1.

(18)

Let 𝜅 be a constant, which is in (0, 1) and satisfies

𝜅𝐺 (𝑡, 𝑠) < 1. (19)

Lemma 7. The mapping 𝐿 : dom 𝐿 ⊂ 𝑍 is a Fredholm
operator of index zero. Furthermore, the operator𝐾𝑃 : Im 𝐿 →
dom 𝐿 ∩ ker𝑃 can be written as

𝐾𝑃𝑦 (𝑡) = ∫
1

0
𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] , (20)

where

𝑘 (𝑡, 𝑠) fl
{{{{{
{{{{{{

(𝑡 − 𝑠)𝛼−1
Γ (𝛼) − Γ (𝛼)

Γ (2𝛼 − 1) (1 − 𝑠)
2𝛼−2 + 1

𝛼Γ (𝛼) (1 − 𝑠)
𝛼−1 − 1

Γ (𝛼) (1 − 𝑠)
𝛼−1 , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

− Γ (𝛼)
Γ (2𝛼 − 1) (1 − 𝑠)

2𝛼−2 + 1
𝛼Γ (𝛼) (1 − 𝑠)

𝛼−1 − 1
Γ (𝛼) (1 − 𝑠)

𝛼−1 , 0 ≤ 𝑡 < 𝑠 ≤ 1.
(21)

Proof. By Lemma 3,𝐷𝛼0+𝑢(𝑡) = 0 has solution
𝑢 (𝑡) = 𝑐0 + 𝑐1𝑡, 𝑐0, 𝑐1 ∈ R. (22)

According to the boundary value conditions of (4), we have

ker 𝐿 = {𝑐, 𝑐 ∈ R} ≅ R
1. (23)

Let 𝑦 ∈ Im 𝐿, so there exists a function 𝑢(𝑡) ∈ dom 𝐿 which
satisfies 𝐿𝑢(𝑡) = 𝑦(𝑡). By Lemma 3, we have

𝑢 (𝑡) = 𝐼𝛼0+𝑦 (𝑡) + 𝑐0 + 𝑐1𝑡. (24)

By 𝑢(0) = 𝑢(1), we can obtain∫1
0
(1−𝑠)𝛼−2𝑦(𝑠)𝑑𝑠 = 0. On the

other hand, suppose 𝑦 ∈ 𝑌 satisfies ∫1
0
(1 − 𝑠)𝛼−2𝑦(𝑠)𝑑𝑠 = 0.
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Let 𝑢(𝑡) = 𝐼𝛼0+𝑦(𝑡) − 𝐼𝛼0+𝑦(𝑡)|𝑡=1 ⋅ 𝑡. We can easily prove 𝑢(𝑡) ∈
dom 𝐿. Thus, we conclude that

Im 𝐿 = {𝑦 ∈ 𝑌 : ∫1
0
(1 − 𝑠)𝛼−2 𝑦 (𝑠) 𝑑𝑠 = 0} . (25)

Consider the linear operator 𝑃 : 𝑋 → 𝑋 defined by

𝑃𝑥 (𝑡) = (𝛼 − 1) ∫1
0
(1 − 𝑠)𝛼−2 𝑥 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] . (26)

Define the operator 𝑄 : 𝑌 → 𝑌 by

𝑄𝑦 (𝑡) = (𝛼 − 1) ∫1
0
(1 − 𝑠)𝛼−2 𝑦 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] . (27)

For 𝑢(𝑡) ∈ 𝑋, we get
𝑃 (𝑃𝑢) = 𝑃((𝛼 − 1) ∫1

0
(1 − 𝑠)𝛼−2 𝑢 (𝑠) 𝑑𝑠)

= (𝛼 − 1) ∫1
0
(1 − 𝑠)𝛼−2 𝑢 (𝑠) 𝑑𝑠 = 𝑃𝑢.

(28)

So we have 𝑃2 = 𝑃. In the same way, 𝑄2 = 𝑄. We notice
that Im𝑃 = ker 𝐿 and ker𝑄 = Im 𝐿. It follows from Ind 𝐿 =
dim ker 𝐿 − codim Im 𝐿 = 0 that 𝐿 is a Fredholm mapping of
index zero.

