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This paper investigates the existence and uniqueness of solution for a class of nonlinear fractional differential equations of fractional
order 0 < 𝛼 ≤ 1 in arbitrary time scales. The results are established using extensions of Krasnoselskii-Krein, Rogers, and Kooi
conditions.

1. Introduction

This work concerns the investigation of sufficient conditions
for the existence and uniqueness of the solution of the fol-
lowing initial value problem with fractional derivative up to
the first order on arbitrary time scales:

T
𝑡
𝐷
𝛼

𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) ,

𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝑎]

T
, 0 < 𝛼 ≤ 1,

T
𝑡
𝐼
1−𝛼

𝑢 (𝑡
0
) = 0,

(1)

where T
𝑡
𝐷
𝛼 is the (left) Riemann-Liouville fractional deriva-

tive of order 𝛼 on time scales T , T
𝑡
𝐼 is the Riemann-Liouville

fractional integral on time scales, and [𝑡
0
, 𝑡
0
+𝑎]T is an interval

on T . We assume that 𝑓 is a right-dense continuous function.
The theory of time scales calculus allows us to study

the dynamic equations, which include both difference and
differential equations, both of which are very important in
implementing applications; for further information about the
theoretical and potential applications of the theory of time
scales, we refer the reader to [1–8] and the survey [9].

The quantitative behaviour of solutions to ordinary dif-
ferential equations on time scales is currently undergoing
active investigations. Many authors studied the existence
and the uniqueness of the solutions of initial and boundary

differential equations; see [8, 10–20] and the references cited
therein. In the papers [21–25], several authors were interested
by the existence and uniqueness of the first-order differential
equations on time scales with initial or boundary conditions
using diverse techniques and conditions. On the other hand,
some existence results for the fractional order differential
equations were obtained in [10].

Our ideas arise from the papers [26–34], especially [30,
31], where the authors usedNagumo andKrasnoselskii-Krein
conditions on the nonlinear term 𝑓, without satisfying Lip-
schitz assumption. Motivated greatly by the above works,
under appropriate time scales versions of the Krasnoselskii-
Krein conditions, we obtain the uniqueness and existence of
solution for the following two classes of differential equations,
namely, the first-order ODE

𝑢
Δ
(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [𝑡

0
, 𝑡
0
+ 𝑎]

T
,

𝑢 (𝑡
0
) = 0,

(2)

and the fractional order FDE:
T
𝑡
𝐷
𝛼

𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) ,

𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝑎]

T
, 0 < 𝛼 ≤ 1,

T
𝑡
𝐼
1−𝛼

𝑢 (𝑡
0
) = 0.

(3)
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The rest of the paper is organized as follows. In Section 2,
we give some definitions and lemmas that will be used in our
work. Section 3 is devoted to the main results; we first estab-
lish the uniqueness of the solution under Krasnoselskii-Krein
conditions for the first-order problem; then we establish the
convergence of the successive approximations to the unique
solution. Later, we prove the uniqueness for the fractional
order problem under some other conditions.

2. Preliminaries

In this section, we recall basic results and definitions in time
scales calculus.

A time scale T is a nonempty closed subset of R. We
assume that card(T) ≥ 2. The forward and backward jump
operators 𝜎, 𝜌 : T → T , are, respectively, defined by

𝜎 (𝑡) = inf {𝑠 ∈ T : 𝑠 > 𝑡} ,

𝜌 (𝑡) = sup {𝑠 ∈ T : 𝑠 < 𝑡} .
(4)

The point 𝑡 ∈ T is left-dense, left-scattered, right-dense, and
right scattered if 𝜌(𝑡) = 𝑡, 𝜌(𝑡) < 𝑡, 𝜎(𝑡) = 𝑡, and 𝜎(𝑡) > 𝑡,
respectively.

We set TK
= T \ {max T} whenever T admits a left-scat-

tered maximum, and TK
= T otherwise. We denote 𝐴T =

𝐴∩ T . An interval of T is defined by 𝐼T , where 𝐼 is an interval
of R.

Definition 1 (delta derivative [1]). Assume 𝑓 : T → R and let
𝑡 ∈ TK. We define

𝑓
Δ
(𝑡) = lim

𝑠→𝑡

𝑓 (𝜎 (𝑠)) − 𝑓 (𝑡)

𝜎 (𝑠) − 𝑡
, 𝑡 ̸= 𝜎 (𝑠) , (5)

provided the limit exists.We call𝑓Δ(𝑡) the delta derivative (or
Hilger derivative) of 𝑓 at 𝑡. Moreover, we say that 𝑓 is delta
differentiable on TK provided 𝑓Δ exists for all 𝑡 ∈ TK. The
function 𝑓Δ : TK

→ R is called the (delta) derivative of 𝑓 on
TK.

Definition 2 (see [10]). A function 𝑓 : T → R is called rd-
continuous provided it is continuous at right-dense points in
T and its left-sided limits exist (finite) at left-dense points in
T .The set of rd-continuous function𝑓 : T → R is denoted by
Crd. Similarly, a function 𝑓 : T → R is called ld-continuous
provided it is continuous at left-dense points in T and its
right-sided limits exist (finite) at right-dense points in T . The
set of ld-continuous function 𝑓 : T → R is denoted by Cld.
For 𝑓 ∈ Crd define ‖𝑓‖ = sup

𝑡∈T |𝑓(𝑡)|. It is easy to see that
Crd is a Banach space with this norm.

