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Based on classical Lie Group method, we construct a class of explicit solutions of two-dimensional ideal incompressible
magnetohydrodynamics (MHD) equation by its infinitesimal generator. Via these explicit solutions we study the uniqueness and
stability of initial-boundary problem on MHD.

1. Introduction

Two-dimensional ideal incompressible magnetohydrody-
namics (MHD) equation can be described by a set of two
scalar equations for the vorticity 𝑤 and the magnetic stream
function 𝜓; namely [1],

(𝜕𝑡 + 𝑢 ⋅ ∇)𝑤 = 𝐵 ⋅ ∇𝑗, (1)

(𝜕𝑡 + 𝑢 ⋅ ∇) 𝜓 = 0. (2)

Due to the divergence freedom of the magnetic field 𝐵, it is
possible to define amagnetic stream function𝜓 via 𝐵 = ∇⊥𝜓.
In the incompressible case, ∇ ⋅ 𝑢 = 0, the velocity stream
function 𝜑 and velocity 𝑢 are connected in the same way,
and 𝑢 = ∇⊥𝜑. Vorticity and current density are defined as
the Laplacian of the stream functions, 𝑤 = Δ𝜑 and 𝑗 = Δ𝜑.
Themagnetic stream function is convected with the flow field
[2–4]; that means the ideal MHD equations do not allow for
magnetic reconnection in contrast to the dissipative version
of the above equations [5].

Note that in contrast to the two-dimensional incompress-
ible Euler equations case, there is not a production term on
the right-hand side of (1). The equations show a tendency to
develop fine structures, namely, current sheets. Analytically
the problem about the regularity of solutions is still an open
problem [6, 7].

It is interesting to seek the solutions of MHD in mathe-
matics and physics for a long time [8]. In order to construct
solutions of MHD, many effective methods have been put
forward, such as the inverse scattering method, Backlund
transformation, Hirota method, and homogeneous balance
method [3]. In the branches of mathematics and physics, Lie
Group theory [9–11] was often used extensively. Ever since the
1970s Bluman and Col proposed similarity theory for differ-
ential equations, the Lie Group theory has been developed in-
differential equations. The main idea of Lie Group method is
to use the prolongation formulae, providing an effective com-
putational procedure for finding the most general symmetry
group of almost any system of partial differential equations
of interest. To the best of our knowledge, related classical
Lie Group method has not been preformed to the MHD
equation.

Many mathematicians are devoted to studying the MHD
equations. For example, Duvant and Lions proved the exis-
tence and uniqueness of the global strong solutions of two-
dimensional MHD equations with initial-boundary value
problem. They also proved existence and uniqueness of
locally strong solutions and the existence of the global weak
solutions of three-dimensionalMHD equations [6, 12]. As we
all know, the studying of uniqueness and stability of MHD
equations is based on some certain conditions or some
assumptions. But, in this paper, we study a special class of
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solutions—wave solutions. It does not need external hypothe-
ses when proving the uniqueness, which is a novelty of this
paper.

2. Calculation of Symmetry Groups

In this section, we perform Lie symmetry analysis for (1) and
(2) and obtain its infinitesimal generator. Now we transform
(1) and (2) as follows:

𝜕3𝜑𝜕𝑥21𝜕𝑡 +
𝜕3𝜑𝜕𝑥22𝜕𝑡 +

𝜕𝜑𝜕𝑥1
𝜕3𝜑
𝜕𝑥32 +

𝜕𝜑𝜕𝑥1
𝜕3𝜑𝜕𝑥21𝜕𝑥2 −

𝜕𝜑𝜕𝑥2
𝜕3𝜑
𝜕𝑥31

− 𝜕𝜑𝜕𝑥2
𝜕3𝜑𝜕𝑥22𝜕𝑥1 =

𝜕𝜓𝜕𝑥1
𝜕3𝜓
𝜕𝑥32 +

𝜕𝜓𝜕𝑥1
𝜕3𝜓𝜕𝑥21𝜕𝑥2

− 𝜕𝜓𝜕𝑥2
𝜕3𝜓
𝜕𝑥31 −

𝜕𝜓𝜕𝑥2
𝜕3𝜓𝜕𝑥22𝜕𝑥1

𝜕𝜓𝜕𝑡 + 𝜕𝜑𝜕𝑥1
𝜕𝜓𝜕𝑥2 −

𝜕𝜓𝜕𝑥1
𝜕𝜑𝜕𝑥2 = 0.

(3)

According to themethod of determining the infinitesimal
generator of nonlinear partial differential equation, we take
the infinitesimal generator of equation as follows:

V = 𝑝∑
𝑖=1

𝜉𝑖 (𝑥, 𝑢) 𝜕𝜕𝑥𝑖 +
𝑞∑
𝛼=1

𝜙𝛼 (𝑥, 𝑢) 𝜕𝜕𝑢𝛼 . (4)

It is a vector field defined on an open subset𝑀 ⊂ 𝑋 × 𝑈; the𝑛th prolongation of V is the vector field

pr(𝑛)V = V + 𝑞∑
𝛼=1

∑
𝐽

𝜙𝐽𝛼 (𝑥, 𝑢(𝑛)) 𝜕𝜕𝑢𝛼𝐽 (5)

defined on the corresponding jet space 𝑀(𝑛) ⊂ 𝑋 × 𝑈(𝑛),
the second summation being overall multi-indices 𝐽 =(𝑗1, 𝑗2, 𝑗3, . . . , 𝑗𝑘), with 1 ≤ 𝑗𝑘 ≤ 𝑝, 1 ≤ 𝑘 ≤ 𝑛. The coefficient
functions 𝜙𝐽𝛼 of pr(𝑛)V are given by the following formula:

𝜙𝐽𝛼 (𝑥, 𝑢(𝑛)) = 𝐷𝐽(𝜙𝛼 −
𝑝∑
𝑖=1

𝜉𝑖𝑢𝛼𝑖 ) +
𝑝∑
𝑖=1

𝜉𝑖𝑢𝛼𝐽,𝑖, (6)

where 𝑢𝛼𝑖 = 𝜕𝑢𝛼/𝜕𝑥𝑖 and 𝑢𝛼𝐽,𝑖 = 𝜕𝑢𝛼𝐽 /𝜕𝑥𝑖 (in this paper 𝑥1 =𝑥1, 𝑥2 = 𝑥2, and 𝑥3 = 𝑡).
Firstly, we consider the circumstance of 𝑛 = 1. Let