Next, we will prove that the operator 𝐾𝑃 is the inverse of𝐿|dom𝐿∩ker𝑃.
In fact, for 𝑢(𝑡) ∈ dom 𝐿 ∩ ker𝑃, we have𝐷𝛼0+𝑢(𝑡) = 𝑦(𝑡).

By Lemma 3, we have 𝑢(𝑡) = 𝐼𝛼0+𝑦(𝑡) + 𝑐0 + 𝑐1𝑡. According to𝑢(0) = 𝑢(1), we get
𝑐1 = −𝐼𝛼0+𝑦 (1) . (29)

By 𝑢(𝑡) ∈ ker𝑃, that is, (𝛼−1) ∫1
0
(1−𝑠)𝛼−2𝑢(𝑠)𝑑𝑠 = 0, we have

𝑐0 = −Γ (𝛼) 𝐼2𝛼−10+ 𝑦 (1) − 𝑐1𝛼 . (30)

Then, we have
𝐾𝑃𝑦 (𝑡) = 𝑢 (𝑡) = 𝐼𝛼0+𝑦 (𝑡) + 𝑐0 + 𝑐1𝑡

= 𝐼𝛼0+𝑦 (𝑡) − Γ (𝛼) 𝐼2𝛼−10+ 𝑦 (1) + 1𝛼𝐼
𝛼
0+𝑦 (1)

− 𝐼𝛼0+𝑦 (1) 𝑡
= 1
Γ (𝛼) ∫

𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑦 (𝑠) 𝑑𝑠

− Γ (𝛼)
Γ (2𝛼 − 1) ∫

1

0
(1 − 𝑠)2𝛼−2 𝑦 (𝑠) 𝑑𝑠

+ 1
𝛼Γ (𝛼) ∫

1

0
(1 − 𝑠)𝛼−1 𝑦 (𝑠) 𝑑𝑠

+ 1
Γ (𝛼) ∫

1

0
(1 − 𝑠)𝛼−1 𝑡𝑦 (𝑠) 𝑑𝑠

= ∫1
0
𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠.

(31)

It is easy to see that 𝐿𝐾𝑃𝑦(𝑡) = 𝑦(𝑡). Hence, 𝐾𝑃 =
(𝐿|dom𝐿∩ker𝑃)−1. This completes the proof of Lemma 7.

Lemma 8. Assume Ω ⊂ 𝑋 is an open bounded set such that
dom(𝐿) ∩ Ω ̸= 0; then𝑁 is 𝐿-compact on Ω.
Proof. By the continuity of 𝑓, we can obtain that𝑄𝑁(Ω) and
𝐾𝑃(𝐼 − 𝑄)𝑁(Ω) are bounded. Hence, for 𝑢(𝑡) ∈ Ω, 𝑡 ∈ [0, 1],
there exists a positive constant 𝑇 such that

|(𝐼 − 𝑄)𝑁𝑢 (𝑡)| ≤ 𝑇,
|𝑁𝑢 (𝑡)| ≤ 𝑇. (32)

Thus, in the view of Arzela-Ascoli theorem, we need only to
prove that𝐾𝑃(𝐼 − 𝑄)𝑁(Ω) is equicontinuous.

For 0 ≤ 𝑡1 < 𝑡2 ≤ 1, 𝑢 ∈ Ω, we have
𝐾𝑃 (𝐼 − 𝑄)𝑁𝑢 (𝑡2) − 𝐾𝑃 (𝐼 − 𝑄)𝑁𝑢 (𝑡1)
= [𝐼
𝛼
0+ (𝐼 − 𝑄)𝑁𝑢 (𝑡)]𝑡=𝑡2 − Γ (𝛼) 𝐼2𝛼−10+ (𝐼 − 𝑄)

⋅ 𝑁𝑢 (1) + 1𝛼𝐼
𝛼
0+ (𝐼 − 𝑄)𝑁𝑢 (1) − 𝐼𝛼0+ (𝐼 − 𝑄)

⋅ 𝑁𝑢 (1) 𝑡2 − [𝐼𝛼0+ (𝐼 − 𝑄)𝑁𝑢 (𝑡)]𝑡=𝑡1 + Γ (𝛼)
⋅ 𝐼2𝛼−10+ (𝐼 − 𝑄)𝑁𝑢 (1) − 1𝛼𝐼

𝛼
0+ (𝐼 − 𝑄)𝑁𝑢 (1)

