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We obtain a lower bound on the eigenvalue of smallest modulus associated with a Dirichlet problem in the general case of a regular
Sturm-Liouville problem. The main motivation for this study is the result obtained by Mingarelli (1988).

1. Introduction

In this paper, we derive some lower bound for an eigenvalue
of the smallestmodulus (not necessarily unique) correspond-
ing to the problem

−𝑢



(𝑥) + 𝑞 (𝑥) 𝑢 (𝑥) = 𝜆𝑟 (𝑥) 𝑢 (𝑥) , 𝑎 ≤ 𝑥 ≤ 𝑏,
(1)

𝑢 (𝑎) = 𝑢 (𝑏) = 0, (2)

consolidating the results obtained by Mingarelli [1]. In the
paper a lower bound for the eigenvalue of the smallest
modulus was obtained under the assumptions that 𝑞, 𝑟 :

[𝑎, 𝑏] → R, 𝑟 ∈ 𝐿

∞
(𝑎, 𝑏), 𝑞 ∈ 𝐿

∞
(𝑎, 𝑏), |𝑟(𝑥)| > 0 a.e.

on (𝑎, 𝑏), and that 𝑞(𝑥) and 𝑟(𝑥) take on both positive and
negative values on (𝑎, 𝑏). The parameter 𝜆 ∈ C is called
an eigenvalue and corresponding function 𝑢 not identically
zero on [𝑎, 𝑏] is called an eigenfunction. The eigenfunctions
corresponding to real eigenvalues can be labeled in such a
way that 𝑢

𝑛
(𝑥) = 𝑢(𝑥, 𝜆

𝑛
) and 𝑢

𝑛
(𝑥) has |𝑛| zeros in (𝑎, 𝑏),

𝑛 = . . . , −2, −1, 0, 1, 2, . . .. Therefore the eigenvalue of the
smallest modulus will be labeled 𝜆

0
and the corresponding

eigenfunction 𝑢
0
(𝑥) has no zero in (𝑎, 𝑏). In this paper we

assume in general that 𝜆 = 0 is not an eigenvalue. Our studies
here are an extension of the results in [1] to the case where
the assumption on the coefficient function 𝑞(𝑥) is replaced

by the more general assumption that 𝑞 ∈ 𝐿

1
(𝑎, 𝑏). We use

the Fredholm integral operator associated with (1)-(2) in the
Hilbert space𝐿2

|𝑟|
(𝑎, 𝑏) ≡H and use the estimates on its norm

and the H-norms of solutions of a Cauchy problem related
to (1)-(2). We consider the general weighted Sturm-Liouville
problem which is the case in which the coefficient functions
𝑞(𝑥) and 𝑟(𝑥) have no sign restrictions imposed on them.The
weight function 𝑟(𝑥) plays a critical role in the nature of 𝜆

0
.

In the next subsection we give a brief outline of the three
different cases that arise as one varies the signs of the weight
function 𝑟(𝑥) and the coefficient function 𝑞(𝑥).

(1) Preliminary Results. When 𝑟(𝑥) > 0 and 𝑞(𝑥) takes
on both positive and negative values on the interval (𝑎, 𝑏),
problem (1)-(2) is right definite and only one sequence of
real eigenvalues 𝜆

𝑛
exists with 𝜆

𝑛
→ ∞ as 𝑛 → ∞.

For more information on this case, we refer the interested
reader to [2–4] and so forth and the references within.
Particularly, Everitt et al. [2, theorem 0] outline oscillation
properties of eigenfunctions of the right definite problem. In
the right definite case 𝜆

0
is the smallest eigenvalue with the

corresponding eigenfunction having no zero in the interval
(𝑎, 𝑏).

When 𝑞(𝑥) ≥ 0 a.e. and 𝑟(𝑥) takes on both signs on sets
of positive Lebesgue measure, the problem is left definite.
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For more details see, for example, [4–6] and the references
therein. In this case two sequences of real eigenvalues 𝜆±

𝑛

exist where 𝜆±
𝑛
→ ±∞, one positive and the other negative,

and 𝜆
0
is then the first positive (and or negative) eigenvalue

(whose eigenfunction is positive on (𝑎, 𝑏)) labeled according
to a Sturm oscillation theorem.

When 𝑞(𝑥) < 0 a.e and 𝑟(𝑥) changes sign, problem
(1)-(2) is nondefinite (or indefinite). In this case, nonreal
eigenvalues may exist and so 𝜆

0
may be either real or nonreal.