Definition 3 (delta antiderivative [10]). A function 𝐹 : [𝑎,
𝑏]T → R is called a delta antiderivative of a function 𝑓 :
[𝑎, 𝑏)T → R provided 𝐹 is continuous on [𝑎, 𝑏]T , delta differ-
entiable on [𝑎, 𝑏)T , and 𝐹

𝛿
(𝑡) = 𝑓(𝑡) for all 𝑡 ∈ [𝑎, 𝑏)T . Then,

we define the Δ-integral of 𝑓 from 𝑎 to 𝑏 by

∫

𝑏

𝑎

𝑓 (𝑡) Δ𝑡 ≜ 𝐹 (𝑏) − 𝐹 (𝑎) . (6)

Lemma 4. Let 𝑓 be an increasing continuous function on the
[𝑎, 𝑏]T . We define the extension 𝑓̃ of𝑓 to the real interval [𝑎, 𝑏]
by

𝑓̃ (𝑠) ≜

{

{

{

𝑓 (𝑠) 𝑖𝑓 𝑠 ∈ T ,

0 𝑖𝑓 𝑠 ∈ (𝑡, 𝜎 (𝑡)) ∉ T .
(7)

Then

∫

𝑏

𝑎

𝑓 (𝑡) Δ𝑡 ≤ ∫

𝑏

𝑎

𝑓̃ (𝑡) 𝑑𝑡,

𝑓̃
Δ

(𝑡) = 𝑓
Δ
(𝑡) , 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑡 ∈ (𝑎, 𝑏)T .

(8)

Lemma 5. Let 𝑦 : [𝑡
0
, 𝑡
0
+ 𝑎]T → R be continuous. Then the

general solution of the differential equation

𝑢
Δ
(𝑡) = 𝑦 (𝑡) (9)

is given by

𝑢 (𝑡) = 𝑢 (𝑡
0
) + ∫

𝑡

𝑡0

𝑦 (𝑠) Δ𝑠, 𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝑎]

T
. (10)

Proof. Lemma5 is an immediate consequence ofTheorem 4.1
[5].

Definition 6 (fractional integral on time scales [10]). Suppose
T is a time scale, [𝑎, 𝑏] is an interval of T , and ℎ is an integrable
function on [𝑎, 𝑏]. Let 0 < 𝛼 < 1. Then the (left) fractional
integral of order 𝛼 of ℎ is defined by

T
𝑎
𝐼
𝛼

𝑡
ℎ (𝑡) = ∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
ℎ (𝑠) Δ𝑠, (11)

where Γ is the gamma function.

Definition 7 (fractional Riemann-Liouville derivative on time
scales [10]). Let T be a time scale, 𝑡 ∈ T , 0 < 𝛼 < 1, and ℎ :
T → R. Then the (left) Riemann-Liouville fractional deriv-
ative of order 𝛼 of ℎ is defined by

T
𝑎
𝐷
𝛼

𝑡
ℎ (𝑡) =

1

Γ (1 − 𝛼)
(∫

𝑡

𝑎

(𝑡 − 𝑠)
−𝛼
ℎ (𝑠) Δ𝑠)

Δ

. (12)

For the sake of simplicity, we use the following notation
T
𝑡
𝐼
𝛼 and T

𝑡
𝐷
𝛼 instead of T

𝑡0
𝐼
𝛼

𝑡
and T
𝑡0
𝐷
𝛼

𝑡
, respectively, whenever

𝑎 = 𝑡
0
.

Lemma 8 (see [10]). For any function 𝑓 integrable on [𝑡
0
, 𝑡
0
+

𝑎]T one has the following:

(
T
𝑡
𝐷
𝛼

∘
T
𝑡
𝐼
𝛼

) (𝑓) = 𝑓. (13)

Lemma 9 (see [10]). Let 𝑓 ∈ 𝐶([𝑡
0
, 𝑡
0
+ 𝑎]T ) and 0 < 𝛼 < 1.

If T
𝑡
𝐼
1−𝛼

𝑓(𝑡)|
𝑡=𝑡0
= 0, then

(
T
𝑡
𝐼
𝛼

∘
T
𝑡
𝐷
𝛼

) (𝑓) = 𝑓. (14)
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Lemma 10 (see [10]). Let 0 < 𝛼 < 1 and𝑓 : [𝑡
0
, 𝑡
0
+𝑎]T ×R→

R. The function 𝑢 is a solution of problem (2) if and only if it is
a solution of the following integral equation:

𝑢 (𝑡) =
1

Γ (𝛼)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1
𝑓 (𝑠, 𝑢 (𝑠)) Δ𝑠,

𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝑎]

T
.

(15)

Lemma 11 (see [31]). The solution of the equation

𝑅𝐿
𝐷
𝛼

𝑡0
𝑅 (𝑡) = [𝑅 (𝑡)]

𝛿 (16)

is given by

𝑅 (𝑡) = 𝐿 (𝑡 − 𝑡
0
)
𝜎

, (17)

where 𝐿 = (Γ(1−𝛼))1/(1−𝛿) and 𝜎 = 𝛼/(1−𝛿) and
𝑅𝐿
𝐷
𝛼

𝑡0
is the

fractional Riemann-Liouville derivative of order 𝛼 ∈ (0, 1) on
the interval [𝑡

0
, 𝑡
0
+ 𝑎]; see [35].

3. Main Results

In the following, we denote 𝑆
0
= {(𝑡, 𝑥) : 𝑡 ∈ [𝑡

0
, 𝑡
0
+ 𝑎]T ,

|𝑥| ≤ 𝑏, 𝑎, 𝑏 ∈ R+}.