+ 𝐼𝛼0+ (𝐼 − 𝑄)𝑁𝑢 (1) 𝑡1
 ≤

1
Γ (𝛼)

∫
𝑡2

0
(𝑡2 − 𝑠)𝛼−1

⋅ (𝐼 − 𝑄)𝑁𝑢 (𝑠) 𝑑𝑠 − ∫𝑡1
0
(𝑡1 − 𝑠)𝛼−1 (𝐼 − 𝑄)

⋅ 𝑁𝑢 (𝑠) 𝑑𝑠 +
1

Γ (𝛼)
∫
1

0
(1 − 𝑠)𝛼−1 (𝐼 − 𝑄)

⋅ 𝑁𝑢 (𝑠) 𝑑𝑠
 ⋅
𝑡2 − 𝑡1

≤ 1
Γ (𝛼)

∫
𝑡1

0
[(𝑡2 − 𝑠)𝛼−1 − (𝑡1 − 𝑠)𝛼−1] (𝐼 − 𝑄)

⋅ 𝑁𝑢 (𝑠) 𝑑𝑠 +
1

Γ (𝛼)
∫
𝑡2

𝑡1

(𝑡2 − 𝑠)𝛼−1 (𝐼 − 𝑄)

⋅ 𝑁𝑢 (𝑠) 𝑑𝑠
 +

𝑇
Γ (𝛼 + 1)

𝑡2 − 𝑡1 ≤ 𝑇
Γ (𝛼 + 1) [𝑡

𝛼
2

− 𝑡𝛼1 + (𝑡2 − 𝑡1)𝛼 + (𝑡2 − 𝑡1)] .

(33)

Notice that 𝑡𝛼, 𝑡 are uniformly continuous on [0, 1]. Thus, we
have that 𝐾𝑃(𝐼 − 𝑄)𝑁(Ω) is equicontinuous on [0, 1]. The
proof is completed.

Theorem 9. Assume that

(H1) there exist positive constants 𝑏1, 𝑏2, 𝑏3, 𝑐1, 𝑐2, and 𝐵with

𝐵 > 𝑐2𝑐1 +
3𝑏2𝑐2

(𝛼 − 1) 𝑏1𝑐1 +
3𝑏3

(𝛼 − 1) 𝑏1 . (34)
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For all 𝑡 ∈ [0, 1] and 𝑢(𝑡) ∈ [0, 𝐵], one has
−𝜅𝑢 (𝑡) ≤ 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝑡)) ≤ −𝑐1𝑢 (𝑡) + 𝑐2,

𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝑡)) ≤ −𝑏1 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝑡)) + 𝑏2𝑢 (𝑡)
+ 𝑏3;

(35)

(H2) there exist 𝑏 ∈ (0, 𝐵), 𝑡0 ∈ [0, 1], 𝜌 ∈ (0, 1], 𝛿 ∈
(0, 1), and 𝑞(𝑡) ∈ 𝐿1[0, 1], 𝑞(𝑡) ≥ 0 on [0, 1], ℎ(𝑥) ∈
𝐶((0, 𝑏],R+) such that 𝐺(𝑡0, 𝑠) > 0 and 𝑓(𝑡, 𝑢, 𝑢) ≥
𝑞(𝑡)ℎ(𝑢) for (𝑡, 𝑢, 𝑢) ∈ [0, 1] × (0, 𝑏] × R. Moreover,
ℎ(𝑢)/𝑢𝜌 is nonincreasing on (0, 𝑏] and

(𝛼 − 1) ℎ (𝑏)𝑏 ∫1
0
𝐺 (𝑡0, 𝑠) (1 − 𝑠)𝛼−2 𝑞 (𝑠) 𝑑𝑠 ≥ 1 − 𝛿𝛿𝜌 . (36)

Then problem (4) has at least one positive solution on [0, 1].
Proof. According to Lemmas 7 and 8, we have that conditions
(A1) and (A2) of Theorem 6 are satisfied.