V = 𝜉1 𝜕𝜕𝑥1 + 𝜉2
𝜕𝜕𝑥2 + 𝜉3

𝜕𝜕𝑡 + 𝜉4 𝜕𝜕𝜑 + 𝜉5 𝜕𝜕𝜓, (7)

where 𝜉𝑖 = 𝜉𝑖(𝑥1, 𝑥2, 𝑡, 𝜑, 𝜓) (𝑖 = 1, 2, 3, 4) are coefficient
functions of the infinitesimal generator to be determined.
And the first-order prolongation of V is as follows:

pr(1)V = V + 𝜂𝑥11 𝜕𝜕𝜑𝑥1 + 𝜂
𝑥2
2

𝜕𝜕𝜑𝑥2 + 𝜂
𝑥1
3

𝜕𝜕𝜓𝑥1 + 𝜂
𝑥2
4

𝜕𝜕𝜓𝑥2
+ 𝜂𝑡5 𝜕𝜕𝜑𝑡 + 𝜂

𝑡
6

𝜕𝜕𝜓𝑡 .
(8)

Applying pr(1)V to (3), we find

(𝜕3𝜑𝜕𝑥32 +
𝜕3𝜑𝜕𝑥21𝜕𝑥2)𝜂

𝑥1
1 − (𝜕

3𝜑
𝜕𝑥31 +

𝜕3𝜑𝜕𝑥22𝜕𝑥1)𝜂
𝑥2
2

− (𝜕3𝜓𝜕𝑥32 +
𝜕3𝜓𝜕𝑥21𝜕𝑥2)𝜂

𝑥1
3

− (𝜕3𝜓𝜕𝑥31 +
𝜕3𝜓𝜕𝑥22𝜕𝑥1)𝜂

𝑥2
4 = 0,

𝜕𝜓𝜕𝑥2 𝜂
𝑥1
1 − 𝜕𝜓𝜕𝑥1 𝜂

𝑥2
2 − 𝜕𝜑𝜕𝑥2 𝜂

𝑥1
3 + 𝜕𝜑𝜕𝑥1 𝜂

𝑥4
2 + 𝜂𝑡6 = 0.

(9)

Nowwe apply the third-order prolongation of V to (1) and (2).
Let

V = 3∑
𝑖=1

𝜉𝑖 (𝑥, 𝑢) 𝜕𝜕𝑥𝑖 +
2∑
𝛼=1

𝜙𝛼 (𝑥, 𝑢) 𝜕𝜕𝑢𝛼
pr(3)V = V + 𝑞∑

𝛼=1

∑
𝐽

𝜙𝐽𝛼 (𝑥, 𝑢(3)) 𝜕𝜕𝑢𝛼𝐽 ,
(10)

where 𝑞 = 2, 𝑢1 = 𝜑, and 𝑢2 = 𝜓, the second summation
being overall multi-indices 𝐽 = (𝑗1, 𝑗2, 𝑗3, . . . , 𝑗𝑘), with 1 ≤𝑗𝑘 ≤ 3, 1 ≤ 𝑘 ≤ 3.

The coefficient functions 𝜙𝐽𝛼 of pr(3)V are given by the
following formula:

𝜙𝐽𝛼 (𝑥, 𝑢(3)) = 𝐷𝐽(𝜙𝛼 −
3∑
𝑖=1

𝜉𝑖𝑢𝛼𝑖 ) +
3∑
𝑖=1

𝜉𝑖𝑢𝛼𝐽,𝑖, (11)

where 𝑢𝛼𝑖 = 𝜕𝑢𝛼/𝜕𝑥𝑖 and 𝑢𝛼𝐽,𝑖 = 𝜕𝑢𝛼𝐽 /𝜕𝑥𝑖 (𝑥1 = 𝑥1, 𝑥2 = 𝑥2,𝑥3 = 𝑡):
pr(3)V = V + 𝜂𝑥11 𝜕𝜕𝜑𝑥1 + 𝜂

𝑥2
2

𝜕𝜕𝜑𝑥2 + 𝜂
𝑥1
3

𝜕𝜕𝜓𝑥1
+ 𝜂𝑥24 𝜕𝜕𝜓𝑥2 + 𝜂

𝑡
5

𝜕𝜕𝜑𝑡 + 𝜂
𝑡
6

𝜕𝜕𝜓𝑡 + 𝜙
𝑥1𝑥1𝑡
1

𝜕𝜕𝜑𝑥1𝑥1𝑡
+ 𝜙𝑥2𝑥2𝑡1 𝜕𝜕𝜑𝑥2𝑥2𝑡 + 𝜙

𝑥2𝑥2𝑥2
1

𝜕𝜕𝜑𝑥2𝑥2𝑥2
+ 𝜙𝑥1𝑥2𝑥21

𝜕𝜕𝜑𝑥1𝑥2𝑥2
+ 𝜙𝑥1𝑥1𝑥21

𝜕𝜕𝜑𝑥1𝑥1𝑥2 𝜙
𝑥1𝑥1𝑥1
1

𝜕𝜕𝜑𝑥1𝑥1𝑥1
+ 𝜙𝑥1𝑥1𝑥12

𝜕𝜕𝜓𝑥1𝑥1𝑥2 + 𝜙
𝑥1𝑥1𝑥1
2

𝜕𝜕𝜓𝑥1𝑥1𝑥2
+ 𝜙𝑥1𝑥2𝑥22

𝜕𝜕𝜓𝑥1𝑥2𝑥2 + 𝜙
𝑥2𝑥2𝑥2
2

𝜕𝜕𝜓𝑥2𝑥2𝑥2 .

(12)
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Applying pr(3)V to (3), we find

𝜙𝑥1𝑥1𝑡1 + 𝜙𝑥2𝑥2𝑡1 + 𝜙𝑥2𝑥2𝑥21

𝜕𝜑𝜕𝑥1 + 𝜙
𝑥1𝑥1𝑥2
1

𝜕𝜑𝜕𝑥1
− 𝜙𝑥1𝑥1𝑥11

𝜕𝜑𝜕𝑥2 − 𝜙
𝑥1𝑥2𝑥2
1

𝜕𝜑𝜕𝑥2 + 𝜂
𝑥1
1

𝜕3𝜑
𝜕𝑥32 − 𝜂

𝑥2
1

𝜕3𝜑
𝜕𝑥31

+ 𝜂𝑥11 𝜕3𝜑𝜕𝑥21𝜕𝑥2 − 𝜂
𝑥2
2

𝜕3𝜑𝜕𝑥22𝜕𝑥1 = 𝜙
𝑥2𝑥2𝑥2
2

𝜕𝜓𝜕𝑥1
+ 𝜙𝑥1𝑥1𝑥22

𝜕𝜓𝜕𝑥1 − 𝜙
𝑥1𝑥1𝑥1
2

𝜕𝜓𝜕𝑥2 − 𝜙
𝑥1𝑥2𝑥2
2

𝜕𝜓𝜕𝑥2
+ 𝜂𝑥13 𝜕

3𝜓
𝜕𝑥32 − 𝜂

𝑥2
4

𝜕3𝜓
𝜕𝑥31 + 𝜂

𝑥1
3

𝜕3𝜓𝜕𝑥21𝜕𝑥2 − 𝜂
𝑥2
4

𝜕3𝜓𝜕𝑥22𝜕𝑥1 ,
𝜕𝜓𝜕𝑥2 𝜂
𝑥1
1 − 𝜕𝜓𝜕𝑥1 𝜂

𝑥2
2 − 𝜕𝜑𝜕𝑥2 𝜂

𝑥1
3 + 𝜕𝜑𝜕𝑥1 𝜂

𝑥4
2 + 𝜂𝑡6 = 0.

