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We consider an intrahost malaria model allowing for antigenic variation within a single species. The host’s immune response
is compartmentalised into reactions to major and minor epitopes. We investigate the dynamics of the model, paying particular
attention to bifurcation and stability of the uniform nonzero endemic equilibrium. We establish conditions for the existence of an
equivariant Hopf bifurcation in a ring of antigenic variants, characterised by time delay.

1. Preliminaries

An intrahostmathematicalmodel of Plasmodium falciparum,
a species of parasites that cause malaria in humans, is consid-
ered. The central achievement of the model, first proposed
by [1], is its ability to replicate the phenomenon of antigenic
variation, which is a mechanism employed by the parasite
in order to evade detection by the host’s immune system.
In addition, the proposed model incorporates the effects of
immune response (IR) mounted by the human host. Such a
model has been the subject of a number of previous studies
(see [2–11], e.g.). In particular, [7, 8] introduce the idea of
a delayed IR, leading to a mathematical model comprised
of a set of coupled nonlinear delay differential equations
(DDEs), where it is assumed that the IR time delay is discrete.
Specifically, there is a time delay between changes in the
parasite load and the production of immune effectors [8].
The authors then proceed to show that a range of interest-
ing dynamics (synchronous and asynchronous oscillations)
result as a consequence of the (small) time delay. The current
paper is a further development of the model studied in [7, 8].
The distinction of our work is that we focus on the effects of
symmetry on the dynamics of the model and that our time
delay is not constrained to be small. In particular, we establish

sufficient and necessary conditions for the existence of an
equivariant Hopf bifurcation. We must state at the onset that
the current study is similar in spirit to the recent work of
[3–5]. However, there are fundamental differences in what
we do with the model, as explained below. First of all, the
study conducted in [3] concerns the Recker et al. [1] model,
with no time delays in the host’s immune response. Following
in the footsteps of the monumental work of [12, 13], the
author then uses elements of equivariant bifurcation theory
to study the effects of symmetry on the dynamic interactions
of the host and the pathogens. In the work of [4], the authors
attack the problem of symmetry-breaking in system (1).They
establish the existence of a fully symmetric steady state of
(1) and then employ ideas of equivariant bifurcation theory
[12, 13] to study the dynamics of this steady state. Essentially,
the authors investigate the effects of immune response time
delay on the symmetric dynamics of (1). They do so by
employing the technique of isotypic decomposition [12, 13]
to reduce the stability problem to a simple transcendental
equation for the eigenvalues [4]. In [5], the authors employ
the groupoid formalism developed in [14, 15] to study the
dynamics of cross-reactivity from antigenic variation and
establish a synchrony-breaking Hopf bifurcation emanating
from a nontrivial synchronous equilibrium of system (1). To
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the best of our knowledge, the problem of equivariant Hopf
bifurcation in the time-delayed modification of the Recker et
al. [1] model (2) or (1) has never been addressed before in the
literature.

Let us begin by commenting that an in-depth description
of time-delayed modification of Recker et al. [1] model
can be found in [7, 8]. Here we simply give a very brief
description, primarily for the express purpose of casting the
model in the context of the analysis to come. The time-
delayed modification of Recker et al. [1] is expressible in the
form [7, 8]

𝑌


𝑗
(𝑇) = 𝜙𝑌

𝑗
(𝑇) − 𝛼𝑍

𝑗
(𝑇) 𝑌
𝑗

(𝑇) − 𝛼

𝑊
𝑗

(𝑇) 𝑌
𝑗

(𝑇) ,

𝑍


𝑗
(𝑇) = 𝛽𝑌

𝑗
(𝑇 − 𝑇

𝑑
) − 𝜇𝑍

𝑗
(𝑇) ,

𝑊


𝑗
(𝑇) = 𝛽



𝑁

∑

𝑘=1

𝑐
𝑗𝑘

𝑌
𝑘

(𝑇 − 𝑇
𝑑
) − 𝜇

𝑊
𝑗

(𝑇) ,

(1)

where the index 𝑗 = 1, . . . , 𝑁 separates the parasitised
red blood cell population, denoted by 𝑌

𝑗
, into 𝑁 variants,

each characterised by the unique major epitope of their
displayed antigen (see [1, 7, 8] and references cited therein).
The variables 𝑍

𝑗
and 𝑊

𝑗
denote variant-specific and cross-

reactive immune responses, respectively; 𝜙 is the intrinsic
parasite growth rate, 𝛼 and 𝛼

 are the removal rates asso-
ciated with specific and cross-reactive immune responses,
respectively, 𝛽 and 𝛽

 are the proliferation rates of immune
responses, 𝜇 and 𝜇

 are the decay rates of variant-specific
and cross-reactive immune responses, and 𝑇

𝑑
is the discrete

time delay of the IR. The coefficients 𝑐
𝑗𝑘

of the connectivity
matrix characterise cross-reactive intervariant interactions
[1, 2, 7, 8, 11].

After normalisation and change of variables, [8] reduced
system (1) to the following system:

𝑦


𝑗
(𝑡) = −𝑥

𝑗
(𝑡) [1 + 𝑦

𝑗
(𝑡)] ,

𝑥


𝑗
(𝑡) =

𝑐

𝑛
𝑦
𝑗

(𝑡 − 𝜏) +
1

𝑛

𝑛

∑

𝑘=1

𝑦
𝑘

(𝑡 − 𝜏) − 𝑎𝑥
𝑗

(𝑡)

+ 𝑎 (1 − 𝑏) 𝑤
𝑗

(𝑡) ,

𝑤


𝑗
(𝑡) =

1

𝑛

𝑛

∑

𝑘=1

𝑦
𝑘

(𝑡 − 𝜏) − 𝑎𝑏𝑤
𝑗

(𝑡) ,

(2)

where 𝜏 ∈ R+ is a discrete time delay. The index 𝑗 =

1, . . . , 𝑛 < 𝑁 separates the parasitised red blood cell
population, denoted by 𝑦

𝑗
, into 𝑛 < 𝑁 variants. The variants

𝑗 = 𝑛 + 1, . . . , 𝑁 are neglected in this reformulation of (1)
[8]. As a consequence of this, the sum in (1) collapses to
[8]

𝑁

∑

𝑘=1

𝑐
𝑗𝑘

𝑌
𝑘

(𝑇 − 𝑇
𝑑
) =

𝑛

∑

𝑘=1

𝑌
𝑘

(𝑇 − 𝑇
𝑑
) . (3)

Without going into specific details, it is important to point
out that all the parameters in (2) are positive. Every variant
in system (2) has the same 𝑛 minor epitopes in common [7].
This point highlights a fundamental difference between the
model studied in this work and the models studied in [3–
5]. In essence, (2) represents a subsystem of (1). System (2)
represents the interaction of malaria antigenic variants in the
special case in which there are 𝑛minor epitopes characterised
by 𝑛 variants per epitope.The total number of variants in this
case is given by

𝑛

∏

𝑗=1

𝑛 = 𝑛
𝑛
. (4)

The interaction of these different antigenic variants may be
represented schematically as shown in Figure 1, from which
it is evident that system (2) is endowed with some spatial
symmetry, which we will attempt to describe in due course.
We may gain some further insight about system (2) by
analysing the structure of its associated adjacency matrix T,
whose entries 𝑇

𝑖𝑗
are identical to unity if the variants 𝑖 and 𝑗

have some minor epitopes in common; otherwise 𝑇
𝑖𝑗

= 0 [4].
The matrix T is always symmetric [4]. In the case of a ring of
𝑛
𝑛 variants characterised by all-to-all coupling, as depicted in

Figure 1, the corresponding 𝑛
𝑛

× 𝑛
𝑛 adjacency matrix is given

by

T =

(
(
(
(
(
(

(

1 1 1 1 1 1 ⋅ ⋅ ⋅ 1 1 1

1 1 1 1 1 1 ⋅ ⋅ ⋅ 1 1 1

1 1 1 1 1 1 ⋅ ⋅ ⋅ 1 1 1

1 1 1 1 1 1 ⋅ ⋅ ⋅ 1 1 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. ⋅ ⋅ ⋅

.

.

.
.
.
.

.

.

.

