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We have considered a multiobjective semi-infinite programming problem with a feasible set defined by inequality constraints.
First we studied a Fritz-John type necessary condition. Then, we introduced two constraint qualifications and derive the weak and
strong Karush-Kuhn-Tucker (KKT in brief) types necessary conditions for an efficient solution of the considered problem. Finally
an extension of a Caristi-Ferrara-Stefanescu result for the (Φ, 𝜌)-invexity is proved, and some sufficient conditions are presented
under this weak assumption. All results are given in terms of Clark subdifferential.

1. Preliminaries and Introduction

First, we briefly overview some notions of convex analysis
and nonsmooth analysis widely used in the formulations and
proofs of the main results of the paper. For more details,
discussion, and applications, see [1–3].

Given a nonempty set 𝐴 ⊆ R𝑛, we denote with 𝐴, ri(𝐴),
conv(𝐴), and cone(𝐴) the closure of 𝐴, the relative interior
of 𝐴, convex hull, and convex cone (containing the origin)
generated by 𝐴, respectively. The polar cone and strict polar
cone of 𝐴 are defined, respectively, by

𝐴
− fl {𝑥 ∈ R

𝑛

| ⟨𝑥, 𝑎⟩ ≤ 0, ∀𝑎 ∈ 𝐴} ,

𝐴
𝑠 fl {𝑥 ∈ R

𝑛

| ⟨𝑥, 𝑎⟩ < 0, ∀𝑎 ∈ 𝐴} .

(1)

It is easy to show that if𝐴𝑠 ̸= 𝜙 then𝐴𝑠 = 𝐴
−. The bipolar

theorem states that

𝐴
−−

= cone (𝐴) fl cone (𝐴). (2)

The cone of feasible direction of𝐴 at �̂� ∈ 𝐴 is the cone defined
by

𝐷 (𝐴, �̂�) fl {V ∈ R
𝑛

| ∃𝛿 > 0, �̂� + 𝜀V ∈ 𝐴 ∀𝜀 ∈ (0, 𝛿)} . (3)

It is worth observing that if �̂� is a minimizer of convex
function 𝜙 on a convex set 𝐶, then

0 ∈ 𝜕𝜙 (�̂�) + 𝑁 (𝐶, �̂�) , (4)

where 𝑁(𝐶, �̂�) and 𝜕𝜙(�̂�) denote, respectively, the normal
cone of 𝐶 at �̂� and the convex subdifferential of 𝜙 at �̂�; that
is,

𝑁(𝐶, �̂�) fl {𝑦 ∈ R
𝑛

| ⟨𝑦, 𝑥 − �̂�⟩ ≤ 0 ∀𝑥 ∈ 𝐶} ,

𝜕𝜙 (�̂�)

fl {𝜉 ∈ R
𝑛

| 𝜙 (𝑥) ≥ 𝜙 (�̂�) + ⟨𝜉, 𝑥 − �̂�⟩ ∀𝑥 ∈ R
𝑛

} .

(5)

We observe that if 𝐾 ⊆ R𝑛 is an arbitrary set, and �̂� ∈ 𝐾,
then

𝑁(𝐾
−

, �̂�) = 𝐾
−−

. (6)

If {𝐴
𝛼

| 𝛼 ∈ Λ} is a collection of convex sets in R𝑛, and
𝐵 fl ⋃

𝛼∈Λ
𝐴
𝛼
, then it is easy to see that

conv (𝐵) =
{

{

{

𝑘

∑

𝑗=1

𝜆
𝛼𝑗
𝑎
𝛼𝑗

| 𝑎
𝛼𝑗

∈ 𝐴
𝛼𝑗
, 𝑘 ∈ N, 𝜆

𝛼𝑗

≥ 0,

𝑘

∑

𝑗=1

𝜆
𝛼𝑗

= 1
}

}

}

,

(7)

cone (𝐵) =
{

{

{

𝑘

∑

𝑗=1

𝜆
𝛼𝑗
𝑎
𝛼𝑗

| 𝑎
𝛼𝑗

∈ 𝐴
𝛼𝑗
, 𝑘 ∈ N, 𝜆

𝛼𝑗
≥ 0

}

}

}

. (8)
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2 Abstract and Applied Analysis

Let �̂� ∈ R𝑛 and let𝜑 : R𝑛 → R be a locally Lipschitz func-
tion. The Clarke directional derivative of 𝜑 at �̂� in the
direction V ∈ R𝑛 and the Clarke subdifferential of 𝜑 at �̂� are,
respectively, given by

𝜑
0

(�̂�; V) fl lim sup
𝑦→�̂�,𝑡↓0

𝜑 (𝑦 + 𝑡V) − 𝜑 (𝑦)

𝑡
,

𝜕
𝑐
𝜑 (�̂�) fl {𝜉 ∈ R

𝑛

| ⟨𝜉, V⟩ ≤ 𝜑
0

(�̂�; V) ∀V ∈ R
𝑛

} .