(13)

Then merging similar terms coefficients, we have

𝜂𝑥11 = 𝜂𝑥22 = 𝜂𝑥13 = 𝜂𝑥24 = 𝜂𝑡6 = 0. (14)

According to the formula 𝜙𝐽𝛼(𝑥, 𝑢(𝑛)) = 𝐷𝐽(𝜙𝛼 − ∑𝑝𝑖=1 𝜉𝑖𝑢𝛼𝑖 ) +∑𝑝𝑖=1 𝜉𝑖𝑢𝛼𝐽,𝑖, for example, we have

𝜂𝑡6 = 𝐷𝑡 (𝜉5 − 𝜉1𝜓𝑥1 − 𝜉2𝜓𝑥2 − 𝜉3𝜓𝑡) + 𝜉1𝜓𝑥1𝑡
+ 𝜉2𝜓𝑥2𝑡 + 𝜉3𝜓𝑡𝑡

= 𝜉5𝑡 − 𝜉1𝑡𝜓𝑥1 − 𝜉1𝜓𝜓𝑥1𝜓𝑡 − 𝜉1𝜑𝜓𝑥1𝜓𝑡 − 𝜉2𝑡𝜓𝑥2
− 𝜉2𝜓𝜓𝑥2𝜓𝑡 − 𝜉2𝜑𝜓𝑥2𝜑𝑡 − 𝜉3𝑡𝜓𝑡 − 𝜉3𝜑𝜑𝑡𝜓𝑡
− 𝜉3𝜓𝜓𝑡𝜓𝑡 + 𝜉5𝜑𝜑𝑡 + 𝜉5𝜓𝜓𝑡

𝜙𝑥1𝑥1𝑥11 = 𝐷3𝑥1 (𝜉4 − 𝜉1𝜑𝑥1 − 𝜉2𝜑𝑥2 − 𝜉3𝜑𝑡)
+ 𝜉1𝜑𝑥1𝑥1𝑥1𝑥1 + 𝜉2𝜑𝑥1𝑥1𝑥1𝑥2 + 𝜉3𝜑𝑥1𝑥1𝑥1𝑡

= 𝐷3𝑥1𝜉4 − 𝐷3𝑥1𝜉1𝜑𝑥1𝐷3𝑥1𝜉2𝜑𝑥2 − 𝐷3𝑥1𝜉3𝜑𝑡
− 3𝐷2𝑥1𝜉1𝜑𝑥1𝑥1 − 3𝐷2𝑥1𝜉2𝜑𝑥1𝑥2 − 3𝐷2𝑥1𝜉3𝜑𝑥1𝑡
− 3𝐷𝑥1𝜉1𝜑𝑥1𝑥1𝑥1 − 3𝐷𝑥1𝜉2𝜑𝑥1𝑥1𝑥2
− 3𝐷𝑥1𝜉3𝜑𝑥1𝑥1𝑡.

(15)

So we have

𝜉5𝑡 = 0,
𝜉5𝜓 − 𝜉3𝑡 = 0,

𝜉1𝑡 = 𝜉1𝜑 = 𝜉1𝜓 = 𝜉2𝑡 = 𝜉2𝜑 = 𝜉2𝜓 = 𝜉3𝜑 = 𝜉3𝜓
= 𝜉5𝜑 = 0.

(16)

Similarly we can find the determining equations for the
symmetry group of the equations to be the following:

𝜉4𝑥1 = 0,
𝜉4𝜑 − 𝜉1𝑥1 = 0,

𝜉1𝜑 = 𝜉1𝜓 = 𝜉2𝜑 = 𝜉2𝜓 = 𝜉2𝑥1 = 𝜉3𝑥1 = 𝜉3𝜑
= 𝜉3𝜓 = 𝜉5𝜓 = 0.

𝜉4𝑥2 = 0,
𝜉4𝜑 − 𝜉2𝑥2 = 0,

𝜉1𝜑 = 𝜉1𝜓 = 𝜉1𝑥2 = 𝜉2𝜑 = 𝜉2𝜓 = 𝜉3𝑥2 = 𝜉3𝜑
= 𝜉3𝜓 = 𝜉4𝜓 = 0.

𝜉5𝑥1 = 0,
𝜉5𝜓 − 𝜉1𝑥1 = 0,

𝜉1𝜑 = 𝜉1𝜓 = 𝜉2𝜑 = 𝜉2𝜓 = 𝜉2𝑥1 = 𝜉3𝑥1 = 𝜉3𝜑
= 𝜉3𝜓 = 𝜉5𝜑 = 0.

𝜉5𝑥2 = 0,
𝜉5𝜓 − 𝜉2𝑥2 = 0,

𝜉1𝜑 = 𝜉1𝜓 = 𝜉1𝑥2 = 𝜉2𝜑 = 𝜉2𝜓 = 𝜉3𝑥2 = 𝜉3𝜑
= 𝜉3𝜓 = 𝜉5𝜑 = 0.

(17)

As usual, subscripts indicate derivatives. The solution of the
determining equations is elementary. According to (16) and
(17) we have

𝜉4 = 𝜉4 (𝑡, 𝜑) ,
𝜉5 = 𝜉5 (𝜓) ,
𝜉1 = 𝜉1 (𝑥1) ,
𝜉2 = 𝜉2 (𝑥2) ,
𝜉3 = 𝜉3 (𝑡) ,
𝜉3𝑡 = 𝜉5𝜓,
𝜉4𝜑 = 𝜉1𝑥1 ,
𝜉4𝜑 = 𝜉2𝑥2 ,
𝜉5𝜓 = 𝜉1𝑥1 ,
𝜉5𝜓 = 𝜉2𝑥2 .