In the nondefinite case, if 𝜆
0
is real, then the corresponding

eigenfunction can have any number of zeros on the interval
(𝑎, 𝑏) in contrast with the other two cases. There is a lot of
literature covering this case (see, e.g., [4, 7, 8] and references
therein). More studies are carried out on existence and
estimation of nonreal eigenvalues in the recent papers [9–
13] and so forth. In some of these papers upper and lower
bounds on the nonreal eigenvalues of indefinite Sturm-
Liouville problems are estimated and the existence of nonreal
eigenvalues is discussed in others.

The discreteness of the spectrum for problem (1)-(2) and
the assumption that 𝜆 = 0 is not an eigenvalue of the problem
guarantees the existence of such an eigenvalue 𝜆

0
. Moreover,

this eigenvalue is not unique, since there exist problems
where the real spectrum is symmetric about zero in the left
definite case. In fact even when nonreal eigenvalues exist,
they appear in conjugate pairs; hence the nonreal spectrum
is symmetric about the 𝑥-axis.

The assumption that𝜆 = 0 is not an eigenvalue of problem
(1)-(2) is equivalent to the fact that the problem consisting of
the equation

−𝑦



(𝑥) + 𝑞 (𝑥) 𝑦 (𝑥) = 0
(3)

and the boundary conditions (2) admits a unique Green’s
function, 𝐺(𝑥, 𝑡), defined and continuous over 𝐼 ≡ [𝑎, 𝑏] ×

[𝑎, 𝑏]. We define the inner product onH by

(𝑓, 𝑔) = ∫

𝑏

𝑎

𝑓 (𝑥) 𝑔 (𝑥) |𝑟 (𝑥)| 𝑑𝑥, 𝑓, 𝑔 ∈H,

(4)

and the associated norm ‖ ⋅ ‖ is given by









𝑓









= (∫

𝑏

𝑎









𝑓 (𝑥)









2

|𝑟 (𝑥)| 𝑑𝑥)

1/2

.

(5)

Green’s function for problem (3)-(2) takes the form

𝐺 (𝑥, 𝑡) =

{

{

{

{

{

{

{

𝑦 (𝑥) 𝑧 (𝑡)

𝑦 (𝑏)

, if 𝑥 ∈ [𝑎, 𝑡] ,
𝑦 (𝑡) 𝑧 (𝑥)

𝑦 (𝑏)

, if 𝑥 ∈ [𝑡, 𝑏] ,
(6)

where 𝑦, 𝑧 are (real) linearly independent solutions of (3)
satisfying the initial conditions

𝑦 (𝑎) = 0;

𝑦



(𝑎) = 1,

(7)

𝑧 (𝑏) = 0;

𝑧



(𝑏) = 1,

(8)

respectively. In a lot of literature (see. e.g.. [14]) it is shown
that the spectral problem (1)-(2) can be reduced to a single
eigenvalue equation

𝑇𝑢 = 𝜇𝑟 (𝑥) 𝑢, (9)

where the operator 𝑇 is defined by

(𝑇𝑓) (𝑥) = ∫

𝑏

𝑎

𝐺 (𝑥, 𝑡) 𝑓 (𝑡) 𝑟 (𝑡) 𝑑𝑡

(10)

onH.Here𝐺 is Green’s function associatedwith problem (1)-
(2), |𝑟(𝑥)| > 0, and 𝜇 = −1/𝜆. That is, 𝑢 is an eigenfunction
of problem (1)-(2) if and only if 𝑢 is an eigenfunction of 𝑇
associated with the eigenvalue −1/𝜆.

2. The Main Results

We start by stating two important lemmas from [1] whose
results we will use in proving the results in this section. We
present the lemmas without proof and refer the interested
reader to the cited paper.

Lemma 1. The linear operator 𝑇 defined by (10) mapsH into
H and is a bounded (compact but not necessarily self-adjoint)
operator onH whose operator norm, ‖𝑇‖, is given by

‖𝑇‖ = (∫∫

𝐼

|𝐺 (𝑥, 𝑡)|

2

|𝑟 (𝑥)| |𝑟 (𝑡)| 𝑑𝑥 𝑑𝑡)

1/2

.