(9)

The Clarke subdifferential is a natural generalization of the
classical derivative, since it is known that when function 𝜑 is
continuously differentiable at �̂�, 𝜕

𝑐
𝜑(�̂�) = {∇𝜑(�̂�)}. Moreover

when a function 𝜑 is convex, the Clarke subdifferential coin-
cides with the subdifferential in the sense of convex analysis.

In the following theorem we summarize some important
properties of the Clarke directional derivative and the Clarke
subdifferential from [1] which are widely used in what fol-
lows.

Theorem 1. Let 𝜑 and 𝜙 be functions from R𝑛 to R which are
Lipschitz near �̂�. Then,

(i) the function V → 𝜑
0

(�̂�; V) is finite, positively homoge-
neous, and subadditive on R𝑛, and

𝜑
0

(�̂�; V) = max {⟨𝜉, V⟩ | 𝜉 ∈ 𝜕
𝑐
𝜑 (�̂�)} , (10)

𝜕 (𝜑
0

(�̂�; ⋅)) (0) = 𝜕
𝑐
𝜑 (�̂�) , (11)

(ii) 𝜕
𝑐
𝜑(�̂�) is a nonempty, convex, and compact subset of

R𝑛,
(iii) 𝜑

0

(𝑥; V) is upper semicontinuous as a function of (𝑥, V).

In this paper, we have considered the following multiob-
jective semi-infinite programming problem:

(MOSIP) inf (𝑓
1
(𝑥) , 𝑓

2
(𝑥) , . . . , 𝑓

𝑝
(𝑥))

s.t. 𝑔
𝑡
(𝑥) ≤ 0 𝑡 ∈ 𝑇,

𝑥 ∈ R
𝑛

,

(12)

where 𝑓
𝑖
, 𝑖 ∈ 𝐼 fl {1, 2, . . . , 𝑝} and 𝑔

𝑡
, 𝑡 ∈ 𝑇, are locally

Lipschitz functions fromR𝑛 toR∪ {+∞} and the index set 𝑇
is arbitrary, not necessarily finite (but nonempty).

For differentiable MOSIP where 𝑇 is finite, necessary
conditions of KKT type have been established under vari-
ous constraint qualifications in [4]. The Abadie constraint
qualification and related constraint qualification for semi-
infinite systems of convex inequalities and linear inequalities
are also studied in [5]. There, the characterizations of various
constraint qualifications in terms of upper semicontinuity of
certain multifunctions are given.

There are only a few works available that deal with opti-
mality conditions for MOSIP. For instance, for differentiable
MOSIPs, some optimality conditions have been presented by
Caristi et al. in [6]. Glover et al. in [7] considered a nondiffer-
entiable convex MOSIP and presented optimality theorems

for it. For a nonsmooth MOSIP, the “basic constraint qualifi-
cation” has been studied by Chuong andKim in [8], who have
given optimality and duality conditions of Karush-Kuhn-
Tucker (KKT, briefly) type for the problemwhich involves the
notion ofMordukhovich subdifferential. Also, Gao presented
some sufficient and duality results for MOSIPs under the
various generalized convexity assumptions in [9, 10].

This paper is structured as follows: In Section 2 we pro-
pose a Fritz-John type necessary condition after we derive a
KKT type necessary condition for optimality of the consid-
ered problem under a suitable qualification condition, andwe
establish the strong KKT necessary conditions for an efficient
solution of the considered problem. In Section 3 we obtain an
extension of a Caristi-Ferrara-Stefanescu result for the (Φ, 𝜌)-
invexity.

2. Necessary Conditions

As a starting point of this section, we denote with 𝑀 the
feasible region of (MOSIP); that is,

𝑀 fl {𝑥 ∈ R
𝑛

| 𝑔
𝑡
(𝑥) ≤ 0 ∀𝑡 ∈ 𝑇} . (13)

For a given �̂� ∈ 𝑀, let 𝑇(�̂�) denote the index set of all active
constraints at �̂�:

𝑇 (�̂�) fl {𝑡 ∈ 𝑇 | 𝑔
𝑡
(�̂�) = 0} . (14)

A feasible point �̂� is said to be an efficient solution [resp.,
weakly efficient solution] to problem (MOSIP) iff there is no
𝑥 ∈ 𝑀 satisfying 𝑓

𝑖
(𝑥) ≤ 𝑓

𝑖
(�̂�), 𝑖 ∈ 𝐼, and (𝑓

1
(𝑥), . . . ,

𝑓
𝑝
(𝑥)) ̸= (𝑓

1
(�̂�), . . . , 𝑓

𝑝
(�̂�)) [resp., 𝑓

𝑖
(𝑥) < 𝑓

𝑖
(�̂�), 𝑖 ∈ 𝐼].

For each �̂� ∈ 𝑀, set

𝐹
�̂�
fl ⋃

𝑖∈𝐼

𝜕
𝑐
𝑓
𝑖
(�̂�) ,

𝐺
�̂�
fl ⋃

𝑡∈𝑇(�̂�)

𝜕
𝑐
𝑔
𝑡
(�̂�) .