(18)

Finally, solving the above differential equations, we conclude
that the most general infinitesimal symmetry of (3) has
coefficient functions of the form

𝜉1 = 𝑘𝑥1 + 𝑎
𝜉2 = 𝑘𝑥2 + 𝑏
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𝜉3 = 𝑘𝑡 + 𝑐
𝜉4 = 𝑘𝜑 + 𝜎 (𝑡) + 𝑑
𝜉5 = 𝑘𝜓 + 𝑒,

(19)

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑘 are arbitrary constants and 𝜎(𝑡)
is an arbitrary function of 𝑡 only. Thus the Lie algebra of
infinitesimal symmetries of the MHD equations is spanned
by the six vector fields:

V1 = 𝑥1𝜕𝑥1 + 𝑥2𝜕𝑥2 + 𝑡𝜕𝑡 + 𝜑𝜕𝜑 + 𝜓𝜕𝜓
V2 = 𝜕𝑥1
V3 = 𝜕𝑥2
V4 = 𝜕𝑡
V5 = 𝜕𝜑
V6 = 𝜕𝜓.

(20)

And the infinite-dimensional subalgebra

V𝛼 = 𝜎 (𝑡) 𝜕𝜑, (21)

where 𝜎(𝑡) is an arbitrary function of 𝑡 only. So we have
V = 𝑐1V1 + 𝑐2V2 + 𝑐3V3 + 𝑐4V4 + 𝑐5V5 + 𝑐6V6 + V𝛼. (22)

The entries give the transformed point exp (𝜖𝑖)(𝑥1, 𝑥2, 𝑡,𝜑, 𝜓) = (𝑥1, 𝑥2, 𝑡̃, 𝜑̃, 𝜓̃):
𝐺1: (𝑒𝜖𝑥1, 𝑒𝜖𝑥2, 𝑒𝜖𝑡, 𝑒𝜖𝜑, 𝑒𝜖𝜓)
𝐺2: (𝑥1 + 𝜖, 𝑥2, 𝑡, 𝜑, 𝜓)
𝐺3: (𝑥1, 𝑥2 + 𝜖, 𝑡, 𝜑, 𝜓)
𝐺4: (𝑥1, 𝑥2, 𝑡 + 𝜖, 𝜑, 𝜓)
𝐺5: (𝑥1, 𝑥2, 𝑡, 𝜑 + 𝜖, 𝜓)
𝐺6: (𝑥1, 𝑥2, 𝑡, 𝜑, 𝜓 + 𝜖)

𝐺𝛼: (𝑥1, 𝑥2, 𝑡, 𝜑 + 𝜖𝜎 (𝑡) , 𝜓) .

(23)

If 𝜑 = 𝑓(𝑥1, 𝑥2, 𝑡) and 𝜓 = 𝑔(𝑥1, 𝑥2, 𝑡) are known solutions
of (3), then using the above groups 𝐺𝑖, 𝑖 = (1, 2, . . . , 6),
the corresponding new solutions 𝜑𝑖 and 𝜓𝑖 can be obtained,
respectively, as follows:

𝜑1 = 𝑒𝜖𝑓 (𝑒−𝜖𝑥1, 𝑒−𝜖𝑥2, 𝑒−𝜖𝑡) ,
𝜓1 = 𝑒𝜖𝑔 (𝑒−𝜖𝑥1, 𝑒−𝜖𝑥2, 𝑒−𝜖𝑡) ,
𝜑2 = 𝑓 (𝑥1 − 𝜖, 𝑥2, 𝑡) ,
𝜓2 = 𝑔 (𝑥1 − 𝜖, 𝑥2, 𝑡) ,
𝜑3 = 𝑓 (𝑥1, 𝑥2 − 𝜖, 𝑡) ,
𝜓3 = 𝑔 (𝑥1, 𝑥2 − 𝜖, 𝑡) ,

𝜑4 = 𝑓 (𝑥1, 𝑥2, 𝑡 − 𝜖) ,
𝜓4 = 𝑔 (𝑥1, 𝑥2, 𝑡 − 𝜖) ,
𝜑5 = 𝑓 (𝑥1, 𝑥2, 𝑡) + 𝜖,
𝜓5 = 𝑔 (𝑥1, 𝑥2, 𝑡) ,
𝜑6 = 𝑓 (𝑥1, 𝑥2, 𝑡) ,
𝜓6 = 𝑔 (𝑥1, 𝑥2, 𝑡) + 𝜖,
𝜑𝛼 = 𝑓 (𝑥1, 𝑥2, 𝑡) + 𝜖𝜎 (𝑡) ,
𝜓𝛼 = 𝑔 (𝑥1, 𝑥2, 𝑡) ,

(24)

where 𝜖 is a real number and 𝜎(𝑡) is an arbitrary function of 𝑡
only.

Theorem 1. For the known solutions 𝜑 = 𝑓(𝑥1, 𝑥2, 𝑡) and 𝜓 =𝑔(𝑥1, 𝑥2, 𝑡), by using one-parameter groups𝐺𝑖, 𝑖 = (1, 2, . . . , 6)
continuously, one can obtain a new solution which can be
expressed in the following form:

𝜑 = 𝑒𝜖1𝑓 (𝑒−𝜖𝑥1 − 𝜖2, 𝑒−𝜖𝑥2 − 𝜖3, −𝑒−𝜖𝑡 − 𝜖4) + 𝜖5
+ 𝜖6𝜎 (𝑡)

𝜓 = 𝑒𝜖1𝑓 (𝑒−𝜖𝑥1 − 𝜖2, 𝑒−𝜖𝑥2 − 𝜖3, −𝑒−𝜖𝑡 − 𝜖4) + 𝜖5,
(25)

where 𝜖𝑖, 𝑖 = (1, 2, . . . , 6) are arbitrary constants.
Theorem 2. One assumes that the solutions have forms of 𝜑 =𝜑(𝑎1𝑥1 + 𝑏1𝑥2 + 𝑐1𝑡 + 𝑑1), 𝜓 = 𝜓(𝑎2𝑥1 + 𝑏2𝑥2 + 𝑐2𝑡 + 𝑑2).

One has the following:
(1) If 𝑐1 = 𝑐2 = 0, 𝑎1𝑏2 − 𝑎2𝑏1 = 0, then 𝜑, 𝜓 are arbitrary

functions.
(2) If 𝑎1 = 𝑏1 = 𝑐2 = 0 and 𝑐1, 𝑎2 = 𝑏2 are arbitrary

constants, then 𝜑, 𝜓 are arbitrary functions.
(3) If 𝜑 = −(𝑐2/(𝑎1𝑏2 − 𝑎2𝑏1))(𝑎1𝑥1 + 𝑏1𝑥2 + 𝑐1𝑡 + 𝑑1), then𝜓 is arbitrary function.

3. The Uniqueness of Wave Solutions

In this sectionwe give some nonzero solutions by considering
the wave solutions to the two-dimensional MHD equations
[13–15]. Firstly we could give the initial-boundary value of
three conditions inTheorem 2.