Consider the cone

𝐶 = {𝑥 ∈ 𝑋 : 𝑥 (𝑡) ≥ 0, 𝑡 ∈ [0, 1]} . (37)

Let

Ω1 = {𝑥 ∈ 𝑋 : 𝛿 ‖𝑥‖ < |𝑥 (𝑡)| < 𝑏, 𝑡 ∈ [0, 1]} ,
Ω2 = {𝑥 ∈ 𝑋 : ‖𝑥 (𝑡)‖ < 𝐵, 𝑡 ∈ [0, 1]} . (38)

Obviously,Ω1 andΩ2 are bounded and

Ω1 = {𝑥 ∈ 𝑋 : 𝛿 ‖𝑥‖ ≤ |𝑥 (𝑡)| ≤ 𝑏, 𝑡 ∈ [0, 1]} ⊂ Ω2. (39)

Moreover, 𝐶 ∩ (Ω2 \ Ω1) ̸= 0. Let 𝐽 = 𝐼 and (𝛾𝑥)(𝑡) = |𝑥(𝑡)|
for 𝑥 ∈ 𝑋; then 𝛾 is a retraction and maps subsets of Ω2 into
bounded subsets of 𝐶, which means that (A4) holds.

Next, we will show that (A3) holds. Suppose that there
exist 𝑢0 ∈ 𝜕Ω2 ∩ 𝐶 ∩ dom 𝐿 and 𝜆0 ∈ (0, 1) such that 𝐿𝑢0 =𝜆0𝑁𝑢0; that is, 𝐷𝛼0+𝑢0(𝑡) = 𝜆0𝑓(𝑡, 𝑢0(𝑡), 𝑢0(𝑡)), 𝑡 ∈ [0, 1]. In
view of (H1), we get

𝐷𝛼0+𝑢0 (𝑡) = 𝜆0𝑓 (𝑡, 𝑢0 (𝑡) , 𝑢0 (𝑡))
≤ −𝜆0𝑏1 𝑓 (𝑡, 𝑢0 (𝑡) , 𝑢0 (𝑡)) + 𝜆0𝑏2𝑢0 (𝑡)
+ 𝜆0𝑏3

= −𝑏1 𝜆0𝑓 (𝑡, 𝑢0 (𝑡) , 𝑢0 (𝑡)) + 𝜆0𝑏2𝑢0 (𝑡)
+ 𝜆0𝑏3

= −𝑏1 𝐷𝛼0+𝑢0 (𝑡) + 𝜆0𝑏2𝑢0 (𝑡) + 𝜆0𝑏3
≤ −𝑏1 𝐷𝛼0+𝑢0 (𝑡) + 𝑏2𝑢0 (𝑡) + 𝑏3,

(40)

𝐷𝛼0+𝑢0 (𝑡) = 𝜆0𝑓 (𝑡, 𝑢0 (𝑡) , 𝑢0 (𝑡))
≤ −𝜆0𝑐1𝑢0 (𝑡) + 𝜆0𝑐2.

(41)

In view of 𝐷𝛼0+𝑢0(𝑡) = 𝜆0𝑓(𝑡, 𝑢0(𝑡)) ∈ Im 𝐿, from the
definition of Im 𝐿 and (41), we obtain

0 = ∫1
0
(1 − 𝑠)𝛼−2𝐷𝛼0+𝑢0 (𝑠) 𝑑𝑠

≤ ∫1
0
(1 − 𝑠)𝛼−2 (−𝜆0𝑐1𝑢0 (𝑠) + 𝜆0𝑐2) 𝑑𝑠

(42)

which gives

∫1
0
(1 − 𝑠)𝛼−2 𝑢0 (𝑠) 𝑑𝑠 ≤ 𝑐2

(𝛼 − 1) 𝑐1 . (43)

From (40), we have

0 = ∫1
0
(1 − 𝑠)𝛼−2𝐷𝛼0+𝑢0 (𝑠) 𝑑𝑠

≤ ∫1
0
(1 − 𝑠)𝛼−2 [−𝑏1 𝐷𝛼0+𝑢0 (𝑡) + 𝑏2𝑢0 (𝑡) + 𝑏3] 𝑑𝑠

= −𝑏1 ∫
1

0
(1 − 𝑠)𝛼−2 𝐷𝛼0+𝑢0 (𝑠) 𝑑𝑠

+ 𝑏2 ∫
1

0
(1 − 𝑠)𝛼−2 𝑢0 (𝑠) 𝑑𝑠 + 𝑏3

𝛼 − 1 .