3.1. Uniqueness Results for First-Order ODE

Theorem 12 (Krasnoselskii-Krein conditions). Let 𝑓(𝑡, 𝑥) be
continuous in 𝑆

0
and for all (𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝑆

0
satisfying

(H1) |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑥)| ≤ 𝑘|𝑡 − 𝑡
0
|
−1
|𝑥 − 𝑥|, 𝑡 ̸= 𝑡

0
,

(H2) |𝑓(𝑡, 𝑥)−𝑓(𝑡, 𝑥)| ≤ 𝑐|𝑥−𝑥|𝛿, where 𝑐 and 𝑘 are positive
constants; the real number 𝛿 is such that 0 < 𝛿 < 1, and
𝑘(1 − 𝛿) < 1.

Then, the first-order initial value problem (2) has at most one
solution on [𝑡

0
, 𝑡
0
+ 𝑎]T .

Proof. Suppose 𝑢 and V are two solutions of (2) in [𝑡
0
, 𝑡
0
+𝑎]T .

We will show that 𝑢 ≡ V. Let us define 𝜙(𝑡) and 𝑅(𝑡) by

𝜙 (𝑡) = |𝑢 (𝑡) − V (𝑡)| , for every 𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝑎]

T
,

𝑅 (𝑡) = ∫

𝑡

𝑡0

𝑐𝜙̃
𝛿

(𝑠) 𝑑𝑠, for every 𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝑎] ,

(18)

such that 𝜙̃ is the extension of 𝜙 to the real interval [𝑡
0
, 𝑡
0
+𝑎].

It follows from condition (H2) that

𝜙 (𝑡) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

𝑡0

[𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))] Δ𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑡

𝑡0

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))
󵄨󵄨󵄨󵄨 Δ𝑠

≤ ∫

𝑡

𝑡0

𝑐 |𝑢 (𝑠) − V (𝑠)|𝛿 Δ𝑠 ≤ ∫
𝑡

𝑡0

𝑐 |𝑢̃ (𝑠) − Ṽ (𝑠)|𝛿 𝑑𝑠

= 𝑅 (𝑡) .

(19)

On the other hand, since 𝑅(𝑡
0
) = 0, 𝑅(𝑡) > 0 for 𝑡 > 𝑡

0
, and

𝑅
Δ
(𝑡) = 𝑐𝜙̃

𝛿

(𝑡), for every 𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝑎]T we deduce from (18)

and (19) that

𝑅
󸀠
(𝑡) ≤ 𝑐𝑅

𝛿
(𝑡) , for every 𝑡 ∈ [𝑡

0
, 𝑡
0
+ 𝑎] . (20)

Multiplying both sides of this inequality by (1−𝛿)𝑅1−𝛿(𝑡) and
then integrating the resulting inequality, we obtain

𝑅
1−𝛿
(𝑡) ≤ 𝑐 (1 − 𝛿) (𝑡 − 𝑡

0
) . (21)

It immediately follows that

𝜙 (𝑡) ≤ 𝑐
(1−𝛿)

−1

(1 − 𝛿)
(1−𝛿)

−1

(𝑡 − 𝑡
0
)
(1−𝛿)

−1

. (22)

Moreover, if we define 𝜓(𝑡) = 𝜙(𝑡)/(𝑡 − 𝑡
0
)
𝑘, we get

0 ≤ 𝜓 (𝑡) ≤ 𝑐
(1−𝛿)

−1

(1 − 𝛿)
(1−𝛿)

−1

(𝑡 − 𝑡
0
)
(1−𝛿)

−1
−𝑘

,

for every 𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝑎]

T
.

(23)

It follows that the exponent of 𝑡 in the above inequality is
positive, since 𝑘(1−𝛿) < 1. Hence, lim

𝑡→𝑡0
𝜓(𝑡) = 0.Therefore,

if we define 𝜓(𝑡
0
) = 0, then the function is rd-continuous in

[𝑡
0
, 𝑡
0
+ 𝑎]T .

Now, to prove that𝜙 ≡ 0, we prove by absurdity that𝜓 ≡ 0
on [𝑡
0
, 𝑡
0
+𝑎]T . Assume that𝜓 does not vanish at some points

𝑡; that is,𝜓(𝑡) > 0 on ]𝑡
0
, 𝑡
0
+𝑎]T ; then there exists amaximum

𝑚 > 0 reached when 𝑡 is equal to some 𝑡
1
: 𝑡
0
< 𝑡
1
≤ 𝑡
0
+𝑎 such

that 𝜓(𝑠) < 𝑚 = 𝜓(𝑡
1
), for 𝑠 ∈ [𝑡

0
, 𝑡
1
)T . But from condition

(H1), we have

𝑚 = 𝜓 (𝑡
1
) = (𝑡

1
− 𝑡
0
)
−𝑘

𝜙 (𝑡
1
)

≤ (𝑡
1
− 𝑡
0
)
−𝑘

∫

𝑡1

𝑡0

𝑘 (𝑠 − 𝑡
0
)
−1

𝜙 (𝑠) Δ𝑠

≤ (𝑡
1
− 𝑡
0
)
−𝑘

∫

𝑡1

𝑡0

𝑘 (𝑠 − 𝑡
0
)
𝑘−1

𝜓 (𝑠) Δ𝑠

< 𝑚 (𝑡
1
− 𝑡
0
)
−𝑘

∫

𝑡1

𝑡0

𝑘 (𝑠 − 𝑡
0
)
𝑘−1

Δ𝑠

< 𝑚 (𝑡
1
− 𝑡
0
)
−𝑘

∫

𝑡1

𝑡0

𝑘 (𝑠 − 𝑡
0
)
𝑘−1

𝑑𝑠 < 𝑚,

(24)

which is a contradiction.Thus, the uniqueness of the solution
is established.