1 1 1 1 1 1 ⋅ ⋅ ⋅ 1 1 1

)
)
)
)
)
)

)

. (5)

It is straightforward to construct the adjacency matrix T for
an arbitrarily large number of minor epitopes [3]. In this
paper, we focus on 𝑛minor epitopes, with 𝑛 antigenic variants
per epitope. By recourse to (5), wemay express (2) in vectorial
form as

𝑑

𝑑𝑡
(

y (𝑡)

x (𝑡)

w (𝑡)

)

=

{{{{{{

{{{{{{

{

−x (𝑡) [1
𝑛

+ y (𝑡)] ,

𝑐

𝑛
y (𝑡 − 𝜏) +

1

𝑛
Ty (𝑡 − 𝜏) − 𝑎x (𝑡) + 𝑎 (1 − 𝑏)w (𝑡) ,

1

𝑛
Ty (𝑡 − 𝜏) − 𝑎𝑏w (𝑡) ,

(6)

where y = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
)
t, x = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)
t, w =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
t, and 1

𝑛
= (

𝑛 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1, 1, . . . , 1)

t. With appropriate
initial conditions, it may be easily shown that system (6) is
well posed [4]; that is, its solutions are nonnegative ∀𝑡 ≥ 0.
Symmetry properties of (6) are encoded in the associated
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Figure 1: Interaction of 𝑛
𝑛 antigenic variants in the case of 𝑛 minor

epitopes with 𝑛 variants per epitope. Every variant in the ring will be
connected to every other variant in much the same way that variant
4 is connected. For clarity and to avoid cluttering the diagram, we
have only shown the full network connections of variant 4.

adjacency matrix T. In the present case, in which there are
𝑛 minor epitopes with 𝑛 variants per epitope, the dynamical
system (6) is equivariant with respect to the symmetry group
[12, 13]

Γ fl S
𝑛

× S
𝑛

× S
𝑛

× ⋅ ⋅ ⋅ × S
𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 times
× Z
𝑛
, (7)

whereS
𝑛
represents the symmetric group of all permutations

in a network of 𝑛 nodes with an all-to-all coupling and Z
𝑛

is the cyclic group of order 𝑛, corresponding to rotations
by 2𝜋/𝑛 [4, 12, 13]. In particular, system (6) is equivariant
under the action of the dihedral group D

𝑛
𝑛 , which is a 2𝑛

𝑛-
dimensional symmetry group of an 𝑛

𝑛-gon (see [3] for a
pertinent brief outline of equivariance bifurcation theory).
For the general dihedral group D

𝑛
𝑛 of order 2𝑛

𝑛, whether 𝑛
𝑛

is even or odd is crucial as it demarcates two different choices
as far as conjugacies of reflections are concerned (see page 128
of [3]).

System (2) has an infinitude of 3𝑛-dimensional equilibria,
of the generic form

𝐸

fl (𝑦
∗

1
, 𝑦
∗

2
, . . . , 𝑦

∗

𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 times
, 𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 times
, 𝑤
∗

1
, 𝑤
∗

2
, . . . , 𝑤

∗

𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 times
) ,

(8)

where

𝑥
∗

𝑗
= 0,

𝑦
∗

𝑗
= −

𝑎𝑛

𝑐
𝑤
∗

𝑗
,

𝑤
∗

𝑗
=

1

𝑎𝑏𝑛

𝑛

∑

𝑘=1

𝑦
∗

𝑘
,

𝑗 = 1, 2, . . . , 𝑛.

(9)

We must comment at this point that the present study
focusses entirely on the uniform equilibrium

𝐸
0
fl (0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 times
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 times
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 times
) (10)

of (2). The linearisation of system (2) about the equilibrium
𝐸
0
is given by

𝑦


𝑗
(𝑡) = −𝑥

𝑗
(𝑡) ,

𝑥


𝑗
(𝑡) =

𝑐

𝑛
𝑦
𝑗

(𝑡 − 𝜏) +
1

𝑛

𝑛

∑

𝑘=1

𝑦
𝑘

(𝑡 − 𝜏) − 𝑎𝑥
𝑗

(𝑡)

+ 𝑎 (1 − 𝑏) 𝑤
𝑗

(𝑡) ,

𝑤


𝑗
(𝑡) =

1

𝑛

𝑛

∑

𝑘=1

𝑦
𝑘

(𝑡 − 𝜏) − 𝑎𝑏𝑤
𝑗

(𝑡)

(11)

and yields the characteristic equation [7]

𝐷 (𝜆, 𝜏) fl (𝐹
1

(𝜆) 𝐹
𝑎𝑝

(𝜆, 𝜏))
𝑛−1

𝐹
𝑠

(𝜆, 𝜏) = 0, (12)

where

𝐹
1

(𝜆) fl 𝜆 + 𝑎𝑏,

𝐹
𝑎𝑝

(𝜆, 𝜏) fl 𝜆
2

+ 𝑎𝜆 +
𝑐

𝑛
𝑒
−𝜆𝜏

,

𝐹
𝑠

(𝜆, 𝜏) fl 𝜆
3

+ 𝑎 (1 + 𝑏) 𝜆
2

+ 𝑎
2
𝑏𝜆

+ 𝑒
−𝜆𝜏

[𝜆 (1 +
𝑐

𝑛
) + 𝑎 (1 +

𝑏𝑐

𝑛
)]

(13)

and where all the parameters are nonnegative. Equation
(12) consists of the factors Δ

1
(𝜆, 𝜏) fl 𝐹

1
(𝜆)𝐹
𝑎𝑝

(𝜆, 𝜏) and
Δ
2
(𝜆, 𝜏) fl 𝐹

𝑠
(𝜆, 𝜏), with multiplicities 𝑛 − 1 and 1,

respectively. This type of factorisation of the characteristic
equation is due to the presence of symmetry in (2). The
continuous extension at 𝜆 = 0 is given by

𝐷 (0, 𝜏) = lim
𝜆→0

𝐷 (𝜆, 𝜏) = 𝑎
𝑛

(
𝑏𝑐

𝑛
)

𝑛−1

⋅ (1 +
𝑏𝑐

𝑛
) > 0. (14)

The equilibrium 𝐸
0
of (2) will be locally asymptotically stable

if all of the roots,𝜆, of (12) have negative real part and unstable
if at least one root has a positive real part.
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First of all, we must note that 𝐹
1
(𝜆) = 0 if, and only if, 𝜆 =

−𝑎𝑏 < 0. In other words, 𝐹
1
(𝜆) = 0 always yields a real root

of (12), 𝜆 = −𝑎𝑏 < 0, of multiplicity 𝑛 − 1. As a consequence
of this observation, we see that an analysis of the distribution
of roots of Δ

1
(𝜆, 𝜏) = 0 boils down to that of the distribution

of roots of the factor 𝐹
𝑎𝑝

(𝜆, 𝜏) = 0. Let 𝜆 = ] + 𝑖𝜔, ], 𝜔 ∈ R

in the two factors, 𝐹
𝑎𝑝

(𝜆, 𝜏) and Δ
2
(𝜆, 𝜏), of (12), and separate

into real and imaginary parts to obtain Δ
𝑗
(𝜆, 𝜏) = 𝑅

𝑗
(], 𝜔) +

𝑖𝐼
𝑗
(], 𝜔), with 𝑗 = 1, 2, where

𝑅
1

(], 𝜔) = 𝑎] + ]2 − 𝜔
2

+
𝑐

𝑛
𝑒
−𝜏] cos (𝜔𝜏) ,

𝐼
1

(], 𝜔) = 𝑎𝜔 + 2]𝜔 −
𝑐

𝑛
𝑒
−𝜏] sin (𝜔𝜏) ,

𝑅
2

(], 𝜔)

= ] (]2 − 𝜔
2
) − 2]𝜔

2
+ 𝑎 (1 + 𝑏) (]2 − 𝜔

2
) + 𝑎
2
𝑏]

+ 𝑒
−]𝜏

[](1 +
𝑐

𝑛
) + 𝑎 (1 +

𝑏𝑐

𝑛
)] cos (𝜔𝜏)

− 𝑒
−]𝜏

𝜔 (1 +
𝑐

𝑛
) sin (𝜔𝜏) ,

𝐼
2

(], 𝜔)

= 𝜔 (]2 − 𝜔
2
) + 2]2𝜔 + 2𝑎 (1 + 𝑏) ]𝜔 + 𝜔𝑎

2
𝑏

+ 𝑒
−]𝜏

𝜔 (1 +
𝑐

𝑛
) cos (𝜔𝜏)

− 𝑒
−]𝜏

[](1 +
𝑐

𝑛
) + 𝑎 (1 +

𝑏𝑐

𝑛
)] sin (𝜔𝜏) .

