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We consider the existence of nonlinear boundary layers and the typically nonlinear problem of existence of shock profiles for the
Broadwell model, which is a simplified discrete velocity model for the Boltzmann equation. We find explicit expressions for the
nonlinear boundary layers and the shock profiles. In spite of the few velocities used for the Broadwell model, the solutions are
(at least partly) in qualitatively good agreement with the results for the discrete Boltzmann equation, that is the general discrete
velocity model, and the full Boltzmann equation.

1. Introduction

The Boltzmann equation (BE) is a fundamental equation in
kinetic theory. Half-space problems for the BE are of great
importance in the study of the asymptotic behavior of the
solutions of boundary value problems of the BE for small
Knudsen numbers [1, 2] and have been extensively studied
both for the full BE [3, 4] and for the discrete Boltzmann
equation (DBE) [5–8]. The half-space problems provide the
boundary conditions for the fluid-dynamic-type equations
and Knudsen-layer corrections to the solution of the fluid-
dynamic-type equations in a neighborhood of the boundary.
In [8] nonlinear boundary layers for the DBE, the general
discrete velocity model (DVM) was considered. Existence
of weakly nonlinear boundary layers was proved. Here we
exemplify the theory in [8] for a simplified model, the
Broadwell model [9], where the whole machinery is actually
not really needed, even if it helps out. For the nonlinear
Broadwellmodel, we obtain explicit expressions for boundary
layers near a wall moving with a constant speed.The number
of conditions, on the assigned data for the outgoing particles
at the boundary, needed for the existence of a unique (in
a neighborhood of the assigned Maxwellian at infinity)
solution of the problem is in complete agreement with the
results in [8] for the DBE and [3] for the full BE. Here we also
want to mention a series of papers studying initial boundary

value problems for the Broadwell model using Green’s func-
tions [10–16].

We also consider the question of existence of shock
profiles [17, 18] for the same model [9, 19]. The shock
profiles can then be seen as heteroclinic orbits connecting
two singular points (Maxwellians) [20]. In [20] existence of
shock profiles for the DBE in the case of weak shocks was
proved. We exemplify the theory in [20] for the Broadwell
model, where again thewholemachinery is not really needed,
even if it helps out. In this way we, in a new way, obtain
similar explicit solutions, not only for weak shocks, as the
ones obtained in [19] for the same problem.

The paper is organized as follows. In Section 2 we
introduce the Broadwell model and find explicit expressions
for the nonlinear boundary layers near a wall moving with a
constant speed, and in Section 3 we find explicit expressions
for the shock profiles for the Broadwell model.

2. Nonlinear Boundary Layers for the
Broadwell Model Near a Moving Wall

In this section we study boundary layers for the nonlinear
Broadwell model near a wall moving with a constant speed 𝑏.
In [8] the nonlinear boundary layers for the DBE, the general
discrete velocity model (DVM) was considered. Existence of
nonlinear boundary layers was proved. Here we exemplify
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the theory in [8] in the case of a simplified model, where the
whole machinery is actually not really needed, even if it helps
out. The same problem was considered in [21] for a mixture
model, where one of the two species was modelled by the
Broadwell model.

We consider the classical Broadwell model [9] in space
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where𝜎 is themutual collision cross section. For a flow axially
symmetric around the 𝑥-axis we can reduce system (1) to
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The collision invariants are

𝜙 = 𝛼 (1, 1, 1) + 𝛽 (1, 0, − 1) , 𝛼, 𝛽 ∈ R, (3)
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Let 𝑏, the speed of the wall, be a real number such that
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Consider the problem
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Similar initial boundary value problems have been stud-
ied in a series of papers using Green’s functions (with 𝑠4 =
1/6, 𝑎 = 1) for 1/√3 < 𝑏 < 1 in [10] (with 𝐶 = (𝑐

1
𝑐
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)) and

[14], for−1 < 𝑏 < −1/√3 in [11], for 0 < 𝑏 < 1/√3, with𝐶 = 0
in [12, 13, 15], and for diffuse boundary conditions in [16].