(11)

In the same paper it is also shown that an eigenvalue 𝜆
0
of

problem (1)-(2) having the smallestmodulus admits the lower
bound









𝜆

0









≥

1

‖𝑇‖

. (12)

Lemma 2. An eigenvalue 𝜆
0
of (1)-(2) of the smallest modulus

satisfies









𝜆

0









≥









𝑦 (𝑏)









(

√

2









𝑦









‖𝑧‖)

−1

,

(13)

where 𝑦, 𝑧 are given in (6), (7), and (8), and ‖𝑦‖, ‖𝑧‖ are their
respectiveH-norms.

We now give a variant of lemma 4 in [1].

Lemma 3. Let 𝑦(𝑥, 𝑞) denote the solution of the Cauchy
problem

− 𝑦



(𝑥) + 𝑞 (𝑥) 𝑦 (𝑥) = 0, 𝑎 ≤ 𝑥 ≤ 𝑏,
(14)

𝑦 (𝑎) = 0;

𝑦



(𝑎) = 1,

(15)

𝐵 (𝑐) = {𝑞 : [𝑎, 𝑏] → R, 𝑞 ∈ 𝐿
1

(𝑎, 𝑏) ,









𝑞







1
= 𝑐} . (16)

Then for fixed 𝑥 in [𝑎, 𝑏],

sup
𝑞∈𝐵(𝑐)









𝑦 (𝑥, 𝑞)









≤ (𝑥 − 𝑎) 𝑒

𝑐(𝑥−𝑎)
. (17)
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Similarly, if 𝑧(𝑥, 𝑞) denotes the solution of (14) satisfying

𝑧 (𝑏) = 0;

𝑧



(𝑏) = 1,

(18)

then for fixed 𝑥 in [𝑎, 𝑏],

sup
𝑞∈𝐵(𝑐)









𝑧 (𝑥, 𝑞)









≤ (𝑏 − 𝑥) 𝑒

𝑐(𝑏−𝑥)
. (19)

Proof. To prove (17), we use the integral representation of
(14)-(15) which is given by

𝑦 (𝑥) = 𝑥 − 𝑎 + ∫

𝑥

𝑎

(𝑥 − 𝑠) 𝑞 (𝑠) 𝑦 (𝑠) 𝑑𝑠.
(20)

From this we get the Neumann series expansion of 𝑦 which
is given by the terms below.

𝐴

0
= 𝑥 − 𝑎,

𝐴

1
= ∫

𝑥

𝑎

(𝑥 − 𝑠

1
) (𝑠

1
− 𝑎) 𝑞 (𝑠

1
) 𝑑𝑠

1
,









𝐴

1









≤

(𝑥 − 𝑎)

2

2

2









𝑞







1
,

𝐴

2
= ∫

𝑥

𝑎

∫

𝑠
1

𝑎

(𝑥 − 𝑠

1
) (𝑠

1
− 𝑠

2
) (𝑠

2
− 𝑎) 𝑞 (𝑠

1
)

⋅ 𝑞 (𝑠

2
) 𝑑𝑠

2
𝑑𝑠

1
,









𝐴

2









≤

(𝑥 − 𝑎)

3

3

3









𝑞









2

1
,

𝐴

3
= ∫

𝑥

𝑎

∫

𝑠
1

𝑎

∫

𝑠
2

𝑎

(𝑥 − 𝑠

1
) (𝑠

1
− 𝑠

2
) (𝑠

2
− 𝑠

3
) (𝑠

3
− 𝑎)

⋅ 𝑞 (𝑠

1
) 𝑞 (𝑠

2
) 𝑞 (𝑠

3
) 𝑑𝑠

3
𝑑𝑠

2
𝑑𝑠

1
,









𝐴

3









≤

(𝑥 − 𝑎)

4

4

4









𝑞









3

1
.

(21)

Generally,

𝐴

𝑛
= ∫

𝑅
𝑛

𝑛

∏

𝑖=0

(𝑠

𝑖
− 𝑠

𝑖+1
) 𝑄 (𝑠) 𝑑𝑠, 𝑛 ≥ 1, (22)

where
𝑅

𝑛
= {(𝑠

1
, 𝑠

2
, . . . , 𝑠

𝑛
) : 𝑎 ≤ 𝑠

1
≤ 𝑥, 𝑎 ≤ 𝑠

𝑖
≤ 𝑠

𝑖−1
, 𝑖

= 2, 3, 4, . . . , 𝑛} ,

𝑄 (𝑠) = 𝑄 (𝑠

1
, 𝑠

2
, . . . , 𝑠

𝑛
) = 𝑞 (𝑠

1
) 𝑞 (𝑠

2
) ⋅ ⋅ ⋅ 𝑞 (𝑠

𝑛
) ,

𝑑𝑠 = 𝑑𝑠

𝑛
𝑑𝑠

𝑛−1
⋅ ⋅ ⋅ 𝑑𝑠

1
,

𝑠

0
= 𝑥,

𝑠

𝑛+1
= 𝑎.