(15)

Webegin our investigation by focussing on the factorΔ
1
(𝜆, 𝜏)

of (12). It is of vital importance to establish conditions under
which the factor 𝐹

𝑎𝑝
(𝜆, 𝜏) has purely imaginary roots. To this

end, let ] = 0 in (15). This leads to the following simplifying
relations:

− 𝑛𝜔
2

+ 𝑐 cos (𝜔𝜏) = 0,

𝑛𝑎𝜔 − 𝑐 sin (𝜔𝜏) = 0,

(16)

𝑎 (1 +
𝑏𝑐

𝑛
) cos (𝜔𝜏) − 𝜔 (1 +

𝑐

𝑛
) sin (𝜔𝜏)

= 𝑎 (1 + 𝑏) 𝜔
2
,

𝑎 (1 +
𝑏𝑐

𝑛
) sin (𝜔𝜏) − 𝜔 (1 +

𝑐

𝑛
) cos (𝜔𝜏)

= −𝜔
3

+ 𝜔𝑎
2
𝑏,

(17)

respectively. Solving for sin(𝜔𝜏) and cos(𝜔𝜏) in (16) and (17)
yields

sin (𝜔𝜏) =
𝑎𝑛𝜔

𝑐
,

cos (𝜔𝜏) =
𝑛𝜔
2

𝑐
,

(18)

sin (𝜔𝜏) =

𝑛 [𝜔
3

− 𝜔𝑎
2
𝑏 − 𝑎 (1 + 𝑏) 𝜔

2
]

𝜔 (𝑛 + 𝑐) − 𝑎 (𝑛 + 𝑏𝑐)
,

cos (𝜔𝜏) =

𝑛 (𝑎 (1 + 𝑏) 𝜔
2

[𝜔 (𝑛 + 𝑐) − 𝑎 (𝑛 + 𝑏𝑐)] + 𝜔 (𝑛 + 𝑐) [𝜔
3

− 𝜔𝑎
2
𝑏 − 𝑎 (1 + 𝑏) 𝜔

2
])

𝑎 [𝜔 (𝑛 + 𝑐) − 𝑎 (𝑛 + 𝑏𝑐)] (𝑛 + 𝑏𝑐)
,

(19)

respectively. Recalling that sin2(𝜔𝜏) + cos2(𝜔𝜏) = 1, squaring
both sides of the equations in (18), adding, and rearranging
give

Φ (𝜔) fl 𝑛
2
𝜔
4

+ 𝑎
2
𝑛
2
𝜔
2

− 𝑐
2
, (20)

which always has at least one real root 𝜔
∗

> 0, since Φ(0) =

−𝑐
2

< 0. In fact, the possible solutions of the quarticΦ(𝜔) = 0

are given by

𝜔
+

=

√𝑛 (−𝑎2𝑛 + √𝑎4𝑛2 + 4𝑐2)

𝑛√2

> 0,

𝜔
−

= −

√𝑛 (−𝑎2𝑛 + √𝑎4𝑛2 + 4𝑐2)

𝑛√2

< 0.

(21)

Since the frequency 𝜔 > 0, it follows that the only viable
solution of (20) is 𝜔

+
. This implies that the characteristic

equation (12) has (𝑛−1) pairs of purely imaginary roots ±𝑖𝜔
+
.

Similarly, (19) yields the octic polynomial

Γ (𝜔) fl 𝐴
8
𝜔
8

+ 𝐴
6
𝜔
6

+ 𝐴
5
𝜔
5

+ 𝐴
4
𝜔
4

+ 𝐴
3
𝜔
3

+ 𝐴
2
𝜔
2

+ 𝐴
1
𝜔 + 𝐴

0
,

(22)

where the coefficients 𝐴
0
, . . . , 𝐴

8
are given in the Appendix.

We now quickly review the local stability of 𝐸
0
. We focus our

attention on the factor Δ
1
(𝜆, 𝜏) of (12). Equation (20) has one

real root, denoted by 𝜔
+
. Substitute 𝜔

+
into (18) to obtain the

sequence of critical time delays

𝜏
(𝑗)

+
=

1

𝜔
+

cos−1 (
𝑛𝜔
2

+

𝑐
) +

2𝜋𝑗

𝜔
+

, 𝑗 = 0, 1, 2, 3, . . . . (23)
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As a result, when 𝜏 = 𝜏
(𝑗)

+
, the characteristic equation (12) has

(𝑛 − 1) pairs of purely imaginary roots; 𝜆 = ±𝑖𝜔
+
. We define

𝜏
01

fl min {𝜏
(𝑗)

+
| 𝑗 = 0, 1, 2, 3, . . .} . (24)

Let us shift our attention momentarily to the factor Δ
2
(𝜆, 𝜏)

of (12). First of all, we note that (22) has at least one positive
real root if 𝐴

0
< 0 and 𝐴

8
> 0. The proof of this fact is

indeed elementary. Assume that (22) has eight simple real
roots, denoted by 𝜔

𝑘
, 𝑘 = 1, 2, . . . , 8. In fact, establishing

conditions to guarantee the existence of such roots of (22) is
far from trivial. For this reason, we will avoid delving into this
subject in this paper. Suffice to say that the existence of such
roots guarantees that a nondegenerate bifurcation occurs in
the special case 𝐴

0
> 0, 𝐴

8
> 0. To establish that one of these

roots is positive, we proceed in the followingmanner. Assume
that 𝐴

8
̸= 0, and define the function

Γ (𝜔) = 𝜔
8

+ 𝐴
6
𝜔
6

+ 𝐴
5
𝜔
5

+ 𝐴
4
𝜔
4

+ 𝐴
3
𝜔
3

+ 𝐴
2
𝜔
2

+ 𝐴
1
𝜔 + 𝐴

0
,

(25)

where 𝐴
6
fl 𝐴
6
/𝐴
8
, 𝐴
5
fl 𝐴
5
/𝐴
8
, 𝐴
4
fl 𝐴
4
/𝐴
8
, 𝐴
3
fl

𝐴
3
/𝐴
8
, 𝐴
2
fl 𝐴
2
/𝐴
8
, 𝐴
1
fl 𝐴
1
/𝐴
8
, and 𝐴

0
fl 𝐴
0
/𝐴
8
. It is

important to stress that one of the roots of (22) is positive if at
least one of the critical points of (25) is positive.Thederivative
function of (25) is

Γ


(𝜔) = 8 (𝜔
7

+
3

4
𝐴
6
𝜔
5

+
5

6
𝐴
5
𝜔
4

+
1

2
𝐴
4
𝜔
3

+
3

8
𝐴
3
𝜔
2

+
1

4
𝐴
2
𝜔 +

1

8
𝐴
1
) .

(26)

Function (26) has at least one positive real root if, and only
if, at least one of its critical points is positive. This happens if,
and only if, 𝐴

2
< 0. Consequently, one of the roots of (22) is

positive if, and only if, the condition 𝐴
2

< 0 is fulfilled. From
(19), we compute the corresponding sequence of critical time
delays:

𝜏
(𝑗)

𝑘
=

1

𝜔
𝑘

cos−1(
𝑛 (𝑎 (1 + 𝑏) 𝜔

2

𝑘
[𝜔
𝑘

(𝑛 + 𝑐) − 𝑎 (𝑛 + 𝑏𝑐)] + 𝜔
𝑘

(𝑛 + 𝑐) [𝜔
3

𝑘
− 𝜔
𝑘
𝑎
2
𝑏 − 𝑎 (1 + 𝑏) 𝜔

2

𝑘
])

𝑎 [𝜔
𝑘

(𝑛 + 𝑐) − 𝑎 (𝑛 + 𝑏𝑐)] (𝑛 + 𝑏𝑐)
) +

2𝜋𝑗

𝜔
𝑘

, (27)

where 𝑗 = 0, 1, 2, . . . and 𝑘 = 1, 2, . . . , 8. When 𝜏 = 𝜏
(𝑗)

𝑘
, it

follows that (12) has a pair of purely imaginary roots, 𝜆 =

±𝑖𝜔
𝑘
. Finally, we define

𝜏
02

fl min {𝜏
(𝑗)

𝑘
| 𝑘 = 1, 2, . . . , 8; 𝑗 = 0, 1, 2, 3, . . .} . (28)

Assume that 𝜆 = 𝜆(𝜏) in (12), and differentiate with respect to
𝜏. For the simple root case, we recall from (12) thatΔ

2
(𝑖𝜔, 𝜏) =

0. As a consequence of this, we obtain the following:

Re(
𝑑𝜆

𝑑𝜏

𝜆=𝑖𝜔

) =
(𝑎 + 𝑎𝑏𝑐/𝑛) 𝜔 sin (𝜔𝜏) − 𝜔 (𝜔 + 𝜔𝑐/𝑛) cos (𝜔𝜏) + 𝑖 [𝜔 (𝑎 + 𝑎𝑏𝑐/𝑛) cos (𝜔𝜏) + 𝜔 (𝜔 + 𝜔𝑐/𝑛) sin (𝜔𝜏)]

𝜉
1

+ 𝑖𝜉
2

, (29)

where

𝜉
1

= 𝑎
2
𝑏 − 3𝜔

2
+ (1 +

𝑐

𝑛
) cos (𝜔𝜏)

− 𝜏 (𝑎 +
𝑎𝑏𝑐

𝑛
) cos (𝜔𝜏)

− 𝜏 (𝜔 +
𝜔𝑐

𝑛
) sin (𝜔𝜏) ,

𝜉
2

= 2𝑎𝜔𝑏 + 2𝑎𝜔 − (1 +
𝑐

𝑛
) sin (𝜔𝜏)

+ 𝜏 (𝑎 +
𝑎𝑏𝑐

𝑛
) sin (𝜔𝜏)

− 𝜏 (𝜔 +
𝜔𝑐

𝑛
) cos (𝜔𝜏) .