(44)

By (43), we have

∫1
0
(1 − 𝑠)𝛼−2 𝐷𝛼0+𝑢0 (𝑠) 𝑑𝑠

≤ 𝑏2𝑏1 ∫
1

0
(1 − 𝑠)𝛼−2 𝑢0 (𝑠) 𝑑𝑠 + 𝑏3

(𝛼 − 1) 𝑏1
≤ 𝑏2𝑐2
(𝛼 − 1) 𝑏1𝑐1 +

𝑏3
(𝛼 − 1) 𝑏1 .

(45)

According to the function expression of 𝑘(𝑡, 𝑠), it is easy to
see that |𝑘(𝑡, 𝑠)| ≤ 3(1 − 𝑠)𝛼−2, 𝑠, 𝑡 ∈ [0, 1]. From (43) and
the equation 𝑢0 = (𝐼 − 𝑃)𝑢0 + 𝑃𝑢0 = 𝐾𝑃𝐿(𝐼 − 𝑃)𝑢0 + 𝑃𝑢0 =𝑃𝑢0 + 𝐾𝑃𝐿𝑢0, we can get

𝑢0 = (𝛼 − 1) ∫
1

0
(1 − 𝑠)𝛼−2 𝑢0 (𝑠) 𝑑𝑠

+ ∫1
0
𝑘 (𝑡, 𝑠) 𝐷𝛼0+𝑢0 (𝑠) 𝑑𝑠

≤ (𝛼 − 1) ⋅ 𝑐2
(𝛼 − 1) 𝑐1 + ∫

1

0
|𝑘 (𝑡, 𝑠)| ⋅ 𝐷𝛼0+𝑢0 (𝑠) 𝑑𝑠

= 𝑐2𝑐1 + ∫
1

0

|𝑘 (𝑡, 𝑠)|
(1 − 𝑠)𝛼−2 ⋅ (1 − 𝑠)

𝛼−2 𝐷𝛼0+𝑢0 (𝑠) 𝑑𝑠

≤ 𝑐2𝑐1 + 3∫
1

0
(1 − 𝑠)𝛼−2 𝐷𝛼0+𝑢0 (𝑠) 𝑑𝑠

≤ 𝑐2𝑐1 +
3𝑏2𝑐2

(𝛼 − 1) 𝑏1𝑐1 +
3𝑏3

(𝛼 − 1) 𝑏1 .

(46)
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Then, we have

𝐵 = 𝑢0 ≤ 𝑐2𝑐1 +
3𝑏2𝑐2

(𝛼 − 1) 𝑏1𝑐1 +
3𝑏3

(𝛼 − 1) 𝑏1 , (47)

which contradicts (H1). Hence (A3) holds.
To prove (A5), consider 𝑢(𝑡) ∈ ker 𝐿 ∩ Ω2; then 𝑢(𝑡) ≡ 𝑐.

For 𝑐 ∈ [−𝐵, 𝐵] and 𝜆 ∈ [0, 1], we have

𝐻(𝑐, 𝜆) = [𝐼 − 𝜆 (𝑃 + 𝐽𝑄𝑁) 𝛾] 𝑐
= 𝑐 − 𝜆 (𝛼 − 1) ∫1

0
(1 − 𝑠)𝛼−2 |𝑐| 𝑑𝑠

− 𝜆 (𝛼 − 1) ∫1
0
(1 − 𝑠)𝛼−2 𝑓 (𝑠, |𝑐| , 0) 𝑑𝑠

= 𝑐 − 𝜆 |𝑐| − 𝜆 (𝛼 − 1) ∫1
0
(1 − 𝑠)𝛼−2 𝑓 (𝑠, |𝑐| , 0) 𝑑𝑠

= 𝑐 − 𝜆 (𝛼 − 1) ∫1
0
(1 − 𝑠)𝛼−2 [𝑓 (𝑠, |𝑐| , 0) + |𝑐|] 𝑑𝑠.