(15)

For each 𝑥 ∈ 𝑀, set

Ψ (𝑥) fl sup
𝑡∈𝑇

𝑔
𝑡
(𝑥) . (16)

Recall the following definition from [11].

Definition 2. We say that MOSIP has the Pshenichnyi-Levin-
Valadire (PLV) property at 𝑥 ∈ 𝑀, if Ψ(⋅) is Lipschitz around
𝑥, and

𝜕
𝑐
Ψ (𝑥) ⊆ conv( ⋃

𝑡∈𝑇(𝑥)

𝜕
𝑐
𝑔
𝑡
(𝑥)) = conv (𝐺

𝑥
) . (17)

The following condition is well known, even in differen-
tiable cases (see, e.g., [5, 6]).

Assumption A. The index set𝑇 is a nonempty compact subset
ofR𝑙, the function (𝑥, 𝑡) → 𝑔

𝑡
(𝑥) is upper semicontinuous on

R𝑛 × 𝑇, and 𝜕
𝑐
𝑔
𝑡
(𝑥) is an upper semicontinuous mapping in

𝑡 for each 𝑥.
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The following lemma from [5,Theorem 5] will be used in
sequel.

Lemma 3. Suppose that Assumption A holds. Then,

(1) 𝐺
�̂�
is a compact set for each �̂� ∈ 𝑀,

(2) the PLV property holds at each �̂� ∈ 𝑀.

The following result is an extension of [6, Theorem 4].

Theorem 4 (FJ necessary condition). Let �̂� be a weakly
efficient solution ofMOSIP. If condition A holds at �̂�, then there
exist 𝛼

𝑖
≥ 0 (for 𝑖 = 1, 2, . . . , 𝑝) and 𝛽

𝑡
≥ 0, for 𝑡 ∈ 𝑇(�̂�), with

𝛽
𝑡

̸= 0 for finitely many indexes, such that

0 ∈

𝑝

∑

𝑖=1

𝛼
𝑖
𝜕
𝑐
𝑓
𝑖
(�̂�) + ∑

𝑡∈𝑇(�̂�)

𝛽
𝑡
𝜕
𝑐
𝑔
𝑡
(�̂�) ,

𝑝

∑

𝑖=1

𝛼
𝑖
+ ∑

𝑡∈𝑇(�̂�)

𝛽
𝑡
= 1.

(18)

Proof. Weknow fromLemma 3 that𝐺
�̂�
is a compact set.Thus

𝐹
�̂�
∪ 𝐺
�̂�
is also a compact set, and hence, conv(𝐹

�̂�
∪ 𝐺
�̂�
) is

closed.
If 0 ∉ conv(𝐹

�̂�
∪𝐺
�̂�
), by strict separation theoremwe find

𝑞 ∈ R𝑛 such that ⟨𝑞, 𝑢⟩ < 0 for all 𝑢 ∈ conv(𝐹
�̂�
∪ 𝐺
�̂�
). This

implies that

𝑞 ∈ (conv (𝐹
�̂�
∪ 𝐺
�̂�
))
𝑠

= (𝐹
�̂�
∪ 𝐺
�̂�
)
𝑠

= 𝐹
𝑠

�̂�
∩ 𝐺
𝑠

�̂�
. (19)

Since 𝑑 ∈ 𝐺
𝑠

�̂�
and the PLV property is satisfied at �̂� (by

Lemma 3), we have

𝑑 = (conv (𝐺
�̂�
))
𝑠

⊆ (𝜕
𝑐
Ψ (�̂�))

𝑠

⇒

Ψ
0

(�̂�; 𝑑) < 0.

(20)

Thus, there exists 𝛿 > 0 such that Ψ(�̂� + 𝜀𝑑) − Ψ(�̂�) < 0 for
all 𝜀 ∈ (0, 𝛿). The last inequality and the fact that Ψ(�̂�) ≤ 0

(since �̂� ∈ 𝑀) conclude that Ψ(�̂� + 𝜀𝑑) < 0, and hence

𝑔
𝑡
(�̂� + 𝜀𝑑) < 0, ∀𝜀 ∈ (0, 𝛿) . (21)

Moreover, we have

𝑑 ∈ 𝐹
𝑠

�̂�
= (

𝑝

⋃

𝑖=1

𝜕
𝑐
𝑓
𝑖
(�̂�))

𝑠

=

𝑝

⋂

𝑖=1

(𝜕
𝑐
𝑓
𝑖
(�̂�))
𝑠

⇒

𝑓
0

𝑖
(�̂�; 𝑑) < 0 ∀𝑖 = 1, . . . , 𝑝.