(30)

Using the computer algebra packageMAPLE®, we deduce that
the usual transversality condition corresponding to the factor
Δ
2
(𝜆, 𝜏) is fulfilled if, and only if,

− 𝜔
𝑘
𝑐𝑎
2
𝑏𝑛 cos (𝜔

𝑘
𝜏
(𝑗)

𝑘
) − 2𝜔

𝑘
𝑎
2
𝑏
2
𝑐𝑛 cos (𝜔

𝑘
𝜏
(𝑗)

𝑘
)

+ 𝜔
2

𝑘
𝑎𝑏𝑐𝑛 sin (𝜔

𝑘
𝜏
(𝑗)

𝑘
) − 𝑎
3
𝑏
2
𝑐𝑛 sin (𝜔

𝑘
𝜏
(𝑗)

𝑘
)

− 2𝜔
2

𝑘
𝑐𝑎𝑛 sin (𝜔

𝑘
𝜏
(𝑗)

𝑘
) − 𝜔
𝑘
𝑎
2
𝑏𝑛
2 cos (𝜔

𝑘
𝜏
(𝑗)

𝑘
)

− 2𝜔
2

𝑘
𝑎𝑏𝑛
2 sin (𝜔

𝑘
𝜏
(𝑗)

𝑘
) + 2𝜔

𝑘
𝑐𝑛

− 3𝜔
3

𝑘
𝑛
2 cos (𝜔

𝑘
𝜏
(𝑗)

𝑘
) + 𝜔
𝑘

(𝑐
2

+ 𝑛
2
)

− 3𝑐𝑛𝜔
3

𝑘
cos (𝜔

𝑘
𝜏
(𝑗)

𝑘
) − 𝑎
3
𝑏𝑛
2 sin (𝜔

𝑘
𝜏
(𝑗)

𝑘
)
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+ 𝜔
2

𝑘
𝑎𝑛
2 sin (𝜔

𝑘
𝜏
(𝑗)

𝑘
) − 2𝜔

𝑘
𝑎
2
𝑛
2 cos (𝜔

𝑘
𝜏
(𝑗)

𝑘
)

̸= 0.

(31)

By continuity, it follows that Re[𝜆(𝜏)] becomes positive when
𝜏 > 𝜏
(0)

𝑘
and the equilibrium 𝐸

0
of (2) becomes unstable. As a

result, a simple root Hopf bifurcation occurs when 𝜏 passes
through the critical time delay 𝜏

(0)

𝑘
. Consider the equation

Δ
1
(𝜆, 𝜏) = 0 when 𝜏 = 0; that is,

Δ
1

(𝜆, 0) fl 𝜆
3

+ 𝑎 (1 + 𝑏) 𝜆
2

+ (
𝑐

𝑛
+ 𝑎
2
𝑏) 𝜆 +

𝑎𝑏𝑐

𝑛

= 0.

(32)

Employing the well-known Routh-Hurwitz criterion and the
fact that the parameters 𝑎, 𝑏, 𝑐, and 𝑛 are strictly positive, it
follows that all the roots of (32) have negative real part if, and
only if,

𝑎 (
𝑐

𝑛
+ 𝑎
2
𝑏) (1 + 𝑏) −

𝑎𝑏𝑐

𝑛
> 0. (33)

Similarly, for the equationΔ
2
(𝜆, 𝜏) = 0with 𝜏 = 0, the Routh-

Hurwitz criterion implies that all the roots of this equation
have negative real part if, and only if,

[𝑎 (
𝑐

𝑛
+ 𝑎
2
𝑏) (1 + 𝑏) −

𝑎𝑏𝑐

𝑛
] + 𝑎𝑏 > 0. (34)

Proposition 1. For 𝜏 = 0, the equilibrium 𝐸
0
of (2) is

asymptotically stable if, and only if, the inequality in (33) is
fulfilled.

We arrive at the first of our main results.

Theorem 2. Suppose that conditions (34) and (31) are satisfied
and that (20) has no positive real roots for 𝜏 ∈ (0, �̃�], where �̃� >

𝜏
(0)

𝑘
. Since Φ(0) = −𝑐

2
< 0, it follows that 𝐸

0
is asymptotically

stable when 𝜏 < 𝜏
(0)

𝑘
and unstable when 𝜏

(0)

𝑘
< 𝜏 < min{�̃�, 𝜏

(1)

𝑘
}.

When 𝜏 = 𝜏
(0)

𝑘
, a simple root Hopf bifurcation occurs.

Thecharacteristic equation (12) can bewritten in the form

𝐷 (𝜆, 𝜏) = Δ
𝑛−1

1
(𝜆, 𝜏) Δ

2
(𝜆, 𝜏) . (35)

By inspection, we can see that (35) has purely imaginary
roots 𝜆 = ±𝑖𝜔 of multiplicity 𝑛 − 1 for parameters such that
Δ
1
(±𝑖𝜔, 𝜏) = 0. That is, when

𝑎𝑏 (−𝜔
2

+
𝑐

𝑛
cos (𝜔𝜏)) − 𝜔 (𝑎𝜔 −

𝑐

𝑛
sin (𝜔𝜏)) = 0,

𝑎𝑏 (𝑎𝜔 −
𝑐

𝑛
sin (𝜔𝜏)) − 𝜔 (−𝜔

2
+

𝑐

𝑛
cos (𝜔𝜏)) = 0.

(36)

The set of equations of (16) has four parameters, namely,
(𝑎, 𝜏, 𝑐, 𝑛). If we fix three of the parameters, this gives two
equations that may be solved for the critical value of the
fourth parameter and the corresponding imaginary part of

the eigenvalue𝜔
𝑐
.We consider 𝑎 as the bifurcation parameter.

All the results hold and are proved analogously, if any of the
other parameters is used instead [16]. For convenience, we
rewrite (16) in the form

𝑐 ⋅ sin (𝜔𝜏) = 𝑛𝑎𝜔,

𝑐 ⋅ cos (𝜔𝜏) = 𝑛𝜔
2
.

(37)

Taking the ratio of the two expressions in (37) yields an
implicit equation for 𝜔

𝑐
:

𝜔
𝑐
tan (𝜔

𝑐
𝜏) − 𝑎 = 0. (38)

Squaring and adding the expressions of (37) yield an equation
for the corresponding critical value of 𝑎 for Δ

1
:

𝑛
2
𝜔
4

+ 𝑛
2
𝑎
2
𝜔
2

− 𝑐
2

= 0. (39)

Solving (39) for the parameter 𝑎 gives

𝑎
𝑐

(𝜔
𝑐
) =

{{{

{{{

{

�̃�
+

(𝜔
𝑐
) , if 𝑐

𝑛𝜔
𝑐

sin (𝜔
𝑐
𝜏) > 0,

�̃�
−

(𝜔
𝑐
) , if 𝑐

𝑛𝜔
𝑐

sin (𝜔
𝑐
𝜏) < 0,

(40)

where

�̃�
+

(𝜔
𝑐
) = √

𝑐
2

− 𝑛
2
𝜔
4

𝑐

𝑛2𝜔2
𝑐

,

�̃�
−

(𝜔
𝑐
) = −√

𝑐
2

− 𝑛
2
𝜔
4

𝑐

𝑛2𝜔2
𝑐

.

(41)

Let C fl 𝐶([−𝜏, 0],R3𝑛) denote the Banach space of
continuous mappings from [−𝜏, 0] into R3𝑛 and endowed
with the norm

𝜙
𝜏

= sup
−𝜏≤𝜃≤0

𝜙 (𝜃)
 , for 𝜙 ∈ C, (42)

where | ⋅ | is the Euclidean norm onR3𝑛. Let x(𝑡) be a solution
of (2), and define x

𝑡
(𝜃) = x(𝑡 + 𝜃), −𝜏 ≤ 𝜃 ≤ 0. If the solution

x(𝑡) is continuous, then x
𝑡
(𝜃) ∈ C. We may now express (2)

as the functional differential equation

x (𝑡) = F (x
𝑡
) , (43)

where F : C → R3𝑛 is defined by
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F (𝜙) fl

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

−𝜙
21

(0) [1 + 𝜙
11

(0)]

−𝜙
22

(0) [1 + 𝜙
12

(0)]

.

.

.

−𝜙
2𝑛

(0) [1 + 𝜙
1𝑛

(0)]

𝑐

𝑛
𝜙
11

(−𝜏) +
1

𝑛

𝑛

∑

𝑘=1

𝜙
1𝑘

(−𝜏) − 𝑎𝜙
21

(0) + 𝑎 (1 − 𝑏) 𝜙
31

(0)

𝑐

𝑛
𝜙
12

(−𝜏) +
1

𝑛

𝑛

∑

𝑘=1

𝜙
1𝑘

(−𝜏) − 𝑎𝜙
22

(0) + 𝑎 (1 − 𝑏) 𝜙
32

(0)

.

.

.