Theorem 13 (Kooi’s conditions). Let 𝑓(𝑡, 𝑥) be continuous in
𝑆
0
and satisfying for all (𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝑆

0

(I1) |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑥)| ≤ 𝑘|𝑡 − 𝑡
0
|
−1
|𝑥 − 𝑥|, 𝑡 ̸= 𝑡

0
,

(I2) |𝑡− 𝑡
0
|
𝛽
|𝑓(𝑡, 𝑥)−𝑓(𝑡, 𝑥)| ≤ 𝑐|𝑥−𝑥|

𝛿, where 𝑐 and 𝑘 are
positive constants; the real numbers 𝛽, 𝛿 are such that
0 < 𝛽 < 𝛿 < 1, and 𝑘(1 − 𝛿) < 1 − 𝛽.

Then, the first-order initial value problem (2) has at most one
solution on [𝑡

0
, 𝑡
0
+ 𝑎]T .

Proof. Theproof is similar to that ofTheorem 12; thuswe omit
it.
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3.2. Existence of the Solution under Krasnoselskii-Krein
Conditions on Time Scales

Theorem 14. Assume that conditions (H1) and (H2) are sat-
isfied; then the successive approximations given by

𝑢
𝑛+1
(𝑡) = ∫

𝑡

𝑡0

𝑓 (𝑠, 𝑢
𝑛
(𝑠)) Δ𝑠,

𝑢
0
(𝑡) = 0, 𝑛 = 0, 1, . . .

(25)

converge uniformly to the unique solution 𝑢 of (2) on [𝑡
0
, 𝑡
0
+

𝜂]T , where 𝜂 = min{𝑎, 𝑏/𝑀}, and𝑀 is the bound for 𝑓 on 𝑆
0
.

Proof. With the uniqueness of the solution being proved in
Theorem 12, we prove the existence of the solution using
Arzela-Ascoli Theorem.

Step 1. The successive approximations {𝑢
𝑛+1
}, 𝑛 = 0, 1, 2, . . .

given by (25) are well defined and continuous. Indeed,

󵄨󵄨󵄨󵄨𝑢𝑛+1 (𝑡)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

𝑡0

𝑓 (𝑠, 𝑢
𝑛
(𝑠)) Δ𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑡

𝑡0

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢𝑛 (𝑠))
󵄨󵄨󵄨󵄨 Δ𝑠. (26)

This yields for 𝑛 = 0

󵄨󵄨󵄨󵄨𝑢1 (𝑡)
󵄨󵄨󵄨󵄨 ≤ ∫

𝑡

𝑡0

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢0 (𝑠))
󵄨󵄨󵄨󵄨 Δ𝑠 ≤ 𝑀𝑡 ≤ 𝑏. (27)

By induction, the sequence {𝑢
𝑗+1
(𝑡)} is well defined and

uniformly bounded on [𝑡
0
, 𝑡
0
+ 𝜂]T .

Step 2.We prove that𝑦 is a continuous function in [𝑡
0
, 𝑡
0
+𝜂]T ,

where 𝑦 is defined by

𝑦 (𝑡) = lim sup
𝑗→∞

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑡) − 𝑢

𝑗−1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
. (28)

For 𝑡
1
, 𝑡
2
∈ [𝑡
0
, 𝑡
0
+ 𝜂]T , we have

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗+1
(𝑡
1
) − 𝑢
𝑗
(𝑡
1
)
󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗+1
(𝑡
2
) − 𝑢
𝑗
(𝑡
2
)
󵄨󵄨󵄨󵄨󵄨

+ 2𝑀 (𝑡
2
− 𝑡
1
) .

(29)

In fact,
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗+1
(𝑡
1
) − 𝑢
𝑗
(𝑡
1
)
󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗+1
(𝑡
2
) − 𝑢
𝑗
(𝑡
2
)
󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗+1
(𝑡
1
) − 𝑢
𝑗
(𝑡
1
) − 𝑢
𝑗+1
(𝑡
2
) + 𝑢
𝑗
(𝑡
2
)
󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡1

𝑡0

(𝑓 (𝑠, 𝑢
𝑗
(𝑠)) − 𝑓 (𝑠, 𝑢

𝑗−1
(𝑠))) Δ𝑠

− ∫

𝑡2

𝑡0

(𝑓 (𝑠, 𝑢
𝑗
(𝑠)) − 𝑓 (𝑠, 𝑢

𝑗−1
(𝑠))) Δ𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2𝑀∫

𝑡2

𝑡1

Δ𝑠 ≤ 2𝑀(𝑡
2
− 𝑡
1
) .

(30)

The right-hand side in inequality (29) is at most 𝑦(𝑡
2
) + 𝜖 +

2𝑀(𝑡
2
− 𝑡
1
) for large 𝑛 if 𝜖 > 0 provided that |𝑡

2
− 𝑡
1
| ≤ 𝜖/2𝑀.