(1) 𝜑(𝑥1, 𝑥2, 𝑡)|𝑡=0 = 𝜑(𝑎1𝑥1 + 𝑏1𝑥2 + 𝑑1) ∈ 𝐻10 (Ω),𝜑(𝑥1, 𝑥2, 𝑡)|𝑥∈𝜕Ω = 0𝜓(𝑥1, 𝑥2, 𝑡)|𝑡=0 = 𝜓(𝑘𝑎1𝑥1 + 𝑘𝑏1𝑥2 + 𝑑1) ∈ 𝐻10 (Ω),𝜓(𝑥1, 𝑥2, 𝑡)|𝑥∈𝜕Ω = 0.
(2) 𝜑(𝑥1, 𝑥2, 𝑡)|𝑡=0 = 𝜑(𝑑1) ∈ 𝐻10 (Ω), 𝜑(𝑥1, 𝑥2, 𝑡)|𝑥∈𝜕Ω =0𝜓(𝑥1, 𝑥2, 𝑡)|𝑡=0 = 𝜓(𝑎2𝑥1 + 𝑏2𝑥2 + 𝑑1) ∈ 𝐻10 (Ω),𝜓(𝑥1, 𝑥2, 𝑡)|𝑥∈𝜕Ω = 0.
(3) 𝜑(𝑥1, 𝑥2, 𝑡)|𝑡=0 = −(𝑐2/(𝑎1𝑏2−𝑎2𝑏1))(𝑎1𝑥1+𝑏1𝑥2+𝑑1) ∈𝐻10 (Ω), 𝜑(𝑥1, 𝑥2, 𝑡)|𝑥∈𝜕Ω = 0.𝜓(𝑥1, 𝑥2, 𝑡)|𝑡=0 ∈ 𝐻10 (Ω), 𝜓(𝑥1, 𝑥2, 𝑡)|𝑥∈𝜕Ω = 0.
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Theorem 3. Assume that Ω ⊂ 𝑅2 is a bounded domain. One
can make the solutions 𝜑1, 𝜓1 like the condition in Theorem 2
and satisfying ‖Δ𝜓1‖𝐿∞ , ‖∇𝜓1‖𝐿∞ , ‖𝐷2𝜑1‖𝐿∞ ≤ 𝑀, respec-
tively. Then the following initial-boundary value problem:

(𝜕𝑡 + 𝑢 ⋅ ∇)𝑤 = 𝐵 ⋅ ∇𝑗, 𝑖𝑛 Ω × (0,∞) ,
(𝜕𝑡 + 𝑢 ⋅ ∇) 𝜓 = 0, 𝑖𝑛 Ω × (0,∞) ,

𝜑 = 𝜑0 (𝑎1𝑥1 + 𝑏1𝑥2 + 𝑑1) , 𝑖𝑛 Ω × 0,
𝜓 = 𝜓0 (𝑎2𝑥1 + 𝑏2𝑥2 + 𝑑2) , 𝑖𝑛 Ω × 0

(26)

has a unique smooth solution 𝜑, 𝜓.
Proof. To prove the uniqueness we consider two smooth
solution pairs, say 𝜑1, 𝜓1 and 𝜑, 𝜓. Let their difference be𝜑 = 𝜑 − 𝜑1, 𝜓 = 𝜓 − 𝜓1. Then subtracting the equations from
each other in (26), we have
Δ𝜑𝑡 + ∇⊥𝜑 ⋅ ∇Δ𝜑 − ∇⊥𝜑1 ⋅ ∇Δ𝜑1
= ∇⊥𝜓 ⋅ ∇Δ𝜓 − ∇⊥𝜓1 ⋅ ∇Δ𝜓1, in Ω × (0,∞) ,

𝜓𝑡 + ∇⊥𝜑 ⋅ ∇𝜓 − ∇⊥𝜑1 ⋅ ∇𝜓1 = 0, in Ω × (0,∞) ,
𝜓 (𝑥1, 𝑥2, 0) = 0,
𝜑 (𝑥1, 𝑥2, 0) = 0

in Ω × 0,
𝜓 = 0,
𝜑 = 0

on 𝜕Ω × (0,∞) .

(27)

Multiplying the first and second equations by 𝜑, 𝜓,
respectively, integrating overΩ, we obtain
− 12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝜑󵄩󵄩󵄩󵄩2𝐿2 + ∫Ω ∇⊥𝜑 ⋅ ∇ (Δ𝜑) 𝜑𝑑𝑥
+ ∫
Ω
∇⊥𝜑1 ⋅ ∇ (Δ𝜑) 𝜑𝑑𝑥

+ ∫
Ω
∇⊥𝜑 ⋅ ∇ (Δ𝜑1) 𝜑𝑑𝑥 = ∫

Ω
∇⊥𝜓 ⋅ ∇ (Δ𝜓) 𝜑𝑑𝑥

+ ∫
Ω
∇⊥𝜓1 ⋅ ∇ (Δ𝜓) 𝜑𝑑𝑥 + ∫

Ω
∇⊥𝜓 ⋅ ∇ (Δ𝜓1) 𝜑𝑑𝑥,

12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2𝐿2 + ∫Ω (∇⊥𝜑 ⋅ ∇𝜓)𝜓𝑑𝑥
+ ∫
Ω
(∇⊥𝜑 ⋅ ∇𝜓1) 𝜓𝑑𝑥 + ∫

Ω
(∇⊥𝜑1 ⋅ ∇𝜓)𝜓𝑑𝑥 = 0.

(28)

It is easy to see that

∫
Ω
∇⊥𝜑 ⋅ ∇ (Δ𝜑) 𝜑𝑑𝑥 = ∫

𝜕Ω
Δ𝜑 (𝜑 ⋅ ∇⊥𝜑) ⋅ 𝑛⃗ 𝑑𝑠

− ∫
Ω
Δ𝜑𝑑𝑖V (𝜑 ⋅ ∇⊥𝜑) 𝑑𝑥

= −∫
Ω
Δ𝜑 ⋅ 0 𝑑𝑥 = 0.

(29)

Similarly we have

∫
Ω
(∇⊥𝜑1 ⋅ ∇𝜓)𝜓 𝑑𝑥 = 0

∫
Ω
∇⊥𝜑 ⋅ ∇ (Δ𝜑1) 𝜑 𝑑𝑥 = 0
∫
Ω
(∇⊥𝜑 ⋅ ∇𝜓)𝜓𝑑𝑥 = 0

∫
Ω
∇⊥𝜓 ⋅ ∇ (Δ𝜓) 𝜑 𝑑𝑥 = −∫

Ω
Δ𝜓 (∇𝜑 ⋅ ∇⊥𝜓) 𝑑𝑥

∫
Ω
∇⊥𝜑1 ⋅ ∇ (Δ𝜑) 𝜑 𝑑𝑥 = −∫

Ω
Δ𝜑 (∇𝜑 ⋅ ∇⊥𝜑1) 𝑑𝑥

∫
Ω
∇⊥𝜓1 ⋅ ∇ (Δ𝜓) 𝜑 𝑑𝑥 = −∫

Ω
Δ𝜓∇𝜑 ⋅ ∇⊥𝜓1𝑑𝑥

∫
Ω
∇⊥𝜓 ⋅ ∇ (Δ𝜓1) 𝜑 𝑑𝑥 = −∫

Ω
Δ𝜓1∇𝜑 ⋅ ∇⊥𝜓𝑑𝑥.