𝑐

𝑛
𝜙
1𝑛

(−𝜏) +
1

𝑛

𝑛

∑

𝑘=1

𝜙
1𝑘

(−𝜏) − 𝑎𝜙
2𝑛

(0) + 𝑎 (1 − 𝑏) 𝜙
3𝑛

(0)

1

𝑛

𝑛

∑

𝑘=1

𝜙
1𝑘

(−𝜏) − 𝑎𝑏𝜙
31

(0)

1

𝑛

𝑛

∑

𝑘=1

𝜙
1𝑘

(−𝜏) − 𝑎𝑏𝜙
32

(0)

.

.

.

1

𝑛

𝑛

∑

𝑘=1

𝜙
1𝑘

(−𝜏) − 𝑎𝑏𝜙
3𝑛

(0)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

, with 𝜙 fl

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝜙
11

𝜙
12

.

.

.

𝜙
1𝑛

𝜙
21

𝜙
22

.

.

.

𝜙
2𝑛

𝜙
31

𝜙
32

.

.

.

𝜙
3𝑛

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

∈ C. (44)

Analogously, the linearisation of (2) about 𝐸
0
is expressible

as

u (𝑡) = 𝐿 (𝑎) u
𝑡
, (45)

where the linear operator 𝐿(𝑎) : C → R3𝑛 is defined as

𝐿 (𝑎) 𝜙 fl (

O
𝑛

−I
𝑛

O
𝑛

O
𝑛

−𝑎I
𝑛

𝑎 (1 − 𝑏) I
𝑛

O
𝑛

O
𝑛

−𝑎𝑏I
𝑛

) 𝜙 (0)

+ (

O
𝑛

O
𝑛

O
𝑛

P
𝑛

O
𝑛

O
𝑛

Q
𝑛

O
𝑛

O
𝑛

) 𝜙 (−𝜏) ,

(46)

where O
𝑛
and I
𝑛
are the 𝑛 × 𝑛 zero and identity matrices,

respectively. The 𝑛 × 𝑛 matrices P
𝑛
andQ

𝑛
are given by

P
𝑛

=
1

𝑛
(

𝑐 + 1 1 1 ⋅ ⋅ ⋅ 1

1 𝑐 + 1 1 ⋅ ⋅ ⋅ 1

.

.

.
.
.
.

.

.

. d
.
.
.

1 1 1 ⋅ ⋅ ⋅ 𝑐 + 1

) ,

Q
𝑛

=
1

𝑛
(

1 1 1 ⋅ ⋅ ⋅ 1

1 1 1 ⋅ ⋅ ⋅ 1

.

.

.
.
.
.

.

.

. d
.
.
.

1 1 1 ⋅ ⋅ ⋅ 1

) .

(47)

It is well known that a linear functional differential equation
such as (45) generates a strongly continuous semigroup of
linear operators with infinitesimal generator 𝐴(𝑎) given by
[17, 18]

𝐴 (𝑎) 𝜙 = 𝜙

, 𝜙 ∈ Dom (𝐴 (𝑎)) , Dom (𝐴 (𝑎)) = {𝜙 ∈ C | 𝜙


∈ C, 𝜙



(0) = 𝐿 (𝑎) 𝜙} , (48)

where the eigenvalues of 𝐴(𝑎) correspond to the roots of the
characteristic equation (12).

Definition 3. Let F : C → R3𝑛 and Γ be a compact group.
The system x(𝑡) = F(x

𝑡
) is said to be Γ-equivariant if F(𝛾x

𝑡
) =

𝛾F(x
𝑡
) for all 𝛾 ∈ Γ.
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Lemma 4. The nonlinear system (43) and the linear system
(45) are D

𝑛
𝑛 -equivariant.

Proof. The proof is straightforward (see [16, 19, 20]).

2. Equivariant Hopf Bifurcation

Theextension of the theory of equivariantHopf bifurcation to
functional differential equations was established in the series

of papers [18, 21, 22]. Much of the development in this section
is in the spirit of the work of [16, 19, 20] that independently
studied equivariant Hopf bifurcation in a ring of 𝑛 identical
neurons characterised by signal transmission time delays.
Defining the 3𝑛 × 1 column vector

u (𝑡) = [ 𝑦
1

(𝑡) 𝑦
2

(𝑡) ⋅ ⋅ ⋅ 𝑦
𝑛

(𝑡) 𝑥
1

(𝑡) 𝑥
2

(𝑡) ⋅ ⋅ ⋅ 𝑥
𝑛

(𝑡) 𝑤
1

(𝑡) 𝑤
2

(𝑡) ⋅ ⋅ ⋅ 𝑤
𝑛

(𝑡) ]
T

, (49)

the linearisation (11) is expressible in the form

u (𝑡) = Au (𝑡) + Bu (𝑡 − 𝜏) , (50)

where A and B are 3𝑛 × 3𝑛 matrices given by

A = (

O
𝑛

−I
𝑛

O
𝑛

O
𝑛

−𝑎I
𝑛

𝑎 (1 − 𝑏) I
𝑛

O
𝑛

O
𝑛

−𝑎𝑏I
𝑛

) ,

B = (

O
𝑛

O
𝑛

O
𝑛

P
𝑛

O
𝑛

O
𝑛

Q
𝑛

O
𝑛

O
𝑛

) .

(51)

From the above consideration, we get that the characteristic
matrix of the linearisation of (2) about 𝐸

0
is given by the 3𝑛 ×

3𝑛 matrix

𝐿
3𝑛

(𝜆) fl 𝜆I
3𝑛×3𝑛

− A − B𝑒
−𝜆𝜏

, (52)

and the associated characteristic equation is

det 𝐿
3𝑛

(𝜆) = 0, (53)

which reduces to (12). Mitchell and Carr [7, 8] have shown
that the characteristic matrix of the linearisation of (2) about
the equilibrium 𝐸

0
is given by the 3𝑛 × 3𝑛 block matrix of the

form

𝑀
3𝑛

(𝜆) fl (

𝐷 𝐸 𝐸 ⋅ ⋅ ⋅

𝐸 𝐷 𝐸 ⋅ ⋅ ⋅

𝐸 𝐸 𝐷 ⋅ ⋅ ⋅

.

.

.
.
.
.

.

.

. d

) , (54)

where 𝐷 and 𝐸 are given by

𝐷 = (

0 −1 0

(𝑐 + 1)

𝑛
𝑒
−𝜆𝜏

−𝑎 𝑎 (1 − 𝑏)

𝑒
−𝜆𝜏

𝑛
0 −𝑎𝑏

) ,

𝐸 = (

0 0 0

𝑒
−𝜆𝜏

𝑛
0 0

𝑒
−𝜆𝜏

𝑛
0 0

) .

(55)

It is evident that the characteristic matrix (54) is circulant, a
fact to be exploited in the analysis to come. The correspond-
ing characteristic equation is

det𝑀
3𝑛

(𝜆) = 0, (56)

which can be shown to reduce to (12). With the apparatus
developed above, we are now in a position to establish
some lemmas [16] that will lead us to an equivariant Hopf
bifurcation theorem.

As a consequence of the fact that the matrix (54) is
circulant and to facilitate the analysis to follow, we set [16, 18–
20]

V
𝑗
fl (1, 𝜒

𝑗
, 𝜒
2𝑗

, . . . , 𝜒
(3𝑛−1)𝑗

)
T

,

𝑗 = 0, 1, . . . , 3𝑛 − 1, 𝜒 = 𝑒
2𝑖𝜋/3𝑛

.

(57)

We note the following identities:

𝜒
3𝑛𝑗

= 1,

𝜒
(3𝑛−1)𝑗

= 𝜒
−𝑗

,

𝜒
(3𝑛−2)𝑗

= 𝜒
−2𝑗

,

.

.

.

𝜒
(3𝑛−𝑘)𝑗

= 𝜒
−𝑘𝑗

.

(58)
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We arrive at the following useful results:

BV
𝑗

=
1

𝑛

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

0

0

.

.

.

0

(𝑐 + 1) + 𝜒
𝑗

+ 𝜒
2𝑗

+ ⋅ ⋅ ⋅ + 𝜒
(3𝑛−1)𝑗

1 + (𝑐 + 1) 𝜒
𝑗

+ 𝜒
2𝑗

+ ⋅ ⋅ ⋅ + 𝜒
(3𝑛−1)𝑗

.

.

.

1 + 𝜒
𝑗

+ 𝜒
2𝑗

+ ⋅ ⋅ ⋅ + (𝑐 + 1) 𝜒
(3𝑛−1)𝑗

1 + 𝜒
𝑗

+ 𝜒
2𝑗

+ ⋅ ⋅ ⋅ + 𝜒
(3𝑛−1)𝑗

1 + 𝜒
𝑗

+ 𝜒
2𝑗

+ ⋅ ⋅ ⋅ + 𝜒
(3𝑛−1)𝑗

.

.

.

1 + 𝜒
𝑗

+ 𝜒
2𝑗

+ ⋅ ⋅ ⋅ + 𝜒
(3𝑛−1)𝑗

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

0

0

.

.

.