(48)

By use of proof by contradiction, it is easy to show that
𝐻(𝑐, 𝜆) = 0 implies 𝑐 ≥ 0. Suppose 𝐻(𝐵, 𝜆) = 0 for some
𝜆 ∈ (0, 1]; then we have

0 = 𝐵 − 𝜆𝐵 − 𝜆 (𝛼 − 1) ∫1
0
(1 − 𝑠)𝛼−2 𝑓 (𝑠, 𝐵) 𝑑𝑠. (49)

According to (H1), we have

0 ≤ 𝐵 (1 − 𝜆) = 𝜆 (𝛼 − 1) ∫1
0
(1 − 𝑠)𝛼−2 𝑓 (𝑠, 𝐵, 0) 𝑑𝑠

≤ 𝜆 (−𝑐1𝐵 + 𝑐2) < 0,
(50)

which is a contradiction. In addition, if 𝜆 = 0, then 𝐵 = 0,
which is impossible. As a result, for 𝑥 ∈ ker 𝐿 ∩ 𝜕Ω2 and 𝜆 ∈[0, 1], we have𝐻(𝑥, 𝜆) ̸= 0. Thus,

deg {[𝐼 − (𝑃 + 𝐽𝑄𝑁) 𝛾]ker𝐿 , ker 𝐿 ∩ Ω2, 0}
= deg {𝐻 (⋅, 1) , ker 𝐿 ∩ Ω2, 0}
= deg {𝐻 (⋅, 0) , ker 𝐿 ∩ Ω2, 0}
= deg {𝐼, ker 𝐿 ∩ Ω2, 0} = 1 ̸= 0.

(51)

So (A5) holds.
Next, we prove (A6). Let 𝑢0(𝑡) ≡ 1, 𝑡 ∈ [0, 1]; then 𝑢0 ∈𝐶 \ {0}, 𝐶(𝑢0) = {𝑥 ∈ 𝐶 : 𝑥(𝑡) > 0, 𝑡 ∈ [0, 1]}. We take

𝜎(𝑢0) = 1. Let 𝑥 ∈ 𝐶(𝑢0) ∩ 𝜕Ω1; then 0 < ‖𝑥‖ ≤ 𝑏 and
𝑥(𝑡) ≥ 𝛿‖𝑥‖ on [0, 1].

By (H2), for every 𝑥 ∈ 𝐶(𝑢0) ∩ 𝜕Ω1, we have
(Ψ) 𝑥 (𝑡0) = [(𝑃 + 𝐽𝑄𝑁 + 𝐾𝑃 (𝐼 − 𝑄)𝑁) 𝑥 (𝑡)]𝑡=𝑡0
= (𝛼 − 1) ∫1

0
(1 − 𝑠)𝛼−2 𝑥 (𝑠) 𝑑𝑠 + (𝛼 − 1)

⋅ ∫1
0
𝐺 (𝑡0, 𝑠) (1 − 𝑠)𝛼−2 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠

≥ (𝛼 − 1) ∫1
0
(1 − 𝑠)𝛼−2 𝛿 ‖𝑥‖ 𝑑𝑠 + (𝛼 − 1)

⋅ ∫1
0
𝐺 (𝑡0, 𝑠) (1 − 𝑠)𝛼−2 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠

≥ 𝛿 ‖𝑥‖ + (𝛼 − 1)
⋅ ∫1
0
𝐺 (𝑡0, 𝑠) (1 − 𝑠)𝛼−2 𝑞 (𝑠) ℎ (𝑥 (𝑠)) 𝑑𝑠 = 𝛿 ‖𝑥‖

+ (𝛼 − 1)
⋅ ∫1
0
𝐺 (𝑡0, 𝑠) (1 − 𝑠)𝛼−2 𝑞 (𝑠) ⋅ ℎ (𝑥 (𝑠))𝑥𝜌 (𝑠) 𝑥

𝜌 (𝑠) 𝑑𝑠
≥ 𝛿 ‖𝑥‖ + (𝛼 − 1)
⋅ ∫1
0
𝐺 (𝑡0, 𝑠) (1 − 𝑠)𝛼−2 𝑞 (𝑠) ⋅ ℎ (𝑥 (𝑠))𝑥𝜌 (𝑠) ⋅ 𝛿𝜌 ‖𝑥‖𝜌 𝑑𝑠

≥ 𝛿 ‖𝑥‖ + 𝛿𝜌 ‖𝑥‖𝜌 (𝛼 − 1)
⋅ ∫1
0
𝐺 (𝑡0, 𝑠) (1 − 𝑠)𝛼−2 𝑞 (𝑠) ⋅ ℎ (𝑏)𝑏𝜌 𝑑𝑠 = 𝛿 ‖𝑥‖

+ 𝛿𝜌 ‖𝑥‖ ⋅ 𝑏1−𝜌
‖𝑥‖1−𝜌 (𝛼 − 1)