Here we consider the stationary nonlinear system
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We let𝑚± denote the number of the positive and negative
eigenvalues of the matrix 𝐵−1𝐿. The numbers 𝑛±, with 𝑛+ +
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Furthermore,
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This is in good agreement with the results for the DBE in [8]
and for the continuous BE in [3].
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Particularly, with 𝑎 = 1 we have

𝑏
±
= ±

1

√2
,

𝜆 =
2𝑠
4
𝜎 (2𝑏
2
− 1)

3 (𝑏 − 𝑏3)
,

V = (𝑏 + 𝑏2, 1 − 𝑏2, 𝑏2 − 𝑏) ,

𝑘 =
𝑠
2
𝜎

𝑏
.

(40)

3. Shock Profiles

In this section we are concerned with the existence of shock
profiles [17, 18]

𝐹 = 𝐹 (𝑥
1
, 𝜉, 𝑡) = 𝑓 (𝑥

1
− 𝑏𝑡, 𝜉) (41)

for the Boltzmann equation

𝜕𝐹

𝜕𝑡
+ 𝜉 ⋅ ∇x𝐹 = 𝑄 (𝐹, 𝐹) . (42)

Here x = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑, 𝜉 = (𝜉1, . . . , 𝜉𝑑) ∈ R𝑑, and
𝑡 ∈ R

+
denote position, velocity, and time, respectively.

Furthermore, 𝑏 denotes the speed of the wave. The profiles
are assumed to approach two given Maxwellians

𝑀
±
=

𝜌
±

(2𝜋𝑇
±
)
𝑑/2
𝑒
−|𝜉−u

±
|
2
/(2𝑇
±
)

(43)
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(𝜌, u, and 𝑇 denote density, bulk velocity, and temperature,
resp.) as 𝑥 → ±∞, which are related through the Rankine-
Hugoniot conditions.

The (shockwave) problem is to find a solution𝑓 = 𝑓(𝑦, 𝜉)
(𝑦 = 𝑥1 − 𝑏𝑡) of the equation

(𝜉
1
− 𝑏)

𝜕𝑓

𝜕𝑦
= 𝑄 (𝑓, 𝑓) , (44)

such that

𝑓 → 𝑀
±

as 𝑦 → ±∞. (45)

In [20] the shock wave problem (44), (45) for the DBE
was considered. Existence of shock profiles in the case ofweak
shocks was proved. Here we exemplify the theory in [20] in
the case of a simplified model, where the whole machinery is
actually not really needed, even if it helps out. In this way we,
in a different way, obtain similar results as is obtained in [19]
for the same problem.

We study the reduced system (2) of the classical Broadwell
model in (1) [9] in space.The collision invariants are given by
(3) and the Maxwellians (equilibrium distributions) by (4).

The shock wave problem for the Broadwell model reads

𝐵
𝑑𝑓

𝑑𝑦
= 𝑄 (𝑓, 𝑓) , where 𝑓 → 𝑀

±
as 𝑦 → ±∞, (46)

where 𝐵 = 𝐵(𝑏) = diag(1 − 𝑏, −4𝑏, −(1 + 𝑏)), 𝑓 = (𝑓
1
, 𝑓
2
, 𝑓
3
),

and 𝑄(𝑓, 𝑓) is defined by the bilinear expression (10).
The density 𝜌, momentum 𝜌𝑢, and internal energy 2𝜌𝐸

can be obtained by (5). The Maxwellians𝑀
−
= 𝑠
4

−
(𝑎
4

−
, 𝑎
2

−
, 1)

and 𝑀
+
= 𝑠
4

+
(𝑎
4

+
, 𝑎
2

+
, 1) must fulfill the Rankine-Hugoniot

conditions

𝜌
+
(𝑢
+
− 𝑏) = 𝜌

−
(𝑢
−
− 𝑏) ,

𝜌
+
(2𝐸
+
− 𝑏𝑢
+
) = 𝜌
−
(2𝐸
−
− 𝑏𝑢
−
) ,

(47)

with

𝜌
±
= 𝑠
4

±
(1 + 4𝑎

2

±
+ 𝑎
4

±
) ,

𝜌
±
𝑢
±
= 𝑠
4

±
(𝑎
4

±
− 1) ,

2𝜌
±
𝐸
±
= 𝑠
4

±
(1 + 𝑎

4

±
) .