0

𝑐 + Vt
0
V
𝑗

𝑐𝜒
𝑗

+ Vt
0
V
𝑗

.

.

.

𝑐𝜒
−𝑗

+ Vt
0
V
𝑗

Vt
0
V
𝑗

Vt
0
V
𝑗

.

.

.

Vt
0
V
𝑗

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

, Vt
0
V
𝑗

= 𝜒
𝑗

+ 𝜒
−𝑗

+ 3𝑛 − 1,

VT
𝑖

⋅ V
𝑗

= 3𝑛,

V
𝑗

= V
3𝑛−𝑗

, (𝑗 = 0, 1, 2, . . . , 3𝑛 − 1) .

(59)

Following the footsteps of Lemma 3.1 of [16], we arrive at the
following result.

Lemma 5. Eigenvalue conditions are formulated as follows.
Let 𝑐, 𝑛, and 𝜏 be fixed such that there is a solution, (𝜔

𝑐
, 𝑎
𝑐
(𝜔
𝑐
)),

of (17). Then,

(A1) the characteristic matrix 𝑀
3𝑛

(𝜆) is continuously differ-
entiable with respect to 𝑎;

(A2) the infinitesimal generator, 𝐴(𝑎), of the linear operator
(46) has a multiplicity (𝑛 − 1) pair of eigenvalues, ±𝑖𝜔

𝑐
,

at 𝑎 = 𝑎
𝑐
;

(A3) the generalised eigenspace, 𝑃
±𝑖𝜔
𝑐

(𝐴(𝑎
𝑐
)), of 𝐴(𝑎

𝑐
) for

±𝑖𝜔
𝑐
is spanned by the 2(𝑛 − 1) eigenvectors v implicitly

defined by the relationship

[𝐴
3𝑛×3𝑛

(𝑎
𝑐
) − 𝜆 ⋅ I

3𝑛×3𝑛
]
ℓ k = 0, ℓ = 1, 2, . . . , 𝑛 − 1, (60)

where 𝜆 is a multiplicity (𝑛 − 1) eigenvalue of 𝐴(𝑎
𝑐
).

Proof. The differentiability of the Jacobian matrix 𝑀
3𝑛

(𝜆)

follows from its definition in (54). Let us note first that
characteristic equation (12) may be expressed in the format

𝐷 (𝜆, 𝜏) fl Δ
𝑛−1

1
(𝜆, 𝜏) ⋅ Δ

2
(𝜆, 𝜏) = 0. (61)

As a consequence of the symmetry imposed by the global
coupling as depicted in Figure 1, it follows that the determi-
nant 𝑀

3𝑛
− 𝜆 ⋅ I
3𝑛×3𝑛

is factorisable, and there are multiplicity
(𝑛 − 1) roots [7]. From the discussion in Section 1 and
also under the conditions of the lemma, it is evident that
Δ
𝑗
(±𝑖𝜔
𝑐
, 𝜏) = 0. This means that the characteristic equation

(12) indeed admits a multiplicity (𝑛 − 1) pair of roots, ±𝑖𝜔
𝑐
.

Consequently, (44) implies that𝐴(𝑎
𝑐
) has amultiplicity (𝑛−1)

pair of complex conjugate eigenvalues ±𝑖𝜔
𝑐
. Employing the

properties of V
𝑗
, we can show that

𝑀
3𝑛

(𝜆) V
𝑗

= Δ
𝑗

(𝜆, 𝜏) V
𝑗
,

𝑀
3𝑛−𝑗

(𝜆) V
𝑗

= Δ
𝑗

(𝜆, 𝜏) V
3𝑛−𝑗

.

(62)

Hence the conditions of the lemma lead to

𝑀
3𝑛

(𝑖𝜔
𝑐
) V
𝑗

= 𝑀
3𝑛

(𝑖𝜔
𝑐
) V
3𝑛−𝑗

= 𝑀
3𝑛

(−𝑖𝜔
𝑐
) V
𝑗

= 𝑀
3𝑛

(−𝑖𝜔
𝑐
) V
3𝑛−𝑗

= 0.

(63)

Noting first that V
3𝑛−𝑗

= V
𝑗
and then using a standard result

from [17], we arrive at the conclusion that the eigenvectors of
𝐴(𝑎
𝑐
) corresponding to ±𝑖𝜔

𝑐
are given by (19) to (21) in [7].

The generalised eigenspace 𝑃
±𝑖𝜔
𝑐

(𝐴(𝑎
𝑐
)) is spanned by these

2(𝑛 − 1) linearly independent eigenvectors corresponding
to the 2(𝑛 − 1) eigenvalues [16]. An alternative approach to
proving (A3) is given on page 24 of [19].

In the characteristic equation (12), let 𝜆 = 𝜆(𝜏) and
differentiate with respect to 𝜏 to obtain

[3𝜆
2

+ 2𝑎 (1 + 𝑏) 𝜆 + 𝑎
2
𝑏

− 𝜏 [𝜆 (1 +
𝑐

𝑛
) + 𝑎 (1 +

𝑏𝑐

𝑛
)] 𝑒
−𝜆𝜏

+ (1 +
𝑐

𝑛
)

⋅ 𝑒
−𝜆𝜏

+ (𝑛 − 1) 𝐹
𝑠

(𝜆, 𝜏)

⋅ (𝐹
𝑎𝑝

(𝜆, 𝜏) + (2𝜆 + 𝑎 −
𝑐𝜏

𝑛
𝑒
−𝜆𝜏

) 𝐹
1

(𝜆))]
𝑑𝜆

𝑑𝜏

= 𝜆 [𝜆 (1 +
𝑐

𝑛
) + 𝑎 (1 +

𝑏𝑐

𝑛
)] +

𝑐𝜆 (𝑛 − 1)

𝑛

⋅ 𝐹
1

(𝜆) 𝐹
𝑠

(𝜆, 𝜏) ,

(64)
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from which it is straightforward to show that the usual trans-
versality condition

Re(
𝑑𝜆

𝑑𝜏

𝜆=𝑖𝜔

) ̸= 0 (65)

is fulfilled if, and only if,

Q
1
Q
2

̸= 0, (66)

where
Q
1
fl 𝑎
3
𝑏𝑛
2

− 𝑛𝑎
3
𝑏 + 𝑎𝑏𝜔

2
𝑛
2

− 2𝜔
2
𝑐𝑎𝑏 − 𝑎𝑏𝑛𝜔

2

+ 2𝜔
2
𝑐𝑎𝑏𝑛 + 2𝜔

2
𝑐𝑎𝑛 − 2𝜔

2
𝑐𝑎 − 𝑐 − 𝑛

(67)

and where relations (18) have been used to perform some
simplifications in (66). The expression for Q

2
is given in

Appendix. Once again, following the footsteps of Lemma 3.2

of [16], we arrive at the following nonresonance condition.

Lemma 6. The nonresonance condition is formulated as fol-
lows. Let 𝑏, 𝑐, 𝑛, and 𝜏 be fixed such that there exists a solution
(𝜔
𝑐
, 𝑎
𝑐
(𝜔
𝑐
)) of (36). If 𝑏, 𝑐, 𝑛, 𝜏, and 𝑎

𝑐
are such that, for each

𝑚 = 2, 3, . . ., at least one of the following holds,

𝑎
𝑐
𝑏 [−𝑛𝑚𝜔

2

𝑐
+ 𝑐 ⋅ cos (𝑚𝜔

𝑐
𝜏)]

− 𝑚𝜔
𝑐

[𝑎
𝑐
𝑛𝑚𝜔
𝑐

− 𝑐 ⋅ sin (𝑚𝜔
𝑐
𝜏)] ̸= 0,

𝑎
𝑐
𝑏 [𝑛𝑚𝑎

𝑐
𝜔
𝑐

− 𝑐 ⋅ sin (𝑚𝜔
𝑐
𝜏)]

− 𝑚𝜔
𝑐

[−𝑛𝑚
2
𝜔
2

𝑐
+ 𝑐 ⋅ cos (𝑚𝜔

𝑐
𝜏)] ̸= 0,

(68)

then all other eigenvalues of 𝐴(𝑎
𝑐
) are not integer multiples of

±𝑖𝜔
𝑐
.

Proof. It is evident from (12) and (16) that, for 𝑎 = 𝑎
𝑐
,

Δ
𝑗
(±𝑖𝜔
𝑐
, 𝜏) ̸= 0. This implies that one-to-one resonances

cannot happen. However, other resonances are feasible and
do occur if there exists Z ∋ 𝑚 > 1 such that (16) are
fulfilled for 𝜔 = 𝜔

𝑐
and 𝜔 = 𝑚𝜔

𝑐
, with identical values of the

parameters 𝑎, 𝑏, 𝑐, 𝑛, 𝜏 [16].This is precluded from happening
by (68) [16].

We thus arrive at the following result.