(22)

For each 𝑖 = 1, . . . , 𝑝 we find 𝛿
𝑖
> 0 such that

𝑓
𝑖
(�̂� + 𝜀𝑑) − 𝑓

𝑖
(�̂�) < 0, ∀𝜀 ∈ (0, 𝛿

𝑖
) . (23)

Take �̂� fl min{𝛿, 𝛿
1
, . . . , 𝛿

𝑝
}. By (21) and (23) for each 𝜀 ∈

(0, �̂�) we have

(𝑓
1
(�̂� + 𝜀𝑑) , . . . , 𝑓

𝑝
(�̂� + 𝜀𝑑))

< (𝑓
1
(�̂�) , . . . , 𝑓

𝑝
(�̂�)) , �̂� + 𝜀𝑑 ∈ 𝑀,

(24)

which contradicts the weak efficiency of �̂�.This contradiction
implies that

0 ∈ conv (𝐹
�̂�
∪ 𝐺
�̂�
) . (25)

Now, (7) proves the result.

Thenecessary conditions of Fritz-John type can be viewed
as being degenerate when the multiplier corresponding to
the objective function vanishes, because the function being
minimized is not involved. In the next theorem we derive a
Karush-Kuhn-Tuker type necessary condition for optimality
of MOSIP under a suitable qualification condition.

Definition 5. Let �̂� ∈ 𝑀. We say that MOSIP satisfies the
Zangwill CQ (ZCQ briefly) at �̂�, if

𝐺
−

�̂�
⊆ 𝐷 (𝑀, �̂�). (26)

Theorem 6. Let �̂� be a weakly efficient solution of MOSIP,
ZCQ hold at �̂�, and 𝑐𝑜𝑛𝑒(𝐺(�̂�)) be a closed cone. Then there
exist 𝛼

𝑖
≥ 0 (for 𝑖 = 1, 2, . . . , 𝑝) and 𝛽

𝑡
≥ 0, for 𝑡 ∈ 𝑇(�̂�), with

𝛽
𝑡

̸= 0 for finitely many indexes, such that

0 ∈

𝑝

∑

𝑖=1

𝛼
𝑖
𝜕
𝑐
𝑓
𝑖
(�̂�) + ∑

𝑡∈𝑇(�̂�)

𝛽
𝑡
𝜕
𝑐
𝑔
𝑡
(�̂�) ,

𝑝

∑

𝑖=1

𝛼
𝑖
= 1.

(27)

Proof. We first claim that

max
1≤𝑖≤𝑝

𝑓
0

𝑖
(�̂�; 𝑑) ≥ 0, ∀𝑑 ∈ 𝐷 (𝑀, �̂�) . (28)

On the contrary, suppose that there exists 𝑑 ∈ 𝐷(𝑀, �̂�) such
that 𝑓0

𝑖
(�̂�; 𝑑) < 0 for all 𝑖 = 1, . . . , 𝑝. Thus, there exist positive

scalars 𝛿, 𝛿
1
, . . . , 𝛿

𝑝
such that

�̂� + 𝜀𝑑 ∈ 𝑀 ∀𝜀 ∈ (0, 𝛿) ,

𝑓
𝑖
(�̂� + 𝜀𝑑) − 𝑓

𝑖
(�̂�) < 0 ∀𝜀 ∈ (0, 𝛿

𝑖
) .

(29)

Take �̂� fl min{𝛿, 𝛿
1
, . . . , 𝛿

𝑝
}. By above inequalities, for each

𝜀 ∈ (0, �̂�) we have

(𝑓
1
(�̂� + 𝜀𝑑) , . . . , 𝑓

𝑝
(�̂� + 𝜀𝑑))

< (𝑓
1
(�̂�) , . . . , 𝑓

𝑝
(�̂�)) , �̂� + 𝜀𝑑 ∈ 𝑀,

(30)

which contradicts the weak efficiency of �̂�. Thus, (28) is true.
If �̂� ∈ 𝐷(𝑀, �̂�), there exists a sequence {𝑑

𝑘
}
∞

𝑘=1
in𝐷(𝑀, �̂�)

converging to �̂�. Owing to (28) and continuity of function
𝜑(𝑑) fl max

1≤𝑖≤𝑝
𝑓
0

𝑖
(�̂�; 𝑑), we deduce that

𝜑 (�̂�) = lim
𝑘→∞

𝜑 (𝑑
𝑘
) ≥ 0. (31)

We thus proved that (by assumption of ZCQ at �̂�)

𝜑 (𝑑) = max
1≤𝑖≤𝑝

𝑓
0

𝑖
(�̂�; 𝑑) ≥ 0, ∀𝑑 ∈ 𝐺

�̂�
. (32)
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Since 0 ∈ 𝐺
−

�̂�
and 𝜑(0) = 0, the last relation implies that the

following convex problem has a minimum at 𝑑 fl 0:

min 𝜑 (𝑑) ,

subject to 𝑑 ∈ 𝐺
�̂�
.