Since 𝜖 is arbitrary and 𝑡
1
, 𝑡
2
can be interchangeable, we get

󵄨󵄨󵄨󵄨𝑦 (𝑡1) − 𝑦 (𝑡2)
󵄨󵄨󵄨󵄨 ≤ 2𝑀 (𝑡2 − 𝑡1) . (31)

This implies that 𝑦 is continuous on [𝑡
0
, 𝑡
0
+ 𝜂]T . Using con-

dition (H2) and the definition of successive approximations,
we obtain

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗+1
(𝑡) − 𝑢

𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐 ∫

𝑡

𝑡0

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑠) − 𝑢

𝑗−1
(𝑠)
󵄨󵄨󵄨󵄨󵄨

𝛼

Δ𝑠. (32)

The sequence {𝑢
𝑛
} is equicontinuous: that is, for each function

𝑢
𝑛
and any 𝜖 > 0, 𝑡

1
, 𝑡
2
∈ [𝑡
0
, 𝑡
0
+ 𝜂]T if there exists 𝜏 = 𝜖/𝑀

such that 𝑡
2
− 𝑡
1
≤ 𝜏, then

󵄨󵄨󵄨󵄨𝑢𝑛+1 (𝑡1) − 𝑢𝑛+1 (𝑡2)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡2

𝑡1

𝑓 (𝑠, 𝑢
𝑛
(𝑠)) Δ𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑡2

𝑡1

󵄨󵄨󵄨󵄨󵄨
𝑓̃ (𝑠, 𝑢

𝑛
(𝑠))
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤ 𝑀(𝑡
1
− 𝑡
2
) ≤ 𝜖.

(33)

All of the Arzela-Ascoli Theorem conditions are fulfilled
for the family {𝑢

𝑗
} in 𝐶rd[𝑡0, 𝑡0 + 𝜂]T . Hence, there exists a

subsequence {𝑢
𝑗𝑘
} converging uniformly on [𝑡

0
, 𝑡
0
+ 𝜂]T as

𝑗
𝑘
→∞.
Let us note

𝑚
∗
(𝑡) = lim
𝑘→∞

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗𝑘
(𝑡) − 𝑢

𝑗𝑘−1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
. (34)

Further, if {|𝑢
𝑗
− 𝑢
𝑗−1
|} → 0 as 𝑗 → ∞, then the limit of any

subsequence is the unique solution 𝑢 of (25). It follows that a
selection of subsequences is unnecessary and that the entire
sequence {𝑢

𝑗
} converges uniformly to 𝑢. For that, it suffices to

show that 𝑦 ≡ 0 which will lead to𝑚∗(𝑡) being null.
Setting

𝑅 (𝑡) = ∫

𝑡

𝑡0

𝑦 (𝑠)
𝛼
𝑑𝑠, (35)

and by defining𝜓∗(𝑡) = 𝑡−𝑘𝑦(𝑡), we show that lim
𝑡→0
+𝜓
∗
(𝑡) =

0.
We prove by absurdity that 𝜓∗ ≡ 0. Assume that 𝜓∗(𝑡) >

0 at any point in ]𝑡
0
, 𝑡
0
+ 𝜂]T ; then there exists 𝑡

1
such that

0 < 𝑚 = 𝜓
∗
(𝑡
1
) = max

𝑡∈[𝑡0 ,𝑡0+𝜂]T
𝜓
∗
(𝑡). Hence, from condition

(H1), we obtain

𝑚 = 𝜓 (𝑡
1
) = 𝑡
−𝑘

1
𝑦 (𝑡
1
) ≤ 𝑚𝑡

1
< 𝑚. (36)

We end up with a contradiction. So 𝜓∗ ≡ 0. Therefore, the
Picard iterates (25) converge uniformly to the unique solution
𝑢 of (2) on [𝑡

0
, 𝑡
0
+ 𝜂]T .

3.3. Uniqueness Results for Fractional Order ODE. In this
section, we denote 𝐶

𝑝
([𝑡
0
, 𝑡
0
+ 𝑎]T ,R) = {𝑢 | 𝑢 ∈ 𝐶([𝑡0, 𝑡0 +

𝑎]T ,R) and (𝑡 − 𝑡0)
1−𝑞
𝑢 ∈ 𝐶([𝑡

0
, 𝑡
0
+ 𝑎]T ,R)}.

Theorem 15 (Krasnoselskii-Krein conditions). Let 𝑓(𝑡, 𝑥) be
continuous in 𝑆

0
and satisfying for all (𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝑆

0

(J1) |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑥)| ≤ 𝑘𝑟Γ(𝛼)|𝑡 − 𝑡
0
|
−𝛼
|𝑥 − 𝑥|, 𝑡 ̸= 𝑡

0
,

(J2) |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑥)| ≤ 𝑐|𝑥 − 𝑥|𝛿, where 𝑐, 𝑟, 𝑘 are positive
constants such that 𝑘 > 1, 𝑘𝑟 ≤ 𝛼, and 𝑘(1 − 𝛿) < 1,
and the real number 𝛿 is such that 0 < 𝛿 < 1.
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Then, the fractional order initial value problem (3) has at most
one solution on [𝑡

0
, 𝑡
0
+ 𝑎]T .

Proof. Suppose 𝑢 and V are two solutions of (3) in [𝑡
0
, 𝑡
0
+𝑎]T .

We will show that 𝑢 ≡ V. Let us define 𝜙(𝑡) and 𝑅(𝑡) by

𝜙 (𝑡) = |𝑢 (𝑡) − V (𝑡)| , for every 𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝑎]

T
,

𝑅 (𝑡) =
𝑐

Γ (𝛼)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1
𝜙̃
𝛿

(𝑠) 𝑑𝑠,

for every 𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝑎] ,

(37)

such that 𝜙̃ is the extension of 𝜙 to the real interval [𝑡
0
, 𝑡
0
+𝑎].