(23)

If ‖𝑞‖
1
= 𝑐 similar working as above yields the upper

bound








𝐴

𝑛









≤ 𝑐

𝑛
(

𝑥 − 𝑎

𝑛 + 1

)

𝑛+1

, 𝑛 ≥ 1.

(24)

Therefore we have that









𝑦 (𝑥)









=





















𝑥 − 𝑎 +

∞

∑

𝑛=1

𝐴

𝑛





















≤ |𝑥 − 𝑎| +

∞

∑

𝑛=1









𝐴

𝑛









≤ 𝑥 − 𝑎 +

∞

∑

𝑛=1

𝑐

𝑛
(

𝑥 − 𝑎

𝑛 + 1

)

𝑛+1

= (𝑥 − 𝑎)

∞

∑

𝑛=0

𝑐

𝑛
(𝑥 − 𝑎)

𝑛

(𝑛 + 1)

𝑛+1

< (𝑥 − 𝑎)

∞

∑

𝑛=0

𝑐

𝑛 (𝑥 − 𝑎)
𝑛

𝑛!

,

(25)

and the series
∞

∑

𝑛=0

𝑐

𝑛 (𝑥 − 𝑎)
𝑛

𝑛!

(26)

converges, so the Neumann series converges too. This yields
that









𝑦 (𝑥)









< (𝑥 − 𝑎) 𝑒

𝑐(𝑥−𝑎)
,

(27)

and the bound in (17) is established.
Similarly, the integral representation of (14)–(18) is given

by

𝑧 (𝑥) = 𝑥 − 𝑏 + ∫

𝑏

𝑥

(𝑠 − 𝑥) 𝑞 (𝑠) 𝑦 (𝑠) 𝑑𝑠.

(28)

The corresponding Neumann series is given by the terms

𝐵

0
= 𝑏 − 𝑥,

𝐵

𝑛
= ∫

𝑅
𝑛

𝑛

∏

𝑖=0

(𝑠

𝑖
− 𝑠

𝑖+1
) 𝑄 (𝑠) 𝑑𝑠, 𝑛 ≥ 1,

(29)

where
𝑅

𝑛
= {(𝑠

1
, 𝑠

2
, . . . , 𝑠

𝑛
) : 𝑥 ≤ 𝑠

1
≤ 𝑏, 𝑎 ≤ 𝑠

𝑖
≤ 𝑠

𝑖−1
, 𝑖

= 2, 3, 4, . . . , 𝑛} ,

𝑄 (𝑠) = 𝑄 (𝑠

1
, 𝑠

2
, . . . , 𝑠

𝑛
) = 𝑞 (𝑠

1
) 𝑞 (𝑠

2
) ⋅ ⋅ ⋅ 𝑞 (𝑠

𝑛
) ,

𝑑𝑠 = 𝑑𝑠

𝑛
𝑑𝑠

𝑛−1
⋅ ⋅ ⋅ 𝑑𝑠

1
,

𝑠

0
= 𝑏,

𝑠

𝑛+1
= 𝑥,









𝐵

𝑛









≤ 𝑐

𝑛
(

𝑏 − 𝑥

𝑛 + 1

)

𝑛+1

, 𝑛 ≥ 1.

(30)

Hence,

|𝑧 (𝑥)| =





















𝑏 − 𝑥 +

∞

∑

𝑛=1

𝐵

𝑛





















≤ |𝑏 − 𝑥| +

∞

∑

𝑛=1









𝐵

𝑛









≤ 𝑏 − 𝑥 +

∞

∑

𝑛=1

𝑐

𝑛
(

𝑏 − 𝑥

𝑛 + 1

)

𝑛+1

< (𝑏 − 𝑥)

∞

∑

𝑛=0

𝑐

𝑛 (𝑏 − 𝑥)
𝑛

𝑛!