(33)

Hence, by (4), (6), and (11) we obtain that

0 ∈ 𝜕𝜑 (0) + 𝑁 (𝐺
−

�̂�
, 0)

= conv(

𝑝

⋃

𝑖=1

𝜕𝑓
0

𝑖
(�̂�; ⋅) (0)) + 𝐺

−−

�̂�

= conv (𝐹
�̂�
) + cone (𝐺

�̂�
) .

(34)

Now, the closeness of cone(𝐺(�̂�)), (2), (7), and (8) prove the
results.

In almost all examples, we were not able to obtain positive
KKT multipliers associated with the vector-valued objective
function; that is to say, some of the multipliers may be
equal to zero. This means that the components of the vector-
valued objective function do not have a role in the necessary
conditions for weak efficiency. In order to avoid the case
where some of the KKT multipliers associated with the
objective function vanish for the MOSIP, an approach has
been developed in [5], and strong KKT necessary optimality
conditions have been obtained. We say that strong KKT
condition holds for a multiobjective optimization problem,
when the KKTmultipliers are positive for all the components
of the objective function. Below, we establish the necessary
strong KKT conditions for an efficient solution (not a weak
efficient solution) of MOSIP under a suitable qualification
condition.

Let �̂� ∈ 𝑆. On the lines of [4], for each 𝑖 ∈ 𝐼, define the set

𝑄
𝑖

(�̂�) fl {𝑥 ∈ 𝑀 | 𝑓
𝑙
(𝑥) ≤ 𝑓

𝑙
(�̂�) ∀𝑙 ∈ 𝐼 \ {𝑖}} ,

𝑄
𝑖

(�̂�) fl 𝑀, if 𝑝 = 1.

(35)

For the sake of simplicity, we denote𝑄𝑖(�̂�) by𝑄
𝑖 in this paper.

Definition 7. Let �̂� ∈ 𝑀. We say that MOSIP satisfies the
strong Zangwill CQ (SZCQ briefly) at �̂�, if

𝐺
−

�̂�
⊆

𝑝

⋂

𝑖=1

𝐷(𝑄𝑖, �̂�). (36)

Theorem 8 (strong KKT necessary condition). Let �̂� be an
efficient solution of MOSIP. If in addition, SZCQ and the
condition

(A) : (

𝑝

⋃

𝑖=1

𝜕
𝑐
𝑓
𝑖
(�̂�))

−

\ {0} ⊆

𝑝

⋃

𝑖=𝑖

(𝜕
𝑐
𝑓
𝑖
(�̂�))
𝑠 (37)

hold at �̂�, then 𝛼
𝑖
> 0 exist (for 𝑖 = 1, 2, . . . , 𝑝) and 𝛽

𝑡
≥ 0, for

𝑡 ∈ 𝑇(�̂�), with 𝛽
𝑡

̸= 0 for finitely many indexes, such that

0 ∈

𝑝

∑

𝑖=1

𝛼
𝑖
𝜕
𝑐
𝑓
𝑖
(�̂�) + ∑

𝑡∈𝑇(�̂�)

𝛽
𝑡
𝜕
𝑐
𝑔
𝑡
(�̂�) . (38)

Proof. We present the proof in four steps.

Step 1. We claim that

(

𝑝

⋃

𝑖=1

(𝜕
𝑐
𝑓
𝑖
(�̂�))
𝑠

) ∩ (

𝑝

⋂

𝑖=1

𝐷(𝑄
𝑖

, �̂�)) = 0. (39)

It suffices only to prove that

(𝜕
𝑐
𝑓
𝑙
(�̂�))
𝑠

∩ 𝐷(𝑄
𝑙

, �̂�) = 0 ∀𝑙 ∈ 𝐼. (40)

On the contrary, suppose that for some 𝑙 ∈ 𝐼 there is a vector
𝑑 such that

𝑑 ∈ (𝜕
𝑐
𝑓
𝑙
(�̂�))
𝑠

∩ 𝐷(𝑄
𝑙

, �̂�) . (41)

By the definition of 𝐷(𝑄
𝑙

, �̂�), there exists 𝛿 > 0 such that �̂� +

𝜀𝑑 ∈ 𝑄
𝑙 for each 𝜀 ∈ (0, 𝛿). Thus, owing to the definition of

𝑄
𝑙 we obtain that

𝑓
𝑖
(�̂� + 𝜀𝑑) ≤ 𝑓

𝑖
(�̂�) ∀𝑖 ∈ 𝐼 \ {𝑙} , ∀𝜀 ∈ (0, 𝛿) ,

�̂� + 𝜀𝑑 ∈ 𝑀 ∀𝜀 ∈ (0, 𝛿) .