⋅ ∫1
0
𝐺 (𝑡0, 𝑠) (1 − 𝑠)𝛼−2 𝑞 (𝑠) ℎ (𝑏)𝑏 𝑑𝑠 ≥ 𝛿 ‖𝑥‖

+ 𝛿𝜌 ‖𝑥‖ ⋅ (𝛼 − 1)
⋅ ∫1
0
𝐺 (𝑡0, 𝑠) (1 − 𝑠)𝛼−2 𝑞 (𝑠) ℎ (𝑏)𝑏 𝑑𝑠 ≥ 𝛿 ‖𝑥‖

+ 𝛿𝜌 ‖𝑥‖ ⋅ 1 − 𝛿𝛿𝜌 = ‖𝑥‖ .

(52)

Thus, for all 𝑥 ∈ 𝐶(𝑢0) ∩ 𝜕Ω1, we have ‖𝑥‖ ≤ 𝜎(𝑢0)‖Ψ𝑥‖;
that is, (A6) holds.

For 𝑥 ∈ 𝜕Ω2, by (H2) and (19), we have

[(𝑃 + 𝐽𝑄𝑁) ∘ 𝛾] 𝑥 (𝑡) = 𝑃 (|𝑥 (𝑡)|) + 𝐽𝑄𝑁 (|𝑥 (𝑡)|)
= (𝛼 − 1) ∫1

0
(1 − 𝑠)𝛼−2 |𝑥 (𝑠)| 𝑑𝑠

+ (𝛼 − 1) ∫1
0
(1 − 𝑠)𝛼−2 𝑓 (𝑠, |𝑥 (𝑠)| , (|𝑥 (𝑠)|)) 𝑑𝑠

≥ (𝛼 − 1) ∫1
0
(1 − 𝑠)𝛼−2 (1 − 𝜅) |𝑥 (𝑠)| 𝑑𝑠 ≥ 0.

(53)

Thus, [(𝑃 + 𝐽𝑄𝑁) ∘ 𝛾]𝑥(𝑡) ⊂ 𝐶 for 𝑥 ∈ 𝜕Ω2. Then (A7) holds.
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Next, we prove (A8). For 𝑥(𝑡) ∈ Ω2 \Ω1, by (H2), we have

Ψ𝛾𝑥 (𝑡) = [(𝑃 + 𝐽𝑄𝑁 + 𝐾𝑃 (𝐼 − 𝑄)𝑁) ∘ 𝛾] 𝑥 (𝑡)
= (𝑃 + 𝐽𝑄𝑁 + 𝐾𝑃 (𝐼 − 𝑄)𝑁) |𝑥 (𝑡)| = 𝑃 (|𝑥 (𝑡)|)
+ (𝐽𝑄𝑁 + 𝐾𝑃 (𝐼 − 𝑄)𝑁) |𝑥 (𝑡)| = (𝛼 − 1)

⋅ ∫1
0
(1 − 𝑠)𝛼−2 |𝑥 (𝑠)| 𝑑𝑠 + (𝛼 − 1)

⋅ ∫1
0
(1 − 𝑠)𝛼−2 𝐺 (𝑡, 𝑠) 𝑓 (𝑠, |𝑥 (𝑠)| , (|𝑥 (𝑠)|)) 𝑑𝑠

> (𝛼 − 1) ∫1
0
(1 − 𝑠)𝛼−2 |𝑥 (𝑠)| 𝑑𝑠 + (𝛼 − 1)

⋅ ∫1
0
(1 − 𝑠)𝛼−2 𝐺 (𝑡, 𝑠) (−𝜅 |𝑥 (𝑠)|) 𝑑𝑠 > (𝛼 − 1)

⋅ ∫1
0
(1 − 𝑠)𝛼−2 |𝑥 (𝑠)| (1 − 𝜅𝐺 (𝑡, 𝑠)) 𝑑𝑠 ≥ 0.

(54)

Hence, Ψ𝛾(Ω2 \ Ω1) ⊂ 𝐶; that is, (A8) holds.