(30)

Notice that

𝜓𝑡 + ∇⊥𝜑 ⋅ ∇𝜓 − ∇⊥𝜑1 ⋅ ∇𝜓1 = 0. (31)

Multiplying equation by Δ𝜓, integrating over Ω, we
obtain
12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2𝐿2
= ∫
Ω
(∇⊥𝜑 ⋅ ∇𝜓 + ∇⊥𝜑 ⋅ ∇𝜓1 + ∇⊥𝜑1 ⋅ ∇𝜓) Δ𝜓𝑑𝑥

(32)

so that
12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝜑󵄩󵄩󵄩󵄩2𝐿2 + 12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2𝐿2 + 12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2𝐿2
= −∫
Ω
Δ𝜑 (∇𝜑 ⋅ ∇⊥𝜑1) 𝑑𝑥 + ∫

Ω
Δ𝜓∇𝜑 ⋅ ∇⊥𝜓1𝑑𝑥

+ ∫
Ω
Δ𝜓1∇𝜑 ⋅ ∇⊥𝜓𝑑𝑥 − ∫

Ω
𝜓∇𝜓1 ⋅ ∇⊥𝜑𝑑𝑥

+ ∫
Ω
∇⊥𝜑1 ⋅ ∇𝜓Δ𝜓𝑑𝑥 + ∫

Ω
∇⊥𝜑 ⋅ ∇𝜓1Δ𝜓𝑑𝑥

= 0.

(33)

It is easy to see that

12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝜑󵄩󵄩󵄩󵄩2𝐿2 + 12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2𝐿2
+ 12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2𝐿2 󵄩󵄩󵄩󵄩󵄩𝐷2𝜑1󵄩󵄩󵄩󵄩󵄩𝐿∞ 󵄩󵄩󵄩󵄩∇𝜑󵄩󵄩󵄩󵄩2𝐿2
+ 𝑐 󵄩󵄩󵄩󵄩󵄩𝐷2𝜑1󵄩󵄩󵄩󵄩󵄩𝐿∞ 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2𝐿2
+ 𝑐 󵄩󵄩󵄩󵄩Δ𝜓1󵄩󵄩󵄩󵄩𝐿∞ (󵄩󵄩󵄩󵄩∇𝜑󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2𝐿2)
+ 𝑐 󵄩󵄩󵄩󵄩∇𝜓1󵄩󵄩󵄩󵄩𝐿∞ (󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩∇𝜑󵄩󵄩󵄩󵄩2𝐿2)

≤ 𝑐 (󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩∇𝜑󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2𝐿2) .

(34)
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Thanks to the Gronwall inequality, we have the following:

󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩∇𝜑󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2𝐿2 ≤ 𝑒𝑐𝑡 (󵄩󵄩󵄩󵄩∇𝜓 (𝑥1, 𝑥2, 0)󵄩󵄩󵄩󵄩2𝐿2
+ 󵄩󵄩󵄩󵄩∇𝜑 (𝑥1, 𝑥2, 0)󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩𝜓 (𝑥1, 𝑥2, 0)󵄩󵄩󵄩󵄩2𝐿2) = 0.

(35)

Therefore there exists a unique solution in the sense of𝐿2(((𝐿2(Ω))2; 0, 𝑇)), ∀𝑇 > 0.
4. Analysis Stability of the Wave Solutions

In this section we discuss the stability of the solutions, in𝐿2(Ω) for problem (36) [14, 16–18]. Firstly we could give the
initial-boundary value of three conditions inTheorem 2.

(1) 𝜑(𝑥1, 𝑥2, 𝑡)|𝑡=0 = 𝜑(𝑎1𝑥1 + 𝑏1𝑥2 + 𝑑1) ∈ 𝐻1(Ω),𝜑(𝑥1, 𝑥2, 𝑡)|𝑥∈𝜕Ω = 𝜑(𝑎1𝑥1 + 𝑏1𝑥2 + 𝑑1)𝜓(𝑥1, 𝑥2, 𝑡)|𝑡=0 = 𝜓(𝑘𝑎1𝑥1 + 𝑘𝑏1𝑥2 + 𝑑2) ∈ 𝐻1(Ω),𝜓(𝑥1, 𝑥2, 𝑡)|𝑥∈𝜕Ω = 𝜓(𝑘𝑎1𝑥1 + 𝑘𝑏1𝑥2 + 𝑑2).
(2) 𝜑(𝑥1, 𝑥2, 𝑡)|𝑡=0 = 𝜑(𝑑1) ∈ 𝐻1(Ω), 𝜑(𝑥1, 𝑥2, 𝑡)|𝑥∈𝜕Ω =𝜑(𝑐1𝑡 + 𝑑1)𝜓(𝑥1, 𝑥2, 𝑡)|𝑡=0 = 𝜓(𝑎2𝑥1 + 𝑏2𝑥2 + 𝑑2) ∈ 𝐻1(Ω),𝜓(𝑥1, 𝑥2, 𝑡)|𝑥∈𝜕Ω = 𝜓(𝑎2𝑥1 + 𝑎2𝑥2 + 𝑑2).
(3) 𝜑(𝑥1, 𝑥2, 𝑡)|𝑡=0 = −(𝑐2/(𝑎1𝑏2−𝑎2𝑏1))(𝑎1𝑥1+𝑏1𝑥2+𝑑1) ∈𝐻1(Ω), 𝜑(𝑥1, 𝑥2, 𝑡)|𝑥∈𝜕Ω = 𝜑(𝑎1𝑥1 + 𝑏1𝑥2 + 𝑐1𝑡 + 𝑑1)𝜓(𝑥1, 𝑥2, 𝑡)|𝑡=0 ∈ 𝐻1(Ω), 𝜓(𝑥1, 𝑥2, 𝑡)|𝑥∈𝜕Ω = 𝜓(𝑎2𝑥1+𝑏2𝑥2 + 𝑐2𝑡 + 𝑑2).
Assume that Ω ⊂ 𝑅2 is a bounded domain. We can make

the solutions 𝜑1, 𝜓1 like the condition in Theorem 2 and
satisfy ‖Δ𝜓1‖𝐿∞ , ‖∇𝜓1‖𝐿∞ , ‖𝐷2𝜑1‖𝐿∞ ≤ 𝑀, respectively. Then
the following problem:

(𝜕𝑡 + 𝑢 ⋅ ∇)𝑤 = 𝐵 ⋅ ∇𝑗, in Ω × (0,∞) ,
(𝜕𝑡 + 𝑢 ⋅ ∇) 𝜓 = 0 in Ω × (0,∞) (36)

has stable solution.
Assume that 𝜑, 𝜓 are another solutions of the equations.