,

(31)
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which yields that

|𝑧 (𝑥)| < (𝑏 − 𝑥) 𝑒

𝑐(𝑏−𝑥)
,

(32)

and the bound in (19) is established.

The results in Lemma 3 lead to the estimation of the H-
norm of the solutions𝑦, 𝑧, which leads to the following result.

Lemma 4. Let 𝑦, 𝑧 denote the two linearly independent
solutions of (14) satisfying (15) and (18), respectively. Then

sup
𝑞∈𝐵(𝑐)









𝑦 (𝑥, 𝑞)









≤ (∫

𝑏

𝑎

((𝑥 − 𝑎) 𝑒

𝑐(𝑥−𝑎)
)

2

|𝑟 (𝑥)| 𝑑𝑥)

1/2

,

(33)

sup
𝑞∈𝐵(𝑐)









𝑧 (𝑥, 𝑞)









≤ (∫

𝑏

𝑎

((𝑏 − 𝑥) 𝑒

𝑐(𝑏−𝑥)
)

2

|𝑟 (𝑥)| 𝑑𝑥)

1/2

.

(34)

Proof. We prove the results by calculating theH-norms of 𝑦
and 𝑧, and use the bounds in Lemma 3 as shown below.









𝑦 (𝑥, 𝑞)









= (∫

𝑏

𝑎









𝑦 (𝑥, 𝑞)









2

|𝑟 (𝑥)| 𝑑𝑥)

1/2

< (∫

𝑏

𝑎

(𝑥 − 𝑎)

2
𝑒

2𝑐(𝑥−𝑎)

|𝑟 (𝑥)| 𝑑𝑥)

1/2

.

(35)

Taking the supremumon ‖𝑦(𝑥, 𝑞)‖ in the inequality yields the
bound in (33). A similar procedure yields (34).

Applying the results in Lemma 4 to the lower bound in
(13), we get the main result which is a variant of theorem 1 in
[1].

Theorem 5. Let ‖𝑞‖
1
= 𝑐. Then for problem (1)-(2), an

eigenvalue 𝜆
0
of the smallest modulus may be estimated by









𝜆

0









≥









𝑦 (𝑏)









(

√

2











(𝑥 − 𝑎) 𝑒

𝑐(𝑥−𝑎)


















(𝑏 − 𝑥) 𝑒

𝑐(𝑏−𝑥)








)

−1

,

𝑥 ∈ (𝑎, 𝑏) ,

(36)

where 𝑦(𝑏) is the solution of the Cauchy problem (14)-(15)
evaluated at 𝑥 = 𝑏.

2.1. Examples. Here we give examples to verify if the inequal-
ity in (36) really holds.Without loss of generality, we consider
the case where 𝑞(𝑥) = 𝑞

0
∈ R on the interval [−1, 1]. In this

case, (36) becomes








𝜆

0









≥









𝑦 (1)









(

√

2











(𝑥 + 1) 𝑒

𝑐(𝑥+1)


















(1 − 𝑥) 𝑒

𝑐(1−𝑥)








)

−1

,

(37)

where 𝑐 = (∫1
−1
|𝑞

0
|)

1/2. The eigenvalues are found using the
Maple© package RootFinding(Analytic).

Example 1 (the case 𝑞
0
= −6𝜋

2 and 𝑟(𝑥) changes sign). We
consider the problems

𝑦


+ 6𝜋

2
𝑦 = 0,

𝑦 (−1) = 0,

𝑦



(−1) = 1,

(38)

𝑦


+ 6𝜋

2
𝑦 = −𝜆𝑟 (𝑥) 𝑦,

𝑦 (−1) = 0 = 𝑦 (1) ,

(39)

where

𝑟 (𝑥) =

{

{

{

−1, if 𝑥 ∈ (−1, 0) ,

1, if 𝑥 ∈ (0, 1) .
(40)

The solution to the problem in (38) is 𝑦(𝑥) = sin√6𝜋(𝑥 +
1)/(

√

6𝜋) and so

𝑦 (1) =

(sin (2√6𝜋))

(

√

6𝜋)

. (41)

Substituting in (37) yields that 𝜆
0
≥ 3.048×10

−11, and solving
problem (39) gives the spectrum to be

. . . , −157, −67.2, −52.2, −14.3 ± 11.8𝚤, 14.3

± 11.8𝚤, 52.2, 67.2, 157.8, . . . .