Hence, applying Theorem 6, BVP (4) has a positive
solution 𝑢∗(𝑡) on [0, 1] with 𝑏 ≤ ‖𝑢∗(𝑡)‖ ≤ 𝐵. This completes
the proof.

4. Example

To illustrate how our main result can be used in practice, we
present here an example.

Let us consider the following fractional differential equa-
tion at resonance:

𝐷1.50+ 𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝑡)) , 0 < 𝑡 < 1,
𝑢 (0) = 𝑢 (1) ,
𝑢 (0) = 𝑢 (1) ,

(55)

where

𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝑡))
= 1
400 (1 + 𝑡 − 𝑡

2) (𝑢2 (𝑡) − 8𝑢 (𝑡) + 12) 𝑢 (𝑡)

+ 1
30𝑒
−|𝑢(𝑡)|.

(56)

Corresponding to BVP (4), we have that 𝛼 = 1.5 and

𝐺 (𝑡, 𝑠)

=
{{{{{
{{{{{{

1 + (𝑡 − 𝑠)0.5 (1 − 𝑠)0.50.5Γ (1.5) − Γ (1.5) (1 − 𝑠)1.50.5Γ (2) + (1 − 𝑠) (1 − 1.5𝑡)0.5Γ (2.5) − 𝑡1.5
Γ (2.5) +

Γ (1.5)
Γ (3) − 1

1.5Γ (2.5) +
𝑡

Γ (2.5) , 0 ≤ 𝑠 < 𝑡 ≤ 1,

1 − Γ (1.5) (1 − 𝑠)1.50.5Γ (2) + (1 − 𝑠) (1 − 1.5𝑡)0.5Γ (2.5) − 𝑡1.5
Γ (2.5) +

Γ (1.5)
Γ (3) − 1

1.5Γ (2.5) +
𝑡

Γ (2.5) , 0 ≤ 𝑡 < 𝑠 ≤ 1.

(57)

By simple calculation, we can get that if 𝑡 ∈ [0, 1] and 𝑢 ∈
[0, 1], one has

− 115𝑢 (𝑡) ≤ 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
 (𝑡))

≤ 1
20𝑢 (𝑡) +

1
10 ,

𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝑡)) ≤ −39 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝑡)) + 12𝑢 (𝑡)

+ 85 .

(58)

So, we can choose 𝜅 = 1/15, 𝐵 = 1, 𝑐1 = 1/20, 𝑐2 = 1/10,
𝑏1 = 39, 𝑏2 = 1/2, and 𝑏3 = 8/5. Furthermore, we can verify

𝐵 > 𝑐2𝑐1 +
3𝑏2𝑐2

(𝛼 − 1) 𝑏1𝑐1 +
3𝑏3

(𝛼 − 1) 𝑏1 . (59)

So, (H1) is satisfied.

Taking 𝜌 = 1, ℎ(𝑢) = (1/20)𝑢, and 𝑞(𝑡) = (33/80)(1 + 𝑡 −
𝑡2), we have
𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝑡)) ≥ 𝑞 (𝑡) ℎ (𝑢)

= 1
20𝑢 (𝑡) ⋅

33
85 (1 + 𝑡 − 𝑡

2) ,
𝑢 (𝑡) ∈ [0, 1] , 𝑡 ∈ [0, 1] .

(60)

Let 𝑡0 = 0; then
𝐺 (0, 𝑠) = 1 − 2Γ (1.5) (1 − 𝑠)1.5 + 2

Γ (2.5) (1 − 𝑠)

+ Γ (1.5)2 − 2
3Γ (2.5) > 0.

(61)

Moreover, take 𝑏 = 1/2 ∈ [0, 1], and we have that

(𝛼 − 1) ℎ (𝑏)𝑏 ∫1
0
𝐺 (𝑡0, 𝑠) (1 − 𝑠)𝛼−2 𝑞 (𝑠) 𝑑𝑠 ≈ 0.98

> 1 − 𝛿𝛿𝜌 = 0.97,
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ℎ (𝑢)
𝑢𝜌 = (1/20) 𝑢 (𝑡)𝑢𝜌 (𝑡) = 1

20
(62)

is nonincreasing on (0, 1/2] 𝛿 = 0.9995. So, conditions (H1)-
(H2) of Theorem 9 are satisfied; then BVP (55) has a positive
solution on [0, 1].
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