It follows from condition (J2) that

𝜙 (𝑡)

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

Γ (𝛼)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1
[𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))] Δ𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

Γ (𝛼)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1 󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))

󵄨󵄨󵄨󵄨 Δ𝑠

≤
1

Γ (𝛼)
∫

𝑡

𝑡0

𝑐 (𝑡 − 𝑠)
𝛼−1
|𝑢 (𝑠) − V (𝑠)|𝛿 Δ𝑠

≤ ∫

𝑡

𝑡0

𝑐

Γ (𝛼)
(𝑡 − 𝑠)

𝛼−1
|𝑢̃ (𝑠) − Ṽ (𝑠)|𝛿 𝑑𝑠 = 𝑅 (𝑡) .

(38)

On the other hand, 𝑅(𝑡
0
) = 0, 𝑅(𝑡) > 0 for 𝑡 > 𝑡

0
, and

T
𝑡
𝐷
𝛼

𝑅(𝑡) = 𝜙̃
𝛿

(𝑡) = 𝑅
𝛿
(𝑡), for every 𝑡 ∈ [𝑡

0
, 𝑡
0
+𝑎]T . Now from

relations (37) and (38) and using Lemma 11, we obtain for
every 𝑡 ∈ [𝑡

0
, 𝑡
0
+ 𝑎]T

𝜙 (𝑡) ≤ 𝑅 (𝑡) = 𝐿 (𝑡 − 𝑡
0
)
𝜎

, (39)

where 𝐿 and 𝜎 are defined as in Lemma 11. Moreover, if we
define 𝜓(𝑡) = 𝜙(𝑡)/(𝑡 − 𝑡

0
)
𝑘, we get

0 ≤ 𝜓 (𝑡) ≤ 𝐿 (𝑡 − 𝑡
0
)
𝜎−𝑘𝛼

,

for every 𝑡 ∈ [𝑡
0
, 𝑡
0
+ 𝑎]

T
.

(40)

It follows that the exponent of 𝑡 in the above inequality is
positive, since 𝑘(1−𝛿) < 1. Hence, lim

𝑡→𝑡0
𝜓(𝑡) = 0.Therefore,

if we define 𝜓(𝑡
0
) = 0, then the function is rd-continuous in

[𝑡
0
, 𝑡
0
+ 𝑎]T .

Now, to show that 𝜙 ≡ 0, we prove by absurdity that𝜓 ≡ 0
on [𝑡
0
, 𝑡
0
+𝑎]T . Assume that𝜓 does not vanish at some points

𝑡; that is,𝜓(𝑡) > 0 on ]𝑡
0
, 𝑡
0
+𝑎]T ; then there exists amaximum

𝑚 > 0 reachedwhen 𝑡 is equal to some 𝑡
1
: 𝑡
0
< 𝑡
1
≤ 𝑡
0
+𝑎 such

that 𝜓(𝑠) < 𝑚 = 𝜓(𝑡
1
), for 𝑠 ∈ [𝑡

0
, 𝑡
1
)T . But from condition

(J1), we have

𝑚 = 𝜓 (𝑡
1
) = (𝑡

1
− 𝑡
0
)
−𝑘

𝜙 (𝑡
1
) < (𝑡

1
− 𝑡
0
)
−𝑘𝛼

⋅ ∫

𝑡1

𝑡0

𝑘𝑟 (𝑡 − 𝑠)
𝛼−1
[𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))] Δ𝑠

≤ (𝑡
1
− 𝑡
0
)
−𝑘𝛼

∫

𝑡1

𝑡0

𝑘𝑟 (𝑡 − 𝑠)
𝛼−1 𝜙 (𝑠)

(𝑠 − 𝑡
0
)
−𝛼
Δ𝑠

≤ (𝑡
1
− 𝑡
0
)
−𝑘𝛼

∫

𝑡1

𝑡0

𝑘𝑟 (𝑡 − 𝑠)
𝛼−1
(𝑠 − 𝑡
0
)
𝑘𝛼−𝛼

𝜓 (𝑠) Δ𝑠

≤ 𝑚𝑘𝑟 (𝑡
1
− 𝑡
0
)
−𝛼

∫

𝑡1

𝑡0

(𝑡
1
− 𝑠)
𝛼−1

Δ𝑠

≤ 𝑚𝑘𝑟 (𝑡
1
− 𝑡
0
)
−𝛼

∫

𝑡1

𝑡0

(𝑡
1
− 𝑠)
𝛼−1

𝑑𝑠 ≤
𝑚𝑘𝑟

𝛼
< 𝑚,

(41)

which is a contradiction.Thus, the uniqueness of the solution
is established.

Theorem 16 (Kooi’s conditions). Let 𝑓(𝑡, 𝑥) be continuous in
𝑆
0
and satisfying for all (𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝑆

0

(K1) |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑥)| ≤ 𝑘𝑟Γ(𝛼)|𝑡 − 𝑡
0
|
−𝛼
|𝑥 − 𝑥|, 𝑡 ̸= 𝑡

0
,

(K2) |𝑡 − 𝑡
0
|
𝛽
|𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑥)| ≤ 𝑐|𝑥 − 𝑥|

𝛿, where 𝑐, 𝑟, and
𝑘 are positive constants; the positive real numbers 𝛽, 𝛿,
𝑘, 𝑟 are such that 0 < 𝛽 < 𝛿 < 1, and 𝑘(1 − 𝛿) < 1 − 𝛽,
and 𝑘𝑟 ≤ 𝛼.