Let 𝜑, 𝜓 denote the solution pair of a little disturbance and
let 𝜑 = 𝜑 − 𝜑1, 𝜓 = 𝜓 − 𝜓1 be the difference of 𝜑, 𝜑1,𝜓, 𝜓1, with initial value ‖𝜑0(𝑥)‖𝐿2 → 0, ‖∇𝜑0(𝑥)‖𝐿2 → 0,‖𝜓0(𝑥)‖𝐿2 → 0, ‖∇𝜓0(𝑥)‖𝐿2 → 0 in the sense of 𝐿2(Ω) and
again assuming that boundary value 𝜑 → 𝜑1, 𝜓 → 𝜓1 in the
sense of 𝐿2(𝜕Ω)⋂𝐿∞(𝜕Ω), ∀𝑡 ∈ (0, 𝑇]. Then subtracting one
equation from each other in (36), we get

Δ𝜑𝑡 + ∇⊥𝜑 ⋅ ∇Δ𝜑 − ∇⊥𝜑1 ⋅ ∇Δ𝜑1
= ∇⊥𝜓 ⋅ ∇Δ𝜓 − ∇⊥𝜓1 ⋅ ∇Δ𝜓1, in Ω × (0,∞) ,

𝜓𝑡 + ∇⊥𝜑 ⋅ ∇𝜓 − ∇⊥𝜑1 ⋅ ∇𝜓1 = 0, in Ω × (0,∞) ,
𝜓 (𝑥1, 𝑥2, 0) = 𝜓0 (𝑥1, 𝑥2, 0) ,
𝜑 (𝑥1, 𝑥2, 0) = 𝜑0 (𝑥1, 𝑥2, 0)

in Ω × 0,
𝜓 = 𝜑 = ℎ (𝑥, 𝑡) on 𝜕Ω × (0,∞) .

(37)

Similar to uniqueness, we can obtain

12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝜑󵄩󵄩󵄩󵄩2𝐿2 + 12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2𝐿2 + 12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2𝐿2
= −∫
Ω
Δ𝜑 (∇𝜑 ⋅ ∇⊥𝜑1) 𝑑𝑥 + ∫

Ω
Δ𝜓∇𝜑 ⋅ ∇⊥𝜓1𝑑𝑥

+ ∫
Ω
Δ𝜓1∇𝜑 ⋅ ∇⊥𝜓𝑑𝑥 − ∫

Ω
𝜓∇𝜓1 ⋅ ∇⊥𝜑𝑑𝑥

+ ∫
Ω
∇⊥𝜑1 ⋅ ∇𝜓Δ𝜓𝑑𝑥 + ∫

Ω
∇⊥𝜑 ⋅ ∇𝜓1Δ𝜓𝑑𝑥

+ ∫
𝜕Ω
𝜑Δ𝜑∇⊥𝜑 ⋅ 𝑛⃗ 𝑑𝑠 + ∫

𝜕Ω
𝜑Δ𝜑∇⊥𝜑1 ⋅ 𝑛⃗ 𝑑𝑠

+ ∫
𝜕Ω
𝜑Δ𝜑1∇⊥𝜑 ⋅ 𝑛⃗ 𝑑𝑠 − ∫

𝜕Ω
𝜑Δ𝜓∇⊥𝜓 ⋅ 𝑛⃗ 𝑑𝑠

− ∫
𝜕Ω
𝜑Δ𝜓∇⊥𝜓1 ⋅ 𝑛⃗ 𝑑𝑠 − ∫

𝜕Ω
𝜑Δ𝜓1∇⊥𝜓 ⋅ 𝑛⃗ 𝑑𝑠

− 12 ∫𝜕Ω 𝜓∇⊥𝜑 ⋅ 𝑛⃗ 𝑑𝑠.

(38)

It is easy to see that

12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝜑󵄩󵄩󵄩󵄩2𝐿2 + 12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2𝐿2 + 12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2𝐿2 ≤ 𝑐 (󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2𝐿2
+ 󵄩󵄩󵄩󵄩∇𝜑󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2𝐿2)
+ 𝑐0 (󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜑󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑1󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜑󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜑1󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜓󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜓󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜓1󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜓󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜓󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜓1󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑1󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)) .

(∗)

Since 𝜑 → 𝜑1, 𝜓 → 𝜓1 in the sense of 𝐿2(𝜕Ω)⋂𝐿∞(𝜕Ω),
we can make, for every 𝜖 > 0,

(󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜑󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑1󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜑󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜑1󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜓󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜓󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
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+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜓1󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜓󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜓󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜓1󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑1󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)) ≤ 𝜖.

(39)

Using the Gronwall inequality in (∗), for every ∀𝑡 ∈(0, 𝑇],
󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩∇𝜑󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2𝐿2 ≤ 𝑒𝑐𝑡 (󵄩󵄩󵄩󵄩∇𝜓 (𝑥1, 𝑥2, 0)󵄩󵄩󵄩󵄩2𝐿2
+ 󵄩󵄩󵄩󵄩∇𝜑 (𝑥1, 𝑥2, 0)󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩𝜓 (𝑥1, 𝑥2, 0)󵄩󵄩󵄩󵄩2𝐿2) + 2𝜖𝑒𝑐𝑡
󳨀→ 0.

(40)

As 𝜑 → 𝜑1, 𝜓 → 𝜓1 in the sense of 𝐿2(𝜕Ω)⋂𝐿∞(𝜕Ω)
and ‖𝜑0(𝑥)‖𝐿2 → 0, ‖∇𝜑0(𝑥)‖𝐿2 → 0, ‖𝜓0(𝑥)‖𝐿2 → 0,‖∇𝜓0(𝑥)‖𝐿2 → 0, in the sense of 𝐿2(Ω). So we reach the
stability of the solution in the finite time.

5. The Lyapunov Stability of
Steady State Solution

In this section we discuss the stability of the steady state
solutions, in 𝐿2(Ω) for problem (41).

Definition 4. A steady state solution 𝜐 is said to be stable if
and only if 𝜐 in any one of the neighborhood 𝑉, there is a
neighborhood𝑊 of 𝜐, making any solutions 𝜐(𝑡, ⋅) with the
initial condition 𝜐(0, ⋅) ∈ 𝑊 satisfy 𝜐(𝑡, ⋅) ∈ 𝑉 (∀𝑡 ≥ 0).