(48)

After some manipulations we obtain that

2𝐸
±
=
1

3
(2√1 + 3𝑢2

±
− 1) . (49)

We consider

𝐵
𝑑𝑓

𝑑𝑦
= 𝑄 (𝑓, 𝑓) , where 𝑓 → 𝑀

+
as 𝑦 → ∞ (50)

and denote

𝐹 = 𝑀 +𝑀
1/2
ℎ,

with 𝑀 = 𝑀
+
= 𝑠
4

+
(𝑎
4

+
, 𝑎
2

+
, 1) = 𝑠

4
(𝑎
4
, 𝑎
2
, 1) .

(51)

Then we obtain

𝐵
𝑑ℎ

𝑑𝑦
+ 𝐿ℎ = 𝑆 (ℎ, ℎ) , where ℎ → 0 as 𝑦 → ∞, (52)

with the linearized operator 𝐿 and the quadratic part 𝑆(ℎ, ℎ)
given by (13).The linearized collision operator is given by (15)
and then fulfills properties (16)–(20).

We assume that 𝐵 is nonsingular; that is 𝑏 ∉ {−1, 0, 1}.
Then by (52) we obtain the system

𝑑ℎ

𝑑𝑦
+ 𝐵
−1
𝐿ℎ = 𝐵

−1
𝑆 (ℎ, ℎ) . (53)

In (25) we obtain that

𝑏
±
=
𝑎
4
− 1 ± √1 + 4𝑎2 + 2𝑎4 + 4𝑎6 + 𝑎8

2 (1 + 𝑎2 + 𝑎4)

=
2𝑢
+
± 2√2𝐸

+

1 + 6𝐸
+

,

(54)

and the eigenvalues of the matrix 𝐵−1𝐿 are 0 (of multiplicity
2) and

𝜆 =
4𝑠
4
𝜎𝜅

3 (𝑏 − 𝑏3)

=
𝜌
+
𝜎

3 (𝑏 − 𝑏3)
(2𝐸
+
− 1 − 4𝑢

+
𝑏 + (1 + 6𝐸

+
) 𝑏
2
) ,

with 𝜅 = −𝑎2 + (1 − 𝑎4) 𝑏 + (1 + 𝑎2 + 𝑎4) 𝑏2.

(55)

Let

ℎ = 𝜗𝑒
1
+ 𝜒𝑒
2
+ 𝜇V, (56)

where 𝑒
1
and 𝑒

2
are eigenvectors (19) corresponding to the

zero eigenvalue and V is eigenvector (28) corresponding to the
nonzero eigenvalue 𝜆. Then

𝑑𝜗

𝑑𝑦
=
𝑑𝜒

𝑑𝑦
= 0, (57)

which implies that

𝜗 = 𝜒 = 0, (58)

since lim
𝑦→∞

𝜗 = lim
𝑦→∞

𝜒 = 0. Therefore

𝑑𝜇

𝑑𝑦
+ 𝜆𝜇 = 𝑘𝜇

2
, (59)

where 𝑘 is given in (30). We obtain that

𝜇 =
𝜆

𝑘 + 𝐷𝑒𝜆𝑦
. (60)

Assume that𝐷 ̸= 0 and let

𝑏
+
< 𝑏 < 1,

or 𝑏
−
< 𝑏 ≤ −

1

1 + 2𝑎2
.

(61)
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Then

lim
𝑦→∞

𝜇 = 0,

lim
𝑦→−∞

𝜇 =
𝜆

𝑘
,

(62)

and therefore

ℎ (𝑦) =
𝜆

𝑘 + 𝐷𝑒𝜆𝑦
V, 𝐷 ̸= 0. (63)

We conclude that the solution of system (50) is of the form

𝑓 (𝑦) = 𝑀
+
+

𝜆

𝑘 + 𝐷𝑒𝜆𝑦
𝑀
1/2

+
V,

where 𝜆 = 4𝑠
4
𝜎

3 (𝑏 − 𝑏3)
(−𝑎
2
+ (1 − 𝑎

4
) 𝑏 + (1 + 𝑎

2
+ 𝑎
4
) 𝑏
2
) , 𝑘 =

𝑠
2
𝑎
2
𝜎

3𝑏
(1 + 3𝑏

2
) , V = (𝑏 + 𝑏2,

𝑎

2
(1 − 𝑏

2
) , 𝑎
2
(𝑏
2
− 𝑏)) , 𝐷 ̸= 0.