Then, the first-order initial value problem (3) has at most one
solution on [𝑡

0
, 𝑡
0
+ 𝑎]T .

Proof. The proof is similar to that of Theorem 15; thus, we
omit it.

3.4. Existence of Solutions under Krasnoselskii-Krein
Conditions on Time Scales

Theorem17. Assume that conditions (J1) and (J2) are satisfied;
then the successive approximations given by

𝑢
𝑛+1
(𝑡) = ∫

𝑡

𝑡0

𝑓 (𝑠, 𝑢
𝑛
(𝑠)) Δ𝑠,

𝑢
0
(𝑡) = 0, 𝑛 = 0, 1, . . .

(42)

converge uniformly to the unique solution 𝑢 of (3) on [𝑡
0
, 𝑡
0
+

𝜂]T , where

𝜂 = min{𝑎, (𝑏Γ (1 + 𝛼)
𝑀

)

1/𝛼

} (43)

and𝑀 is the bound for 𝑓 on 𝑆
0
.

Proof. With the uniqueness of the solution being proved in
Theorem 15, we prove the existence of the solution using
Arzela-Ascoli Theorem.

Step 1. The successive approximations {𝑢
𝑛+1
}, 𝑛 = 0, 1, 2, . . .

given by (42) are well defined and continuous. Indeed,

󵄨󵄨󵄨󵄨𝑢𝑛+1 (𝑡)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

Γ (𝛼)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1
𝑓 (𝑠, 𝑢

𝑛
(𝑠)) Δ𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

Γ (𝛼)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1 󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢𝑛 (𝑠))

󵄨󵄨󵄨󵄨 Δ𝑠.

(44)
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This yields, for 𝑛 = 0,

󵄨󵄨󵄨󵄨𝑢1 (𝑡)
󵄨󵄨󵄨󵄨 ≤

𝑀

Γ (𝛼)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1
Δ𝑠

≤
𝑀

Γ (𝛼)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1
𝑑𝑠 ≤

𝑀𝑎
𝛼

Γ (𝛼 + 1)
≤ 𝑏.

(45)

By induction, the sequence {𝑢
𝑗+1
(𝑡)} is well defined and

uniformly bounded on [𝑡
0
, 𝑡
0
+ 𝜂]T .

Step 2.We prove that𝑦 is a continuous function in [𝑡
0
, 𝑡
0
+𝜂]T ,

where 𝑦 is defined by

𝑦 (𝑡) = lim sup
𝑗→∞

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑡) − 𝑢

𝑗−1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
. (46)

For 𝑡
1
, 𝑡
2
∈ [𝑡
0
, 𝑡
0
+ 𝜂]T , we have

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗+1
(𝑡
1
) − 𝑢
𝑗
(𝑡
1
)
󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗+1
(𝑡
2
) − 𝑢
𝑗
(𝑡
2
)
󵄨󵄨󵄨󵄨󵄨

+
4𝑀

Γ (𝛼 + 1)
(𝑡
2
− 𝑡
1
)
𝛼

.

(47)

In fact,
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗+1
(𝑡
1
) − 𝑢
𝑗
(𝑡
1
)
󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗+1
(𝑡
2
) − 𝑢
𝑗
(𝑡
2
)
󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗+1
(𝑡
1
)

− 𝑢
𝑗
(𝑡
1
) − 𝑢
𝑗+1
(𝑡
2
) + 𝑢
𝑗
(𝑡
2
)
󵄨󵄨󵄨󵄨󵄨

≤
1

Γ (𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡1

𝑡0

(𝑡
1
− 𝑠)
𝛼−1

⋅ (𝑓 (𝑠, 𝑢
𝑗
(𝑠)) − 𝑓 (𝑠, 𝑢

𝑗−1
(𝑠))) Δ𝑠

− ∫

𝑡2

0

(𝑡
2
− 𝑠)
𝛼−1

⋅ (𝑓 (𝑠, 𝑢
𝑗
(𝑠)) − 𝑓 (𝑠, 𝑢

𝑗−1
(𝑠))) Δ𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
2𝑀

Γ (𝛼)
[

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡1

0

((𝑡
1
− 𝑠)
𝛼−1

− (𝑡
2
− 𝑠)
𝛼−1

) Δ𝑠

− ∫

𝑡2

𝑡1

(𝑡
2
− 𝑠)
𝛼−1

Δ𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

]

≤
2𝑀

Γ (𝛼)
[

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡1

0

((𝑡
1
− 𝑠)
𝛼−1

− (𝑡
2
− 𝑠)
𝛼−1

) 𝑑𝑠

− ∫

𝑡2

𝑡1

(𝑡
2
− 𝑠)
𝛼−1

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

] ≤
2𝑀

𝛼Γ (𝛼)
[𝑡
𝛼

1
− 𝑡
𝛼

2
+ 2 (𝑡
2

− 𝑡
1
)
𝛼

] ≤
4𝑀

Γ (𝛼 + 1)
(𝑡
2
− 𝑡
1
)
𝛼

.