Theorem 7. Let 𝑏, 𝑐, 𝑛, and 𝜏 be fixed such that there exists
a solution (𝜔

𝑐
, 𝑎
𝑐
(𝜔
𝑐
)) of (36). If conditions (66) and (68)

are satisfied, then system (2) undergoes an equivariant Hopf
bifurcation on the parametric surfaces given by (16) as the
parameter 𝑎 varies through 𝑎

𝑐
.

Appendix

The quantity Q
2
appearing in (66) is given by the lengthy

expression

Q
2

= (4𝑎
4
𝑛
4
𝜔
6
𝜏𝑏
3

+ 2𝑎
6
𝑛
4
𝜔
4
𝜏𝑏
4

+ 4𝑎
6
𝑛
4
𝜔
4
𝜏𝑏
3

− 2𝑎
3
𝑐
2
𝑛𝑏
2
𝜔
2

+ 4𝜔
2
𝑛
2
𝑐𝑎
4
𝑏
4

+ 6𝜔
4
𝑛
2
𝑐𝑎
2
𝑏
2

+ 2𝑎
3
𝑐
2
𝑛
2
𝑏
2
𝜔
2

− 𝑎
2
𝜏𝜔
6
𝑛
2
𝑐 − 𝜔
2
𝑐𝑎
7
𝑏
6
𝑛
2

+ 5𝜔
4
𝑐𝑎
5
𝑏
5
𝑛
2

+ 𝑎
2
𝜏𝜔
6
𝑛
3
𝑐 + 𝑎
7
𝑏
6
𝑛
3
𝜔
2
𝑐

− 5𝑎
5
𝑏
5
𝑛
3
𝜔
4
𝑐 − 𝑛
2
𝜏𝜔
6
𝑎𝑐 + 2𝑎𝑏𝑛

2
𝜔
6
𝑐

+ 4𝑎
5
𝑏
5
𝑛
2
𝜔
2
𝑐 − 2𝑎𝑏𝑛

3
𝜔
6
𝑐 − 4𝑎

5
𝑏
5
𝑛
3
𝜔
2
𝑐

− 2𝜔
6
𝑛
3
𝜏𝑎
4
𝑏
4

+ 2𝜔
6
𝑛
4
𝜏𝑎
4
𝑏
4

− 6𝑎
3
𝑏
3
𝑛
3
𝜔
4
𝑐

− 𝑎
6
𝜏𝑏
5
𝑐
2
𝑛
2

− 𝑎
6
𝑏
6
𝑐
3
𝜏𝑛 + 𝑎

6
𝜏𝑏
5
𝑐
2
𝑛

+ 6𝑎
3
𝑏
3
𝑛
2
𝜔
4
𝑐 − 2𝜏𝜔

4
𝑛
3
𝑎
3
𝑏
3

− 2𝜏𝜔
6
𝑛
3
𝑎𝑏

+ 4𝑎
4
𝑛
4
𝜔
6
𝜏𝑏 − 4𝑎

4
𝑛
3
𝜔
6
𝜏𝑏 − 2𝜏𝜔

2
𝑛
3
𝑎
5
𝑏
3

− 2𝜏𝜔
4
𝑛
3
𝑎
3
𝑏 + 𝑎
6
𝑏
6
𝜏𝑛
3
𝜔
2
𝑐 + 2𝑎

4
𝑏
2
𝜏𝜔
4
𝑛
3
𝑐

+ 2𝑎
6
𝑏
6
𝑛
3
𝜔
4
𝜏𝑐 − 2𝑎

4
𝑏
2
𝜏𝜔
4
𝑛
2
𝑐 − 𝑛
2
𝜏𝑎
5
𝑏
5
𝜔
2
𝑐

− 2𝑛
2
𝜏𝑎
3
𝑏
2
𝜔
4
𝑐 − 4𝑛

3
𝑎
5
𝜔
2
𝑐𝑏
4

− 7𝑛
3
𝑎
3
𝜔
4
𝑐𝑏
2

− 𝑛
3
𝑎
3
𝑏𝑐𝜔
4

− 4𝑛
3
𝜔
4
𝑎
5
𝑐𝑏
4

− 7𝑛
3
𝜔
6
𝑎
3
𝑐𝑏
2

+ 4𝜔
4
𝑐𝑎
5
𝑛
2
𝑏
4

+ 7𝜔
6
𝑐𝑎
3
𝑛
2
𝑏
2

+ 4𝑎
5
𝜔
2
𝑛
2
𝑐𝑏
4

+ 7𝑎
3
𝜔
4
𝑛
2
𝑐𝑏
2

+ 𝑎
3
𝑏𝑛
2
𝑐𝜔
4

+ 𝑎
4
𝑏
4
𝑐
3
𝜏𝜔
2

− 𝑎
2
𝑏
2
𝑐
3
𝜏𝜔
4

+ 2𝑎
3
𝑏
3
𝑐
3
𝑛𝜔
2

+ 𝑎𝑏𝑐
3
𝑛𝜔
4

+ 𝑎
2
𝑏𝑛
2
𝑐𝜔
4

+ 2𝜔
4
𝑐𝑎
5
𝑛
2
𝑏
3

+ 2𝜔
6
𝑐𝑎
3
𝑛
2
𝑏

− 2𝑛
3
𝜔
4
𝑎
5
𝑐𝑏
3

− 2𝑛
3
𝜔
6
𝑎
3
𝑐𝑏 − 8𝑛

3
𝜔
6
𝑎
3
𝑐𝑏
3

− 3𝑛
3
𝜔
8
𝑎𝑐𝑏 + 8𝜔

6
𝑐𝑎
3
𝑛
2
𝑏
3

+ 3𝜔
8
𝑐𝑎𝑛
2
𝑏

− 4𝑎
2
𝑛
3
𝜔
8
𝜏𝑏 − 4𝑎

4
𝑛
3
𝜔
6
𝜏𝑏
3

− 2𝑎
6
𝑛
3
𝜔
4
𝜏𝑏
4

− 4𝑎
6
𝑛
3
𝜔
4
𝜏𝑏
3

+ 4𝑎
2
𝑛
4
𝜔
8
𝜏𝑏 + 2𝑛

3
𝑎
7
𝑏
5
𝜔
2

− 2𝑎
2
𝑛
4
𝜔
8
𝜏 + 2𝑎

2
𝑛
3
𝜔
8
𝜏 − 2𝑛

4
𝜔
4
𝑎
5
𝑏
5

+ 2𝑛
3
𝜔
4
𝑎
5
𝑏
5

− 6𝑛
4
𝜔
6
𝑎
3
𝑏
2

− 6𝑛
4
𝜔
4
𝑎
5
𝑏
2

− 2𝑛
4
𝜔
2
𝑎
7
𝑏
5

+ 𝑛
3
𝜔
2
𝑎
4
𝑏
4

+ 2𝑛
3
𝜔
2
𝑎
4
𝑏
3

+ 2𝑛
3
𝜔
4
𝑎
2
𝑏 − 2𝑎

3
𝑏
3
𝑐
3
𝜔
2

− 𝑎𝑏𝑐
3
𝜔
4

− 𝑎
5
𝑐
2
𝑛𝑏
4

− 𝑎𝑐
2
𝑛𝜔
4

+ 𝑎
5
𝑐
2
𝑛
2
𝑏
4

+ 𝑎𝑐
2
𝑛
2
𝜔
4

− 10𝑛
4
𝜔
6
𝑎
3
𝑏
3

+ 10𝑛
3
𝜔
6
𝑎
3
𝑏
3

− 10𝑛
4
𝜔
4
𝑎
5
𝑏
3

+ 6𝑛
3
𝜔
6
𝑎
3
𝑏
2

+ 10𝑛
3
𝜔
4
𝑎
5
𝑏
3

+ 6𝑛
3
𝜔
4
𝑎
5
𝑏
2

+ 𝜔
6
𝑐
3
𝜏𝑛 − 2𝑛

3
𝑎𝜔
6
𝑐

+ 𝑛
3
𝑎
7
𝑏
5
𝑐 + 𝑛
3
𝑎
7
𝑏
6
𝑐 − 2𝑛

3
𝜔
8
𝑎𝑐 + 2𝜔

8
𝑐𝑎𝑛
2

+ 2𝑎𝜔
6
𝑛
2
𝑐 − 𝑎
7
𝑏
5
𝑛
2
𝑐 − 𝑎
7
𝑏
6
𝑛
2
𝑐 + 𝑎
6
𝑏
6
𝑐
3
𝜏

+ 𝜔
6
𝜏𝑐
2
𝑛
2

− 𝜔
6
𝑐
2
𝜏𝑛 + 𝑎

5
𝑏
5
𝑐
3
𝑛 − 𝑎
6
𝑏
5
𝑛
2
𝑐

+ 𝜔
10

𝑛
2
𝜏𝑐 − 𝜔

10
𝑛
3
𝜏𝑐 − 2𝑎

4
𝜏𝑏
3
𝑐
2
𝑛
2
𝜔
2

− 𝑎
2
𝜏𝑏𝑐
2
𝑛
2
𝜔
4

+ 2𝑎
4
𝜏𝑏
3
𝑐
2
𝑛𝜔
2

+ 𝑎
2
𝜏𝑏𝑐
2
𝑛𝜔
4
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− 2𝑎
6
𝑏
5
𝑛
2
𝜔
4
𝜏𝑐 − 2𝑎