Assume that Ω ⊂ 𝑅2 is a bounded domain. We can make
the solutions 𝜑1, 𝜓1 like the condition in Theorem 2 and
satisfy ‖Δ𝜓1‖𝐿∞ , ‖∇𝜓1‖𝐿∞ , ‖𝐷2𝜑1‖𝐿∞ ≤ 𝑀, respectively. Then
the following problem solutions:

(𝜕𝑡 + 𝑢 ⋅ ∇)𝑤 = 𝐵 ⋅ ∇𝑗, in Ω × (0,∞) ,
(𝜕𝑡 + 𝑢 ⋅ ∇) 𝜓 = 0 in Ω × (0,∞) (41)

are Lyapunov stable.
Assume that 𝜑, 𝜓 are another solutions of the equations.

Let 𝜑, 𝜓 denote the solution pair of a little disturbance and
let 𝜑 = 𝜑 − 𝜑1, 𝜓 = 𝜓 − 𝜓1 be the difference of 𝜑, 𝜑1,𝜓, 𝜓1, with initial value ‖𝜑0(𝑥)‖𝐿2 → 0, ‖∇𝜑0(𝑥)‖𝐿2 → 0,‖𝜓0(𝑥)‖𝐿2 → 0, ‖∇𝜓0(𝑥)‖𝐿2 → 0, in the sense of 𝐿2(Ω)
and assume that boundary value 𝜑 → 𝜑1, 𝜓 → 𝜓1 in the
sense of 𝐿2(𝜕Ω)⋂𝐿∞(𝜕Ω), ∀𝑡 ∈ (0, 𝑇]. Then subtracting one
equation from each other in (41), we get

Δ𝜑𝑡 + ∇⊥𝜑 ⋅ ∇Δ𝜑 − ∇⊥𝜑1 ⋅ ∇Δ𝜑1
= ∇⊥𝜓 ⋅ ∇Δ𝜓 − ∇⊥𝜓1 ⋅ ∇Δ𝜓1, in Ω × (0,∞) ,

𝜓𝑡 + ∇⊥𝜑 ⋅ ∇𝜓 − ∇⊥𝜑1 ⋅ ∇𝜓1 = 0, in Ω × (0,∞) ,
𝜓 (𝑥1, 𝑥2, 0) = 𝜓0 (𝑥1, 𝑥2, 0) ,
𝜑 (𝑥1, 𝑥2, 0) = 𝜑0 (𝑥1, 𝑥2, 0)

in Ω × 0.
(42)

Similar to uniqueness, we can obtain
12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝜑󵄩󵄩󵄩󵄩2𝐿2 + 12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2𝐿2 + 12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2𝐿2
= −∫
Ω
Δ𝜑 (∇𝜑 ⋅ ∇⊥𝜑1) 𝑑𝑥 + ∫

Ω
Δ𝜓∇𝜑 ⋅ ∇⊥𝜓1𝑑𝑥

+ ∫
Ω
Δ𝜓1∇𝜑 ⋅ ∇⊥𝜓𝑑𝑥 − ∫

Ω
𝜓∇𝜓1 ⋅ ∇⊥𝜑𝑑𝑥

+ ∫
Ω
∇⊥𝜑1 ⋅ ∇𝜓Δ𝜓𝑑𝑥 + ∫

Ω
∇⊥𝜑 ⋅ ∇𝜓1Δ𝜓𝑑𝑥

+ ∫
𝜕Ω
𝜑Δ𝜑∇⊥𝜑 ⋅ 𝑛⃗ 𝑑𝑠 + ∫

𝜕Ω
𝜑Δ𝜑∇⊥𝜑1 ⋅ 𝑛⃗ 𝑑𝑠

+ ∫
𝜕Ω
𝜑Δ𝜑1∇⊥𝜑 ⋅ 𝑛⃗ 𝑑𝑠 − ∫

𝜕Ω
𝜑Δ𝜓∇⊥𝜓 ⋅ 𝑛⃗ 𝑑𝑠

− ∫
𝜕Ω
𝜑Δ𝜓∇⊥𝜓1 ⋅ 𝑛⃗ 𝑑𝑠 − ∫

𝜕Ω
𝜑Δ𝜓1∇⊥𝜓 ⋅ 𝑛⃗ 𝑑𝑠

− 12 ∫𝜕Ω 𝜓∇⊥𝜑 ⋅ 𝑛⃗𝜓 𝑑𝑠.

(43)

It is easy to see that
12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝜑󵄩󵄩󵄩󵄩2𝐿2 + 12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2𝐿2 + 12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2𝐿2
≤ 𝑐 (󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩∇𝜑󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2𝐿2)
+ 𝑐0 (󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜑󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑1󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜑󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜑1󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜓󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜓󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜓1󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜓󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜓󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜓1󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑1󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)) .

(∗∗)

Since 𝜑 → 𝜑1, 𝜓 → 𝜓1 in the sense of 𝐿2(𝜕Ω)⋂𝐿∞(𝜕Ω),
we can make, for every 𝜖 > 0,

(󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜑󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑1󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜑󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
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+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜑1󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜓󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜓󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜓1󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜓󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜓󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩Δ𝜓1󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)
+ 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩󵄩∇⊥𝜑1󵄩󵄩󵄩󵄩󵄩𝐿2(𝜕Ω) 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝐿∞(𝜕Ω)) ≤ 𝜖.

(44)

Using the Gronwall inequality in (∗∗), for every ∀𝑡 ∈(0, 𝑇],
󵄩󵄩󵄩󵄩∇𝜓󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩∇𝜑󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2𝐿2 ≤ 𝑒𝑐𝑡 (󵄩󵄩󵄩󵄩∇𝜓 (𝑥1, 𝑥2, 0)󵄩󵄩󵄩󵄩2𝐿2
+ 󵄩󵄩󵄩󵄩∇𝜑 (𝑥1, 𝑥2, 0)󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩𝜓 (𝑥1, 𝑥2, 0)󵄩󵄩󵄩󵄩2𝐿2) + 2𝜖𝑒𝑐𝑡
󳨀→ 0.

(45)

As 𝜑 → 𝜑1, 𝜓 → 𝜓1 in the sense of 𝐿2(𝜕Ω)⋂𝐿∞(𝜕Ω)
and ‖𝜑0(𝑥)‖𝐿2 → 0, ‖∇𝜑0(𝑥)‖𝐿2 → 0, ‖𝜓0(𝑥)‖𝐿2 → 0,‖∇𝜓0(𝑥)‖𝐿2 → 0, in the sense of 𝐿2(Ω). Definition 4 is satis-
fied. So we reach the Lyapunov stability of the steady state
solutions in finite time.

6. Conclusions

In this paper, we studied the symmetry groups by using the
classical Lie Group method to structural equation solutions.
First, we perform Lie symmetry analysis for the MHD
equation and get its infinitesimal generator. Then, we obtain
many solutions by it. It can be seen by the results of this paper
that the LieGroupmethod is an effectivemethod for studying
nonlinear partial differential equations.
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