(48)

The right-hand side in inequality (47) is at most 𝑦(𝑡
2
) + 𝜖 +

(4𝑀/Γ(𝛼 + 1))(𝑡
2
− 𝑡
1
)
𝛼 for large 𝑛 if 𝜖 > 0 provided that

|𝑡
2
− 𝑡
1
| ≤ (𝜖Γ(𝛼 + 1)/4𝑀)

1/𝛼. Since 𝜖 is arbitrary and 𝑡
1
, 𝑡
2

can be interchangeable, we get

󵄨󵄨󵄨󵄨𝑦 (𝑡1) − 𝑦 (𝑡2)
󵄨󵄨󵄨󵄨 ≤

4𝑀

Γ (𝛼 + 1)
(𝑡
2
− 𝑡
1
) . (49)

This implies that 𝑦 is continuous on [𝑡
0
, 𝑡
0
+𝜂]T . Using condi-

tion (J2) and the definition of successive approximations, we
obtain
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗+1
(𝑡) − 𝑢

𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤

𝑐

Γ (𝛼)
∫

𝑡

𝑡0

[
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑠) − 𝑢

𝑗−1
(𝑠)
󵄨󵄨󵄨󵄨󵄨

𝛼

] Δ𝑠. (50)

The sequence {𝑢
𝑛
} is equicontinuous: that is, for each function

𝑢
𝑛
and any 𝜖 > 0, 𝑡

1
, 𝑡
2
∈ [𝑡
0
, 𝑡
0
+ 𝜂]T if there exists 𝜏 =

𝜖
−𝛼
Γ(𝛼 + 1)/𝑀 such that 𝑡

2
− 𝑡
1
≤ 𝜏; then

󵄨󵄨󵄨󵄨𝑢𝑛+1 (𝑡1) − 𝑢𝑛+1 (𝑡2)
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

Γ (𝛼)
∫

𝑡2

𝑡0

(𝑡
2
− 𝑠)
𝛼−1

𝑓 (𝑠, 𝑢
𝑛
(𝑠)) Δ𝑠

− ∫

𝑡1

𝑡0

(𝑡
1
− 𝑠)
𝛼−1

𝑓 (𝑠, 𝑢
𝑛
(𝑠)) Δ𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
2𝑀

Γ (𝛼 + 1)
(𝑡
1

− 𝑡
2
)
𝛼

≤ 𝜖,

(51)

where we used a similar argument as in (48).
All of the Arzela-Ascoli Theorem conditions are fulfilled

for the family {𝑢
𝑗
} in 𝐶rd[𝑡0, 𝑡0 + 𝑎]T . Hence, there exists a

subsequence {𝑢
𝑗𝑘
} converging uniformly on [𝑡

0
, 𝑡
0
+ 𝑎]T as

𝑗
𝑘
→∞.
Let us note

𝑚
∗
(𝑡) = lim
𝑘→∞

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗𝑘
(𝑡) − 𝑢

𝑗𝑘−1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
. (52)

Further, if {|𝑢
𝑗
− 𝑢
𝑗−1
|} → 0 as 𝑗 → ∞, then the limit of any

subsequence is the unique solution 𝑢 of (42). It follows that a
selection of subsequences is unnecessary and that the entire
sequence {𝑢

𝑗
} converges uniformly to 𝑢. For that, it is suffi-

cient to show that 𝑦 ≡ 0 which will lead to𝑚∗(𝑡) being null.
Setting

𝑅 (𝑡) =
𝑐

Γ (𝛼)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1
𝑦 (𝑠)
𝛼
𝑑𝑠, (53)

and defining 𝜓∗(𝑡) = 𝑡
−𝑘
𝑦(𝑡) and then using Lemma 11,

we obtain that 𝜓(𝑡) ≤ 𝐿(𝑡
1
− 𝑡
0
)
𝐽−𝑘𝛼. Which yields that

lim
𝑡→0
+𝜓
∗
(𝑡) = 0.

We prove by absurdity that 𝜓∗ ≡ 0. Assume that 𝜓∗(𝑡) >
0 at any point in ]𝑡

0
, 𝑡
0
+ 𝜂]T ; then there exists 𝑡

1
such that

0 < 𝑚 = 𝜓
∗
(𝑡
1
) = max

𝑡∈[𝑡0 ,𝑡0+𝜂]T
𝜓
∗
(𝑡). Hence, from con-

dition (J1), we obtain

𝑚 = 𝜓 (𝑡
1
) = (𝑡

1
− 𝑡
0
)
−𝑘𝛼

𝜙 (𝑡
1
)

≤ (𝑡
1
− 𝑡
0
)
−𝑘𝛼

∫

𝑡1

𝑡0

𝑘𝑟 (𝑡
1
− 𝑠)
𝛼−1

(𝑠 − 𝑡
0
)
−𝛼

𝜙 (𝑠) 𝑑𝑠

≤ 𝑘𝑟 (𝑡
1
− 𝑡
0
)
−𝑘𝛼

∫

𝑡1

𝑡0

(𝑡
1
− 𝑠)
𝛼−1

(𝑠 − 𝑡
0
)
𝑘𝛼−𝛼

𝜓 (𝑠) 𝑑𝑠

< 𝑘𝑟𝑚 (𝑡
1
− 𝑡
0
)
−𝛼

∫

𝑡1

𝑡0

(𝑡
1
− 𝑡
0
)
𝛼−1

𝑑𝑠 <
𝑘𝑟𝑚

𝛼
< 𝑚.

(54)

We end up with a contradiction. So 𝜓∗ ≡ 0. Therefore, the
Picard iterates (42) converge uniformly to the unique solu-
tion 𝑢 of (2) on [𝑡

0
, 𝑡
0
+ 𝜂]T .
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Remark 18. For the case T = R, Theorem 15 is reduced to [31,
Theorem 2.1].
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