(42)

On the other hand, (41) leads to𝑓
0

𝑙
(�̂�; 𝑑) < 0.This means that

𝛿
𝑙
> 0 exists, satisfying

𝑓
𝑙
(�̂� + 𝜀𝑑) − 𝑓

𝑙
(�̂�) < 0 ∀𝜀 ∈ (0, 𝛿

𝑙
) . (43)

The above inequality with (42) implies that, for each 𝜀 ∈ (0, �̂�)

with �̂� fl min{𝛿, 𝛿
𝑙
}, we have

𝑓
𝑖
(�̂� + 𝜀𝑑) ≤ 𝑓

𝑖
(�̂�) ∀𝑖 ∈ 𝐼 \ {𝑙} ,

𝑓
𝑙
(�̂� + 𝜀𝑑) < 𝑓

𝑙
(�̂�) ,

�̂� + 𝜀𝑑 ∈ 𝑀.

(44)

This contradicts the efficiency of �̂�. Therefore, our claim
holds.

Step 2. Let �̂� ∈ 𝐷(𝑄𝑙, �̂�) for some 𝑙 ∈ 𝐼. Then, there exists
a sequence {𝑑

𝑘
}
∞

𝑘=1
in 𝐷(𝑄

𝑙

, �̂�) converging to �̂�. By (40) and
continuity of 𝑓0

𝑙
(�̂�; ⋅) we concluded that

𝑓
0

𝑙
(�̂�; �̂�) = lim

𝑘→∞

𝑓
0

𝑙
(�̂�; 𝑑
𝑘
) ≥ 0. (45)

Therefore,

(𝜕
𝑐
𝑓
𝑙
(�̂�))
𝑠

∩ 𝐷 (𝑄𝑙, �̂�) = 0 ∀𝑙 ∈ 𝐼, (46)

and hence

(

𝑝

⋃

𝑖=1

(𝜕
𝑐
𝑓
𝑖
(�̂�))
𝑠

) ∩ (

𝑝

⋂

𝑖=1

𝐷(𝑄𝑖, �̂�)) = 0. (47)

Step 3. We claim that

0 ∈ ri (conv (𝐹
�̂�
)) + cone (𝐺

�̂�
) . (48)
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On the contrary we suppose that (48) does not hold. Then

ri (conv (𝐹
�̂�
)) ∩ (−cone (𝐺

�̂�
)) = 0. (49)

Thus, by the strong convex separation theorem [3, Theorem
11.3] and noting that (−cone(𝐺

�̂�
)) is a convex cone, it follows

that there is a hyperplane

𝐻 fl {𝑥 | ∃𝑑 ∈ R
𝑛

\ {0} s.t. ⟨𝑥, 𝑑⟩ = 0} (50)

separating conv(𝐹
�̂�
) and (−cone(𝐺

�̂�
)) properly. Hence, there

exists a vector 𝑑 ∈ R𝑛 satisfying

0 ̸= 𝑑 ∈ (conv (𝐹
�̂�
))
−

∩ (cone (𝐺
�̂�
))
−

= 𝐹
−

�̂�
∩ 𝐺
−

�̂�
. (51)

Thus, owing to SZCQ andA we conclude that

𝑑 ∈ (

𝑝

⋃

𝑖=1

(𝜕
𝑐
𝑓
𝑖
(�̂�))
𝑠

) ∩ (

𝑝

⋂

𝑖=1

𝐷(𝑄𝑖, �̂�)) , (52)

which contradicts (47).

Step 4. The result is immediate from (48), (8), and the fact
that (see, [3, Theorem 6.9])

ri (conv (𝐹
�̂�
))

⊆ {

𝑝

∑

𝑖=1

𝛼
𝑖
𝜉
𝑖
| 𝜉
𝑖
∈ 𝜕
𝑐
𝑓
𝑖
(�̂�) , 𝛼

𝑖
> 0,

𝑝

∑

𝑖=1

𝛼
𝑖
= 1} .

(53)

3. Sufficient Conditions

Similar to [6], letΦ : R𝑛×R𝑛×R𝑛+1 → R and 𝜌 : R𝑛×R𝑛 →

R be given functions satisfying

Φ(𝑥, 𝑥
∗

, (0, 𝑟)) ≥ 0 ∀𝑥 ∈ R
𝑛

, 𝑟 ≥ 0. (54)

Observe that an element of R𝑛+1 is represented as the order
pair (𝑦, 𝑟) with 𝑦 ∈ R𝑛 and 𝑟 ∈ R.

In [6] a differentiable function ℎ : R𝑛 → R was named
(Φ, 𝜌)-invex at 𝑥∗ with respect to A ⊆ R𝑛 if, for each 𝑥 ∈ A,

Φ(𝑥, 𝑥
∗

, (∇ℎ (𝑥
∗

) , 𝜌 (𝑥, 𝑥
∗

))) ≤ ℎ (𝑥) − ℎ (𝑥
∗

) ,

Φ (𝑥, 𝑥
∗

, ⋅) is convex on R
𝑛+1

.

(55)

We extend this result as follows.