(42)

From the spectrum we see that 𝜆
0
is not unique in this

particular case since | − 14.3 ± 11.8𝚤| and |14.3 ± 11.8𝚤| all give
the smallest modulus which is 18.5. Therefore, |𝜆

0
| = 18.5

and (37) is satisfied.

Example 2 (the case 𝑞
0
= 6𝜋

2 and 𝑟(𝑥) changes sign). We
consider the problems

−𝑦


+ 6𝜋

2
𝑦 = 0,

𝑦 (−1) = 0,

𝑦



(−1) = 1,

(43)

−𝑦


+ 6𝜋

2
𝑦 = 𝜆𝑟 (𝑥) 𝑦,

𝑦 (−1) = 0 = 𝑦 (1) ,

(44)

where 𝑟(𝑥) is as given in Example 1.
The solution to the problem in (43) is 𝑦(𝑥) =

sinh√6𝜋(𝑥 + 1)/(√6𝜋) and so 𝑦(1) = sinh 2√6𝜋/(√6𝜋).
Substituting in (37) yields that 𝜆

0
≥ 0.000236, and solving

problem (44) gives the spectrum to be

. . . , −137.7, −93.3, −67.6, −59.2, 67.6, 93.3, 137.7, . . . . (45)

From the spectrum we see that |𝜆
0
| = 59.2 and (37) is

satisfied.
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Example 3 (the case 𝑞
0
= 6𝜋

2 and 𝑟(𝑥) ≡ 1). Here we con-
sider problem (43) and the problem

𝑦


+ (𝜆 − 6𝜋

2
) 𝑦 = 0,

𝑦 (−1) = 0 = 𝑦 (1) .

(46)

Solving problem (46) gives the spectrum to be

61.7, 81.4, 120.9, 180.1, . . . , (47)

and clearly, (37) is satisfied since 𝜆
0
= 61.7.

3. Conclusion

In this paper, we undertook a study that consolidates results
obtained in [1] where a lower bound for an eigenvalue 𝜆

0

of smallest modulus is obtained under the assumption that
𝑞(𝑥) ∈ 𝐿

∞
(𝑎, 𝑏). In this paper, we have considered the general

case where 𝑞(𝑥) ∈ 𝐿

1
(𝑎, 𝑏) in which we obtain different

bounds for the eigenvalue 𝜆
0
. As can be seen from Examples

1, 2, and 3 the result holds.
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Liouville problems,” Proceedings of the Royal Society of Edin-
burgh A: Mathematics, vol. 133, no. 3, pp. 639–652, 2003.

[8] A. B.Mingarelli, “Indefinite Sturm-Liouville problems,” inOrdi-
nary and Partial Differential Equations, W. N. Everitt and B. D.
Sleeman, Eds., vol. 964 of LectureNotes inMathematics, pp. 519–
528, Springer, Berlin, Germany, 1982.

[9] J. Behrndt, S. Chen, F. Philipp, and J. Qi, “Bounds on non-real
eigenvalues of indefinite Sturm-Liouville problems,” Proceed-
ings in Applied Mathematics and Mechanics, vol. 13, no. 1, pp.
525–526, 2013.

[10] J. Qi and S. Chen, “A priori bounds and existence of non-real
eigenvalues of indefinite Sturm-Liouville problems,” Journal of
Spectral Theory, vol. 4, no. 1, pp. 53–63, 2014.

[11] J. Behrndt, F. Philipp, and C. Trunk, “Bounds on the non-
real spectrum of differential operators with indefinite weights,”
Mathematische Annalen, vol. 357, no. 1, pp. 185–213, 2013.

[12] J. Behrndt, S. Chen, F. Philipp, and J. Qi, “Estimates on
the non-real eigenvalues of regular indefinite Sturm-Liouville
problems,” Proceedings of the Royal Society of Edinburgh—
Section A.: Mathematics, vol. 144, no. 6, pp. 1113–1126, 2014.

[13] J. Qi, B. Xie, and S. Chen, “The upper and lower bounds on
non-real eigenvalues of indefinite Sturm-Liouville problems,”
Proceedings of the American Mathematical Society, vol. 144, no.
2, pp. 547–559, 2016.

[14] M. A. Al-Gwaiz, Sturm-Liouville Theory and Its Applications,
SpringerUndergraduateMathematics Series, Springer, London,
UK, 2008.