(64)

It follows that

𝑀
−
= 𝑀
+
+
𝜆

𝑘
𝑀
1/2

+
V

=
𝑠
4

1 + 3𝑏2
[𝑝
2 1 + 𝑏

1 − 𝑏
, 𝑝𝑞, 𝑞

2 1 − 𝑏

1 + 𝑏
] ,

with 𝑝 = (2 + 𝑎2) 𝑏 − 𝑎2, 𝑞 = 1 + (1 + 2𝑎2) 𝑏,

(65)

which is a Maxwellian. Formally we can allow 𝑏 < −1 and
−1/(1 + 2𝑎

2
) < 𝑏 < 0. However, then, the equilibrium distri-

bution (65) will not be nonnegative and, hence, not a
Maxwellian.

We note that

𝑓 (𝑦) = Θ (𝑦)𝑀
+
+ (1 − Θ (𝑦))𝑀

−
,

with Θ(𝑦) = 1

1 + 𝐶𝑒−𝜆𝑦
,

(66)

where 𝐶 = 𝑘/𝐷 ̸= 0 is an arbitrary nonzero constant. The
structure coincides with the one for the Mott-Smith approxi-
mation [24] in [25]. However, 𝜆 is obtained in different ways.

Remark 3. We can instead of system (50) consider

𝐵
𝑑𝑓

𝑑𝑦
= 𝑄 (𝑓, 𝑓) , where 𝑓 → 𝑀

−
as 𝑦 → −∞, (67)

with

𝑎
2

2 + 𝑎2
< 𝑏 < 𝑏

+
,

or − 1 < 𝑏 < 𝑏
−
,

(68)

and in a similar way as above, we obtain

𝑓 (𝑦) = 𝑀
−
+

𝜆

𝑘 + 𝐷𝑒𝜆𝑦
𝑀
1/2

−
V,

𝑀
+
= 𝑀
−
+
𝜆

𝑘
𝑀
1/2

−
V.

(69)

Example 4. If 𝑎 = 1 then we have

𝜌
+
= 6𝑠
4

+
,

𝑢
+
= 0,

𝐸
+
=
1

6
,

𝑏
±
= ±

1

√3
,

𝜆 =
4𝑠
4
𝜎 (3𝑏
2
− 1)

3 (𝑏 − 𝑏3)
,

V = (𝑏 + 𝑏2,
1 − 𝑏
2

2
, 𝑏
2
− 𝑏) ,

𝑘 =
𝑠
2
𝜎

3𝑏
(1 + 3𝑏

2
) .

(70)

Furthermore,

𝑓 (𝑦) = 𝑀
+
+

𝜆

𝑘 + 𝐷𝑒𝜆𝑦
𝑀
1/2

+
V = 𝑠4 (1, 1, 1)

+
4𝑠
4
(3𝑏
2
− 1)

(1 + 3𝑏2) + �̃�𝑒𝜆𝑦
(
𝑏

1 − 𝑏
,
1

2
,
−𝑏

1 + 𝑏
)

= 𝑟 [((3𝑏 − 1)
2 1 + 𝑏

1 − 𝑏
, (9𝑏
2
− 1) , (3𝑏 + 1)

2 1 − 𝑏

1 + 𝑏
)

+ �̃�𝑒
𝜆𝑦
(1, 1, 1)] , where 𝑟 = 𝑠

4

(1 + 3𝑏2) + �̃�𝑒𝜆𝑦
,

(71)

and the other Maxwellian is

𝑀
−
=

𝑠
4

1 + 3𝑏2
((3𝑏 − 1)

2 1 + 𝑏

1 − 𝑏
, (3𝑏 + 1)

⋅ (3𝑏 − 1) , (3𝑏 + 1)
2 1 − 𝑏

1 + 𝑏
) .