Definition 9. The locally Lipschitz function ℏ : R𝑛 → R, at
𝑥
∗

∈ R𝑛, is called generalized (Φ, 𝜌)-invex at 𝑥∗ with respect
to A ⊆ R𝑛 if, for each 𝑥 ∈ A, it satisfies

Φ(𝑥, 𝑥
∗

, (𝜉, 𝜌 (𝑥, 𝑥
∗

))) ≤ ℏ (𝑥) − ℏ (𝑥
∗

) ,

∀𝜉 ∈ 𝜕
𝑐
ℏ (𝑥
∗

) ,

Φ (𝑥, 𝑥
∗

, ⋅) is convex on R
𝑛+1

.

(56)

In the rest of this paper, we will always assume A to be equal
to the set 𝑀 of the feasible solution of MOSIP.

Theorem 10 (sufficient KKT condition). Suppose that there
exist a feasible solution �̂� ∈ 𝑀 and scalars 𝛼

𝑖
≥ 0 (for 𝑖 ∈ 𝐼)

with ∑
𝑝

𝑖=1
𝛼
𝑖
= 1 and a finite set 𝑇∗ fl {𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑚
} ⊆ 𝑇(�̂�)

and scalars 𝛽
𝑗𝑠

≥ 0 (for 𝑠 ∈ {1, 2, . . . , 𝑚}) such that

0 ∈

𝑝

∑

𝑖=1

𝛼
𝑖
𝜕
𝑐
𝑓
𝑖
(�̂�) +

𝑚

∑

𝑠=1

𝛽
𝑡𝑠
𝜕
𝑐
𝑔
𝑡𝑠
(�̂�) . (57)

Moreover if the 𝑓
𝑖
functions and the 𝑔

𝑡
functions (for (𝑖, 𝑡) ∈

𝐼 × 𝑇(�̂�)) are (Φ, 𝜌)-invex at �̂�, and ∑
𝑝

𝑖=1
𝛼
𝑖
𝜌
𝑖
(𝑥, �̂�) +

∑
𝑚

𝑠=1
𝛽
𝑡𝑠
𝜌
𝑡𝑠
(𝑥, �̂�) ≥ 0 for all 𝑥 ∈ 𝑀, then �̂� is a weak efficient

solution for MOSIP.

Proof. Inclusion (57) implies that some 𝜉
𝑖
∈ 𝜕
𝑐
𝑓
𝑖
(�̂�) (for 𝑖 ∈ 𝐼)

and 𝜁
𝑡𝑠

∈ 𝜕
𝑐
𝑔
𝑡𝑠
(�̂�) (for 𝑠 ∈ {1, . . . , 𝑚}) exist, satisfying
𝑝

∑

𝑖=1

𝛼
𝑖
𝜉
𝑖
+

𝑚

∑

𝑠=1

𝛽
𝑡𝑠
𝜁
𝑡𝑠

= 0,

𝑝

∑

𝑖=1

𝛼
𝑖
+

𝑚

∑

𝑠=1

𝛽
𝑡𝑠

= 𝑏 > 0.

(58)

Taking �̂�
𝑖
fl 𝛼
𝑖
/𝑏 and �̂�

𝑡𝑠
fl 𝛽
𝑡𝑠
/𝑏, we conclude that

𝑝

∑

𝑖=1

�̂�
𝑖
𝜉
𝑖
+

𝑚

∑

𝑠=1

�̂�
𝑡𝑠
𝜁
𝑡𝑠

= 0,

𝑝

∑

𝑖=1

�̂�
𝑖
+

𝑚

∑

𝑠=1

�̂�
𝑡𝑠

= 1.

(59)

Owing to these equalities, (54),∑𝑝
𝑖=1

𝛼
𝑖
𝜌
𝑖
(𝑥, �̂�)+∑

𝑚

𝑠=1
𝛽
𝑡𝑠
𝜌
𝑡𝑠
(𝑥,

�̂�) ≥ 0, and convexity of Φ(𝑥, 𝑥
∗

, ⋅), we obtain that

0 ≤ Φ(𝑥, �̂�,

𝑝

∑

𝑖=1

�̂�
𝑖
𝜉
𝑖
+

𝑚

∑

𝑠=1

�̂�
𝑡𝑠
𝜁
𝑡𝑠
,

𝑝

∑

𝑖=1

𝛼
𝑖
𝜌
𝑖
(𝑥, �̂�)

+

𝑚

∑

𝑠=1

𝛽
𝑡𝑠
𝜌
𝑡𝑠
(𝑥, �̂�)) = Φ(𝑥, �̂�,

𝑝

∑

𝑖=1

�̂�
𝑖
(𝜉
𝑖
, 𝜌
𝑖
(𝑥, �̂�))

+

𝑚

∑

𝑠=1

�̂�
𝑡𝑠
(𝜁
𝑡𝑠
, 𝜌
𝑡𝑠
(𝑥, �̂�)))

≤

𝑝

∑

𝑖=1

�̂�
𝑖
Φ(𝑥, �̂�, 𝜉

𝑖
, 𝜌 (𝑥, �̂�))

+

𝑚

∑

𝑠=1

�̂�
𝑡𝑠
Φ(𝑥, �̂�, 𝜁

𝑡𝑠
, 𝜌
𝑡𝑠
(𝑥, �̂�)) .