6
𝑏
4
𝑛
2
𝜔
4
𝜏𝑐 + 2𝜔

4
𝑛
3
𝑎
6
𝜏𝑏
5
𝑐

+ 2𝜔
4
𝑛
3
𝑎
6
𝜏𝑏
4
𝑐 + 𝑎
8
𝑏
6
𝜔
2
𝜏𝑛
3
𝑐 + 2𝑎

6
𝑏
5
𝜏𝜔
2
𝑛
3
𝑐

+ 2𝑎
4
𝑏
4
𝜏𝜔
4
𝑛
3
𝑐 + 𝑎
2
𝑏
2
𝜏𝜔
6
𝑛
3
𝑐 − 𝑎
8
𝑏
6
𝜔
2
𝜏𝑛
2
𝑐

− 2𝑎
6
𝑏
5
𝜏𝜔
2
𝑛
2
𝑐 − 2𝑎

4
𝑏
4
𝜏𝜔
4
𝑛
2
𝑐 − 𝑎
2
𝑏
2
𝜏𝜔
6
𝑛
2
𝑐

− 𝑎
6
𝑏
6
𝜏𝑛
2
𝜔
2
𝑐 + 2𝜔

10
𝑛
3
𝜏 − 2𝜔

10
𝑛
4
𝜏 + 2𝑛

4
𝜔
8
𝑎

+ 2𝑛
4
𝑎
3
𝜔
6

− 𝑎
5
𝑏
5
𝑐
3

− 𝜔
6
𝑐
3
𝜏 + 2𝜔

6
𝑛
2
𝑐 − 2𝑎

3
𝑛
3
𝜔
6

− 2𝑛
3
𝜔
8
𝑎 − 2𝑎

6
𝑏
6
𝑛
2
𝜔
4
𝜏𝑐 − 𝑛

3
𝜔
6

− 𝑎
6
𝜏𝜔
2
𝑛
2
𝑐𝑏
4

− 4𝑎
4
𝜏𝜔
4
𝑛
2
𝑐𝑏
3

+ 2𝜔
10

𝑛
3
𝜏 − 2𝜔

10
𝑛
4
𝜏 + 2𝑛

4
𝜔
8
𝑎

+ 2𝑛
4
𝑎
3
𝜔
6

− 𝑎
5
𝑏
5
𝑐
3

− 𝜔
6
𝑐
3
𝜏 + 2𝜔

6
𝑛
2
𝑐 − 2𝑎

3
𝑛
3
𝜔
6

− 2𝑛
3
𝜔
8
𝑎 − 2𝑎

6
𝑏
6
𝑛
2
𝜔
4
𝜏𝑐 − 𝑛

3
𝜔
6

− 𝑎
6
𝜏𝜔
2
𝑛
2
𝑐𝑏
4

− 4𝑎
4
𝜏𝜔
4
𝑛
2
𝑐𝑏
3

− 2𝑎
2
𝜏𝜔
6
𝑛
2
𝑐𝑏 + 𝑎

6
𝜏𝜔
2
𝑛
3
𝑐𝑏
4

+ 4𝑎
4
𝜏𝜔
4
𝑛
3
𝑐𝑏
3

+ 2𝑎
2
𝜏𝜔
6
𝑛
3
𝑐𝑏 − 𝑛

2
𝜏𝜔
2
𝑎
5
𝑐𝑏
4

− 2𝑛
2
𝜏𝜔
4
𝑎
3
𝑐𝑏
3

− 𝑛
2
𝜏𝜔
6
𝑎𝑐𝑏 − 𝜔

2
𝑐
3
𝜏𝑛𝑎
4
𝑏
4

+ 𝜔
4
𝑐
3
𝜏𝑛𝑎
2
𝑏
2

+ 𝜔
2
𝜏𝑐
2
𝑛
2
𝑎
4
𝑏
4

+ 2𝜔
4
𝜏𝑐
2
𝑛
2
𝑎
2
𝑏
2

− 𝜔
2
𝑐
2
𝜏𝑛𝑎
4
𝑏
4

− 2𝜔
4
𝑐
2
𝜏𝑛𝑎
2
𝑏
2

− 2𝜔
8
𝑛
2
𝜏𝑐𝑎
2
𝑏

− 3𝜔
6
𝑛
2
𝜏𝑐𝑎
4
𝑏
4

− 4𝜔
6
𝑛
2
𝜏𝑐𝑎
4
𝑏
3

− 𝜔
6
𝑛
2
𝜏𝑐𝑎
4
𝑏
2

+ 2𝜔
8
𝑛
3
𝜏𝑐𝑎
2
𝑏 + 3𝜔

6
𝑛
3
𝜏𝑐𝑎
4
𝑏
4

+ 4𝜔
6
𝑛
3
𝜏𝑐𝑎
4
𝑏
3

+ 𝜔
6
𝑛
3
𝜏𝑐𝑎
4
𝑏
2
) .

(A.1)

The coefficients of the octic polynomial (22) are given by the
following:

𝐴
8

= 𝑛
4

+ 2𝑛
3
𝑐 + 𝑛
2
𝑐
2
,

𝐴
6

= −𝑛
4
𝑎
2

− 4𝑎
2
𝑛
2
𝑐
2
𝑏 − 6𝑛

3
𝑎
2
𝑏𝑐 − 2𝑎

2
𝑛
3
𝑐

− 2𝑛
3
𝑎
2
𝑏
2
𝑐 − 𝑛
2
𝑎
2
𝑏
2
𝑐
2

− 4𝑛
4
𝑎
2
𝑏,

𝐴
5

= −4𝑛
3
𝑎
3
𝑏
2
𝑐 − 4𝑎

3
𝑛
3
𝑏𝑐 − 2𝑎

3
𝑛
4

− 2𝑛
4
𝑎
3
𝑏

− 2𝑎
3
𝑛
2
𝑏
2
𝑐
2

− 2𝑛
2
𝑎
3
𝑏
3
𝑐
2
,

𝐴
4

= 5𝑎
4
𝑛
2
𝑏
2
𝑐
2

+ 2𝑛
2
𝑎
4
𝑏
4
𝑐
2

+ 4𝑛
2
𝑎
4
𝑏
3
𝑐
2

+ 6𝑛
3
𝑎
4
𝑏
3
𝑐 + 4𝑛

4
𝑎
4
𝑏 + 5𝑛

4
𝑎
4
𝑏
2

+ 10𝑛
3
𝑎
4
𝑏
2
𝑐 + 6𝑎

4
𝑛
3
𝑏𝑐 + 2𝑎

4
𝑛
4
,

𝐴
3

= 2𝑛
2
𝑎
5
𝑏
4
𝑐
2

+ 4𝑛
3
𝑎
5
𝑏
3
𝑐 + 2𝑛

2
𝑎
5
𝑏
3
𝑐
2

+ 2𝑛
4
𝑎
5
𝑏
2

+ 4𝑛
3
𝑎
5
𝑏
2
𝑐 + 2𝑛

4
𝑎
5
𝑏,

𝐴
2

= −𝑛
2
𝑎
2
𝑏
2
𝑐
2

− 4𝑎
2
𝑛
2
𝑐
2
𝑏 − 2𝑎

2
𝑛𝑐
3
𝑏
2

+ 2𝑛
3
𝑎
6
𝑏
3
𝑐

− 𝑎
2
𝑐
2
𝑛
2

− 2𝑎
2
𝑛
3
𝑐 − 𝑎
2
𝑐
4
𝑏
2

− 𝑛
4
𝑎
2

− 2𝑛
3
𝑎
2
𝑏𝑐 + 𝑛

4
𝑎
6
𝑏
2

− 2𝑎
2
𝑐
3
𝑛𝑏 + 𝑛

2
𝑎
6
𝑏
4
𝑐
2
,

𝐴
1

= 2𝑎
3
𝑛
4

+ 6𝑎
3
𝑛
2
𝑏
2
𝑐
2

+ 2𝑎
3
𝑐𝑛
3

+ 2𝑎
3
𝑐
4
𝑏
3

+ 6𝑎
3
𝑛
3
𝑏𝑐 + 2𝑎

3
𝑛𝑏
3
𝑐
3

+ 6𝑎
3
𝑐
2
𝑛
2
𝑏

+ 6𝑎
3
𝑐
3
𝑛𝑏
2
,

𝐴
0

= −4𝑎
4
𝑛
3
𝑏𝑐 − 6𝑎

4
𝑛
2
𝑏
2
𝑐
2

− 4𝑎
4
𝑛𝑏
3
𝑐
3

− 𝑎
4
𝑐
4
𝑏
4

− 𝑎
4
𝑛
4
.

(A.2)
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