(72)
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Example 5. Similar results can be obtained for the (reduced)
plane Broadwell model

(1 − 𝑏)
𝑑𝑓
1

𝑑𝑦
= 𝜎 (𝑓

2

2
− 𝑓
1
𝑓
3
) ,

−2𝑏
𝑑𝑓
2

𝑑𝑦
= −2𝜎 (𝑓

2

2
− 𝑓
1
𝑓
3
) ,

− (1 + 𝑏)
𝑑𝑓
3

𝑑𝑦
= 𝜎 (𝑓

2

2
− 𝑓
1
𝑓
3
) .

(73)

Particularly, with 𝑎 = 1 we have

𝜌
+
= 4𝑠
4

+
,

𝑢
+
= 0,

𝐸
+
=
1

4
,

𝑐
±
= ±

1

√2
,

𝜆 =
2𝑠
4
𝜎 (2𝑏
2
− 1)

3 (𝑏 − 𝑏3)
,

V = (𝑏 + 𝑏2, 1 − 𝑏2, 𝑏2 − 𝑏) ,

𝑘 =
𝑠
2
𝜎

𝑏
.

(74)

The other Maxwellian is then

𝑀
−
= 𝑠
4
((2𝑏 − 1)

2 1 + 𝑏

1 − 𝑏
, (2𝑏 + 1) (2𝑏 − 1) , (2𝑏 + 1)

2

⋅
1 − 𝑏

1 + 𝑏
) .

(75)

The shock strength (cf. [19]) is given by the density ratio

𝜎
𝜌
=
𝜌
−
− 𝜌
+

𝜌
+

=
2𝑎
2

𝜌
+

𝜆

𝑘

=
8𝑠
2

𝜌
+

𝑏 + 𝑏
2
+ 𝑎
2
(𝑏
2
− 1) + 𝑎

4
(𝑏
2
− 𝑏)

(1 − 𝑏2) (1 + 3𝑏2)
,

(76)

if 𝑏 > 0 and if 𝑏 < 0 by

𝜎
𝜌
=
𝜌
−
− 𝜌
+

𝜌
−

=
2𝑎
2

𝜌
−

𝜆

𝑘

=
8𝑠
2

𝜌
−

𝑏 + 𝑏
2
+ 𝑎
2
(𝑏
2
− 1) + 𝑎

4
(𝑏
2
− 𝑏)

(1 − 𝑏2) (1 + 3𝑏2)
.

(77)

Then the shock strength 𝜎
𝜌
tends to infinity as 𝑏 approaches

1 and to zero as 𝑏 approaches 𝑏
±
; that is

𝜎
𝜌
→ ∞ as 𝑏 → 1,

𝜎
𝜌
→ 0 as 𝑏 → 𝑏

±
.

(78)

The shock width (cf. [19]) is given by the density ratio

𝑑
𝜌
=

𝜌− − 𝜌+


max
𝑦

𝑑𝜌/𝑑𝑦


=
4

𝜆

=
3𝑏 (1 − 𝑏

2
)

𝑠4𝜎 (𝑏 + 𝑏2 + 𝑎2 (𝑏 − 1) + 𝑎4 (𝑏2 − 𝑏))

(79)

or by the velocity ratio

𝑑
𝑢
=

𝑢− − 𝑢+


max
𝑦

𝑑𝑢/𝑑𝑦


=
4

𝜆

1 − 𝑢−/𝑏


𝜌
+

. (80)

We conclude that the shock widths 𝑑
𝜌
and 𝑑

𝑢
tend to zero as

𝑏 approaches 1 and to infinity as 𝑏 approaches 𝑏
±
; that is

𝑑
𝜌
→ 0,

𝑑
𝑢
→ 0

as 𝑏 → 1,

𝑑
𝜌
→ ∞,

𝑑
𝑢
→ ∞

as 𝑏 → 𝑏
±
.

(81)
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2002.

[2] Y. Sone, Molecular Gas Dynamics, Birkhäuser, Boston, Mass,
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