(60)

Now, if �̂� is not a weak efficient of MOSIP, there exists a point
𝑥 ∈ 𝑀 such that 𝑓

𝑖
(𝑥) < 𝑓

𝑖
(�̂�) for all 𝑖 ∈ 𝐼. Hence, by

generalized (Φ, 𝜌)-invexity of 𝑓
𝑖
functions we have

Φ(𝑥, �̂�, 𝜉
𝑖
, 𝜌
𝑖
(𝑥, �̂�)) ≤ 𝑓

𝑖
(𝑥) − 𝑓

𝑖
(�̂�) < 0. (61)

Similarly, for each 𝑠 = 1, . . . , 𝑚, we have

Φ(𝑥, �̂�, 𝜁
𝑡𝑠
, 𝜌
𝑡𝑠
(𝑥, �̂�)) ≤ 𝑔

𝑡𝑠
(𝑥) − 𝑔

𝑡𝑠
(�̂�) = 𝑔

𝑡𝑠
(𝑥)

≤ 0.

(62)
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From (61), (62), and ∑
𝑝

𝑖=1
�̂�
𝑖
> 0, we conclude that

𝑝

∑

𝑖=1

�̂�
𝑖
Φ(𝑥, �̂�, 𝜉

𝑖
, 𝜌 (𝑥, �̂�))

+

𝑚

∑

𝑠=1

�̂�
𝑡𝑠
Φ(𝑥, �̂�, 𝜁

𝑡𝑠
, 𝜌
𝑡𝑠
(𝑥, �̂�)) < 0,

(63)

which contradicts (60). This contradiction shows that �̂� is an
weak efficient for MOSIP.

Strengthening the assumptions concerning 𝛼
𝑖
s we obtain

sufficient conditions for efficiency.

Theorem 11 (strong sufficient KKT condition). Suppose that
there exist a feasible solution �̂� ∈ 𝑀 and scalars 𝛼

𝑖
> 0 (for

𝑖 ∈ 𝐼) and a finite set 𝑇∗ fl {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
} ⊆ 𝑇(�̂�) and scalars

𝛽
𝑗𝑠

≥ 0 (for 𝑠 ∈ {1, 2, . . . , 𝑚}) such that

0 ∈

𝑝

∑

𝑖=1

𝛼
𝑖
𝜕
𝑐
𝑓
𝑖
(�̂�) +

𝑚

∑

𝑠=1

𝛽
𝑡𝑠
𝜕
𝑐
𝑔
𝑡𝑠
(�̂�) . (64)

Moreover if the 𝑓
𝑖
functions and the 𝑔

𝑡
functions (for (𝑖, 𝑡) ∈

𝐼 × 𝑇(�̂�)) are (Φ, 𝜌)-invex at �̂�, and ∑
𝑝

𝑖=1
𝛼
𝑖
𝜌
𝑖
(𝑥, �̂�) +

∑
𝑚

𝑠=1
𝛽
𝑡𝑠
𝜌
𝑡𝑠
(𝑥, �̂�) ≥ 0 for all 𝑥 ∈ 𝑀, then �̂� is an efficient

solution for MOSIP.

Proof. Similar to (61) and (62), if �̂� is not efficient, we find
𝑥 ∈ 𝑀 and 𝑙 ∈ 𝐼 such that

Φ(𝑥, �̂�, 𝜉
𝑖
, 𝜌
𝑖
(𝑥, �̂�)) ≤ 0 ∀𝑖 ∈ 𝐼 \ {𝑙} ,

Φ (𝑥, �̂�, 𝜉
𝑙
, 𝜌
𝑙
(𝑥, �̂�)) < 0,

Φ (𝑥, �̂�, 𝜁
𝑡𝑠
, 𝜌
𝑡𝑠
(𝑥, �̂�)) ≤ 0 ∀𝑠 ∈ {1, . . . , 𝑚} .

(65)

From these and �̂�
𝑖
> 0 (for all 𝑖 ∈ 𝐼) and �̂�

𝑡𝑠
≥ 0 (for all

𝑠 ∈ {1, . . . , 𝑚}), we obtain

𝑝

∑

𝑖=1

�̂�
𝑖
Φ(𝑥, �̂�, 𝜉

𝑖
, 𝜌 (𝑥, �̂�))

+

𝑚

∑

𝑠=1

�̂�
𝑡𝑠
Φ(𝑥, �̂�, 𝜁

𝑡𝑠
, 𝜌
𝑡𝑠
(𝑥, �̂�)) < 0,

(66)

which contradicts (60).

Remark 12. Similar to [6], we can define some weaker (Φ, 𝜌)-
invexiy assumption for the function ℏ, and then, we can prove
some weaker sufficient conditions for optimality of MOSIP.
Since the proof of these extensions is similar to previous
theorems, we omit them.
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